Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77833
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾宇鳳(Y. Jane Tseng)
dc.contributor.authorYu-Yen Chengen
dc.contributor.author鄭羽嫣zh_TW
dc.date.accessioned2021-07-11T14:35:41Z-
dc.date.available2022-09-04
dc.date.copyright2017-09-04
dc.date.issued2017
dc.date.submitted2017-08-20
dc.identifier.citation(1) Brügger, B. Annual review of biochemistry 2014, 83, 79-98.
(2) Quehenberger, O.; Armando, A. M.; Brown, A. H.; Milne, S. B.; Myers, D. S.; Merrill, A. H.; Bandyopadhyay, S.; Jones, K. N.; Kelly, S.; Shaner, R. L. Journal of lipid research 2010, 51, 3299-3305.
(3) O’Connor, A.; Brasher, C. J.; Slatter, D. A.; Meckelmann, S. W.; Hawksworth, J. I.; Allen, S. M.; O’Donnell, V. B. JCI insight 2017, 2.
(4) Patti, G. J.; Yanes, O.; Siuzdak, G. Nature reviews Molecular cell biology 2012, 13, 263-269.
(5) Fahy, E.; Subramaniam, S.; Murphy, R. C.; Nishijima, M.; Raetz, C. R.; Shimizu, T.; Spener, F.; van Meer, G.; Wakelam, M. J.; Dennis, E. A. Journal of lipid research 2009, 50, S9-S14.
(6) Markesbery, W.; Lovell, M. Neurobiology of aging 1998, 19, 33-36.
(7) Hinterwirth, H.; Stegemann, C.; Mayr, M. Circulation: Cardiovascular Genetics 2014, 7, 941-954.
(8) Orešič, M.; Simell, S.; Sysi-Aho, M.; Näntö-Salonen, K.; Seppänen-Laakso, T.; Parikka, V.; Katajamaa, M.; Hekkala, A.; Mattila, I.; Keskinen, P. Journal of Experimental Medicine 2008, 205, 2975-2984.
(9) Schwarz, E.; Prabakaran, S.; Whitfield, P.; Major, H.; Leweke, F.; Koethe, D.; McKenna, P.; Bahn, S. Journal of proteome research 2008, 7, 4266-4277.
(10) Bradley, E.; Dasgupta, S.; Jiang, X.; Zhao, X.; Zhu, G.; He, Q.; Dinkins, M.; Bieberich, E.; Wang, G. PloS one 2014, 9, e110119.
(11) Shevchenko, A.; Simons, K. Nature reviews Molecular cell biology 2010, 11, 593-598.
(12) Wenk, M. R. Cell 2010, 143, 888-895.
(13) Hishikawa, D.; Hashidate, T.; Shimizu, T.; Shindou, H. Journal of lipid research 2014, 55, 799-807.
(14) Uran, S.; Larsen, Å.; Jacobsen, P. B.; Skotland, T. Journal of Chromatography B: Biomedical Sciences and Applications 2001, 758, 265-275.
(15) Farooqui, A. A.; Horrocks, L. A.; Farooqui, T. Journal of neuroscience research 2007, 85, 1834-1850.
(16) Dettmer, K.; Aronov, P. A.; Hammock, B. D. Mass spectrometry reviews 2007, 26, 51-78.
(17) Banerjee, S.; Mazumdar, S. International journal of analytical chemistry 2012, 2012.
(18) Hartler, J.; Tharakan, R.; Köfeler, H. C.; Graham, D. R.; Thallinger, G. G. Briefings in bioinformatics 2012, 14, 375-390.
(19) De Hoffmann, E.; Stroobant, V. Mass spectrometry: principles and applications; John Wiley & Sons, 2007.
(20) Schrimpe-Rutledge, A. C.; Codreanu, S. G.; Sherrod, S. D.; McLean, J. A. Journal of The American Society for Mass Spectrometry 2016, 27, 1897-1905.
(21) Röst, H. L.; Sachsenberg, T.; Aiche, S.; Bielow, C.; Weisser, H.; Aicheler, F.; Andreotti, S.; Ehrlich, H.-C.; Gutenbrunner, P.; Kenar, E. Nature methods 2016, 13, 741-748.
(22) Nature 2011, 470, 305-306.
(23) Nature 2011, 514, 536.
(24) Gentleman, R.; Ihaka, R.; Bates, D. URL: http://www. r-project. org/254 2009.
