請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77781
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 王錦堂 | zh_TW |
dc.contributor.author | 朱柏勳 | zh_TW |
dc.contributor.author | Po-Hsun Chu | en |
dc.date.accessioned | 2021-07-11T14:34:44Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2018-10-11 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1. Bagley, S.T., Habitat association of Klebsiella species. Infect Control, 1985. 6(2): p. 52-8.
2. Lin, Y.T., et al., Seroepidemiology of Klebsiella pneumoniae colonizing the intestinal tract of healthy Chinese and overseas Chinese adults in Asian countries. BMC Microbiol, 2012. 12: p. 13. 3. Podschun, R. and U. Ullmann, Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev, 1998. 11(4): p. 589-603. 4. Pan, Y.J., et al., Capsular polysaccharide synthesis regions in Klebsiella pneumoniae serotype K57 and a new capsular serotype. J Clin Microbiol, 2008. 46(7): p. 2231-40. 5. Hsu, C.R., et al., Isolation of a Bacteriophage Specific for a New Capsular Type of Klebsiella pneumoniae and Characterization of Its Polysaccharide Depolymerase. PLoS One, 2013. 8(8). 6. Fung, C., et al., A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut, 2002. 50(3): p. 420-4. 7. Pope, J.V., et al., Klebsiella pneumoniae liver abscess: an emerging problem in North America. J Emerg Med, 2011. 41(5): p. e103-5. 8. Pastagia, M. and V. Arumugam, Klebsiella pneumoniae liver abscesses in a public hospital in Queens, New York. Travel Med Infect Dis, 2008. 6(4): p. 228-33. 9. Wang, J.H., et al., Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis, 1998. 26(6): p. 1434-8. 10. Siu, L.K., et al., Klebsiella pneumoniae liver abscess: a new invasive syndrome. Lancet Infect Dis, 2012. 12(11): p. 881-7. 11. Fang, C.T., et al., Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis, 2007. 45(3): p. 284-93. 12. Thomsen, R.W., P. Jepsen, and H.T. Sorensen, Diabetes mellitus and pyogenic liver abscess: risk and prognosis. Clin Infect Dis, 2007. 44(9): p. 1194-201. 13. Bush, K. and G.A. Jacoby, Updated functional classification of beta-lactamases. Antimicrob Agents Chemother, 2010. 54(3): p. 969-76. 14. Bradford, P.A., Extended-Spectrum β-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clin Microbiol Rev, 2001. 14(4): p. 933-51. 15. Chaves, J., et al., SHV-1 beta-lactamase is mainly a chromosomally encoded species-specific enzyme in Klebsiella pneumoniae. Antimicrob Agents Chemother, 2001. 45(10): p. 2856-61. 16. Lin, W.P., et al., The Antimicrobial Susceptibility of Klebsiella pneumoniae from Community Settings in Taiwan, a Trend Analysis. Sci Rep, 2016. 6: p. 36280. 17. Kuo, L.C., et al., Antimicrobial resistance of bacterial isolates from respiratory care wards in Taiwan: a horizontal surveillance study. Int J Antimicrob Agents, 2008. 31(5): p. 420-6. 18. Nordmann, P., L. Dortet, and L. Poirel, Carbapenem resistance in Enterobacteriaceae: here is the storm! Trends Mol Med, 2012. 18(5): p. 263-72. 19. Bratu, S., et al., Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch Intern Med, 2005. 165(12): p. 1430-5. 20. Papp-Wallace, K.M., et al., Carbapenems: Past, Present, and Future. Antimicrob Agents Chemother, 2011. 55(11): p. 4943-60. 21. Lombardi, F., et al., Emergence of Carbapenem-Resistant Klebsiella pneumoniae: Progressive Spread and Four-Year Period of Observation in a Cardiac Surgery Division. Biomed Res Int, 2015. 2015. 22. Goren, M.G., et al., Transfer of Carbapenem-Resistant Plasmid from Klebsiella pneumoniae ST258 to Escherichia coli in Patient. Emerg Infect Dis, 2010. 16(6): p. 1014-7. 23. Chiu, S.K., et al., National surveillance study on carbapenem non-susceptible Klebsiella pneumoniae in Taiwan: the emergence and rapid dissemination of KPC-2 carbapenemase. PLoS One, 2013. 8(7): p. e69428. 24. Jones, R.N. and M.A. Pfaller, Antimicrobial activity against strains of Escherichia coli and Klebsiella spp. with resistance phenotypes consistent with an extended-spectrum β-lactamase in Europe. Clinical Microbiology and Infection, 2003. 9(7): p. 708-712. 25. Olaitan, A.O., S. Morand, and J.M. Rolain, Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Front Microbiol, 2014. 5(643). 26. Yahav, D., et al., Colistin: new lessons on an old antibiotic. Clin Microbiol Infect, 2012. 18(1): p. 18-29. 27. Rose, W.E. and M.J. Rybak, Tigecycline: first of a new class of antimicrobial agents. Pharmacotherapy, 2006. 26(8): p. 1099-110. 28. Hendlin, D., et al., Phosphonomycin, a new antibiotic produced by strains of streptomyces. Science, 1969. 166(3901): p. 122-3. 29. Barreteau, H., et al., Cytoplasmic steps of peptidoglycan biosynthesis. FEMS Microbiol Rev, 2008. 32(2): p. 168-207. 30. Typas, A., et al., From the regulation of peptidoglycan synthesis to bacterial growth and morphology. Nat Rev Microbiol, 2011. 10(2): p. 123-36. 31. Nikolaidis, I., S. Favini-Stabile, and A. Dessen, Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci, 2014. 23(3): p. 243-59. 32. Dengler, V., et al., Induction kinetics of the Staphylococcus aureus cell wall stress stimulon in response to different cell wall active antibiotics. BMC Microbiology, 2011. 11(1): p. 16. 33. Silver, L.L., Fosfomycin: Mechanism and Resistance. Cold Spring Harb Perspect Med, 2017. 7(2). 34. Kim, D.H., et al., Characterization of a Cys115 to Asp substitution in the Escherichia coli cell wall biosynthetic enzyme UDP-GlcNAc enolpyruvyl transferase (MurA) that confers resistance to inactivation by the antibiotic fosfomycin. Biochemistry, 1996. 35(15): p. 4923-8. 35. Wagenlehner, F.M.E., et al., Uncomplicated Urinary Tract Infections. Dtsch Arztebl Int, 2011. 108(24): p. 415-23. 36. Schito, G.C., Why fosfomycin trometamol as first line therapy for uncomplicated UTI? Int J Antimicrob Agents, 2003. 22 Suppl 2: p. 79-83. 37. Falagas, M.E., et al., Fosfomycin for the treatment of infections caused by multidrug-resistant non-fermenting Gram-negative bacilli: a systematic review of microbiological, animal and clinical studies. Int J Antimicrob Agents, 2009. 34(2): p. 111-20. 38. Neuner, E.A., et al., Experience with fosfomycin for treatment of urinary tract infections due to multidrug-resistant organisms. Antimicrob Agents Chemother, 2012. 56(11): p. 5744-8. 39. Falagas, M.E., et al., Fosfomycin for the treatment of multidrug-resistant, including extended-spectrum beta-lactamase producing, Enterobacteriaceae infections: a systematic review. Lancet Infect Dis, 2010. 