(25) Smith, C. A.; Want, E. J.; O'Maille, G.; Abagyan, R.; Siuzdak, G. Analytical chemistry 2006, 78, 779-787.
(26) Stevens, A.; Ramirez–Lopez, L. R Package Vignette, Report No.: R Package Version 0.1 2014, 3.
(27) Du, P.; Kibbe, W. A.; Lin, S. M. Bioinformatics 2006, 22, 2059-2065.
(28) Wang, S.-Y.; Kuo, C.-H.; Tseng, Y. J. Analytical chemistry 2015, 87, 3048-3055.
(29) Tang, C.-H.; Tsao, P.-N.; Lin, C.-Y.; Fang, L.-S.; Lee, S.-H.; Wang, W.-H. Analytical and bioanalytical chemistry 2012, 404, 2949-2961.
(30) Kerwin, J. L.; Tuininga, A. R.; Ericsson, L. Journal of lipid research 1994, 35, 1102-1114.
(31) Sud, M.; Fahy, E.; Cotter, D.; Brown, A.; Dennis, E. A.; Glass, C. K.; Merrill Jr, A. H.; Murphy, R. C.; Raetz, C. R.; Russell, D. W. Nucleic acids research 2006, 35, D527-D532.
(32) Berglund, M.; Wieser, M. E. Pure and applied chemistry 2011, 83, 397-410.
(33) Kleinberg, J.; Tardos, E. Algorithm design; Pearson Education India, 2006.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77833-
dc.description.abstract脂質辨識在釐清脂質於疾病和細胞信號傳導中的作用是非常重要的,其中使用的平台又以高通量液相層析串聯質譜為多數。液相層析電噴灑游離串聯質譜(LC-ESI MS / MS)為其中的一種儀器,使用其進行脂質辨識的工作流程包括從特定類別脂質掃描模式(class-specific scan mode)如前驅離子掃描(precursor ion scan)或中性丟失離子掃描(neutral loss scan)中挑選出目標物的荷質比(mass-to-charge ratio, m/z)和滯留時間(retention time, rt)、進行單一產物離子掃描(product ion scan),並從該結果辨識此質譜為何種脂質所組成。如有多個目標物,就要重復多次產物離子掃描的實驗。上述流程極度仰賴人工,且處理分析這些資料十分耗時、動作重複並需要一些背景知識。在這項研究中,我們開發了一網站工具—脂質辨識加速器(LIA),以加速使用液相層析電噴灑游離串聯質譜進行脂質辨識的過程。 LIA會針對不同掃描模式質譜的資料進行特定的處理。如拿到特定類別脂質掃描模式質譜會先實作資料前處理過程如基線校正(baseline correction),平滑(smoothing),去同位素(de-isotope)和峰值檢測,以挑出目標物的荷質比和滯留時間,再規劃多個目標物在產物離子掃描實驗中打碎的順序以實現多目標物的產物離子掃描。如拿到產物離子脂質掃描模式質譜會整合質譜前驅離子資訊和其碎片模式得出多個目標物的脂質辨識結果。使用LIA的線上分析服務可加速脂質辨識的流程,得到具再現性且可信賴的結果,且所有流程所使用的參數都會記錄在資料庫供使用者查詢,LIA的線上分析服務的網址為http://lia.web.cmdm.tw。zh_TW
dc.description.abstractLipid identification based on high-throughput liquid chromatography electrospray ionization tandem mass spectrometry (LC-ESI MS/MS) platform is a critical tool in the clarification of the role of lipid in diseases and cell signaling. A typical workflow of LC-ESI MS/MS lipid identification involves four major steps: (1) conducting the lipid class-specific scan (precursor ion scan or neutral loss scan), (2) selecting peaks, which contain the information of the mass over charge (m/z) and retention time, from the spectrum of the lipid class-specific scan modes, (3) generating the candidate lipids list to conduct the product ion scan, and (4) identifying lipid with side chain(s) information from fragmentation spectrum in the product ion scan. However, the process is time-consuming and requires experts’ training and labors at repeating product ion scanning using the candidate lipids list selected from precursor ion scan. In this study, we developed an automatic analysis tool, termed lipid identification accelerator (LIA), to accelerate the labor-intensive process for LC-ESI MS/MS lipid identification by reducing the number of candidate lipids list for product ion scan. A user only needs to upload the results from the lipid class-specific scan. For the spectrum in the lipid class-specific scan, LIA implements baseline correction, smoothing, and peak detection to obtain the m/z and retention time of interests, followed by filtering and de-isotoping to focus on class-specific and monoisotopic m/z with optional matching the user-defined lipid library to the known lipids. It is then proceeded to