10(1): p. 43-50. 40. Michalopoulos, A., et al., Intravenous fosfomycin for the treatment of nosocomial infections caused by carbapenem-resistant Klebsiella pneumoniae in critically ill patients: a prospective evaluation. Clin Microbiol Infect, 2010. 16(2): p. 184-6. 41. Castañeda-García, A., J. Blázquez, and A. Rodríguez-Rojas, Molecular Mechanisms and Clinical Impact of Acquired and Intrinsic Fosfomycin Resistance. Antibiotics (Basel), 2013. 2(2): p. 217-36. 42. Island, M.D. and R.J. Kadner, Interplay between the membrane-associated UhpB and UhpC regulatory proteins. J Bacteriol, 1993. 175(16): p. 5028-34. 43. Dahl, J.L., B.Y. Wei, and R.J. Kadner, Protein phosphorylation affects binding of the Escherichia coli transcription activator UhpA to the uhpT promoter. J Biol Chem, 1997. 272(3): p. 1910-9. 44. Takahata, S., et al., Molecular mechanisms of fosfomycin resistance in clinical isolates of Escherichia coli. Int J Antimicrob Agents, 2010. 35(4): p. 333-7. 45. Horii, T., et al., Emergence of fosfomycin-resistant isolates of Shiga-like toxin-producing Escherichia coli O26. Antimicrob Agents Chemother, 1999. 43(4): p. 789-93. 46. Tseng, S.P., et al., The plasmid-mediated fosfomycin resistance determinants and synergy of fosfomycin and meropenem in carbapenem-resistant Klebsiella pneumoniae isolates in Taiwan. J Microbiol Immunol Infect, 2017. 50(5): p. 653-661. 47. Hsieh, P.F., et al., Serum-induced iron-acquisition systems and TonB contribute to virulence in Klebsiella pneumoniae causing primary pyogenic liver abscess. J Infect Dis, 2008. 197(12): p. 1717-27. 48. Ohkoshi, Y., et al., Mechanism of Reduced Susceptibility to Fosfomycin in Escherichia coli Clinical Isolates. Biomed Res Int, 2017. 2017. 49. Jahreis, K., et al., Ins and outs of glucose transport systems in eubacteria. FEMS Microbiol Rev, 2008. 32(6): p. 891-907. 50. Yamamotoya, T., et al., Glycogen is the primary source of glucose during the lag phase of E. coli proliferation. Biochim Biophys Acta, 2012. 1824(12): p. 1442-8. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77781 | - |
dc.description.abstract | 由於具碳青黴烯類抗生素抗性之克雷伯氏肺炎桿菌(carbapenem-resistant Klebsiella pneumoniae, CRKP)抗藥性問題日益嚴重,而磷黴素(fosfomycin)為最後一線的候選藥物之一,但也有抗藥性菌株發現。本實驗室先前測試52株CRKP,有11株臨床菌株對磷黴素具有抗性(最小抑制濃度, minimal inhibitory concentration, 大於等於256 µg/ml),且發現其中四株的抗藥機制為glpT基因序列產生突變,使得運輸磷黴素的運輸蛋白質功能喪失。因此,本研究將繼續探討剩餘7株的抗藥機制。
本研究發現七株對磷黴素高抗性菌株,其中一株9921菌株(最小抑制濃度大於等於8192 µg/ml)的uhpA基因序列第226個核苷酸缺失,使UhpA蛋白質合成早期終止,將9921菌株的uhpA基因置換進對磷黴素具感受性的NTUH-K2044菌株中,使其最小抑制濃度由64 µg/ml上升至1024 µg/ml,提升了16倍。以即時聚合酶聚合酶鏈式反應測定,發現NTUH-K2044-9921uhpA菌株相較於NTUH-K2044菌株,其uhpT RNA表現量下降六成 ; 利用運輸蛋白質功能試驗(transporter functional test),在含有0.2%葡萄糖-6-磷酸(glucose 6-phosphate ,g6p)的基本培養基(M9 minimal salt agar plate)中,NTUH-K2044-9921uhpA菌株相較於NTUH-K2044菌株,無法利用g6p作為碳源生長。證明9921菌株的抗藥機轉為uhpA基因序列缺失而造成對磷黴素具有高抗性。另外萃取這七株高抗性菌株的質體,以電穿孔送入至具磷黴素感受性的大腸桿菌DH10B (最小抑制濃度等於1µg/ml)中,其中CB28和Ear菌株 (最小抑制濃度大於等於8192 µg/ml)的質體可造成DH10B對磷黴素產生高抗性(最小抑制濃度等於2048 µg/ml),推測其質體上帶有可抵抗磷黴素的相關基因。將這兩株高抗性的菌株CB28和Ear,分別利用Pacbio、illumina進行DNA定序,CB28菌株帶有134Kb的質體pCB28,質體上帶有可修飾磷黴素的酵素FosA3,利用BLAST(Basic Local Alignment Search Tool)資料庫比對後,此質體序列與K. pneumoniae LJ04菌株的質體pCT-KPC核酸序列相似度為84% ; 在Ear質體pEar上也發現帶有修飾磷黴素的酵素FosA3,與K. pneumoniae KP1034的質體相似度為53%