automatically reduce the number of candidate lipids list and generate the fragmentation order list for further product ion scan. Thus, LIA can help to arrange one single product ion scan with multiple m/z from precursor ion scan more efficiently. If users were targeting at lipid with specific molecular weight, LIA can also automatically identify the lipid by interpreting fragmentation patterns to acquire the side chain(s) information with the product ion scan information provided by the users. With the assistance of LIA, the process time of lipid identification can be greatly shortened. LIA is freely available at http://lia.web.cmdm.tw.en
dc.description.provenanceMade available in DSpace on 2021-07-11T14:35:41Z (GMT). No. of bitstreams: 1
ntu-106-R03945041-1.pdf: 1866504 bytes, checksum: 5e192c1ed4fe65c325e3dd16fbd38dd2 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Lipidomics 1
1.2 Lipid Identifications in Mass Spectrometry 4
1.2.1 The Lipid Class-specific Scan Modes 5
1.2.2 The Product Ion Scan Modes 5
1.3 The Manual Workflow of Lipid Identification in LC-ESI MS/MS 6
1.3.1 A Lipid Class-specific Scan Mode Non-Targeted Analysis 7
1.3.2 A Lipid Class-specific Scan Mode Targeted Analysis 9
1.3.3 Product Ion Scan Mode Analysis 11
1.4 Motivations 13
Chapter 2 Methods and Materials 14
2.1 Experimental 14
2.1.1 Sample Preparation Procedures 14
2.1.2 UHPLC-ESI-MS System 14
2.2 Overview of the Main Procedures of LIA. 15
2.3 LIA for the Lipid Class-specific Scan Mode 16
2.3.1 Data Preprocessing 17
2.3.2 Filtering the m/z for Specific Lipid Class 18
2.3.3 Preliminarily De-isotoping 19
2.3.4 Matching with User-defined Library 20
2.3.5 Scheduling the Fragmentation Order 20
2.4 LIA for the Product Ion Scan Mode 21
2.4.1 Peak Grouping Algorithm 21
Chapter 3 Results and Discussions 23
3.1 Data Sets A: Precursor Ion Scanning 23
3.1.1 Precursor Ion Scanning of PI 23
3.1.2 Precursor Ion Scanning of PC 24
3.2 Data Sets B: Product Ion Scanning 28
3.2.1 Product Ion Scan of PC 28
3.3 Data set C contains the complete data of precursor ion scans and the product ion scans targeting at PI class from to demonstrate the all possible identification process using LIA 30
3.3.1 Precursor Ion Scan of PI 31
3.3.2 Product Ion Scan of PI 31
3.3.3 Product Ion Scanning of PI with Multiple Precursor Ions 33
Chapter 4 Conclusion 36
REFERENCE 38
dc.language.isoen
dc.subject脂體學zh_TW
dc.subject自動處理分析工具zh_TW
dc.subject液相串聯質譜zh_TW
dc.subject高通量zh_TW
dc.subject脂質辨識zh_TW
dc.subjectautomatic analysis toolen
dc.subjectlipidomicsen
dc.subjectlipid identificationen
dc.subjecthigh-throughputen
dc.subjectliquid chromatography electrospray ionization tandem mass spectrometryen
dc.title脂質辨識加速工具:自動處理和辨識液相層析串聯質譜脂體學資料zh_TW
dc.titleLipid Identification Accelerator: A Tool for Automated Processing and Identification of LC-MS/MS-Based Lipidomics Dataen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee郭錦樺(Ching-hua Kuo),陳逸然(Yet-Ran Chen),鄭美玲.(Mei-Ling Cheng)
dc.subject.keyword脂體學,脂質辨識,高通量,液相串聯質譜,自動處理分析工具,zh_TW
dc.subject.keywordlipidomics,lipid identification,high-throughput,liquid chromatography electrospray ionization tandem mass spectrometry,automatic analysis tool,en
dc.relation.page39
dc.identifier.doi10.6342/NTU201703545
dc.rights.note有償授權
dc.date.accepted2017-08-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-R03945041-1.pdf
  未授權公開取用
1.82 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved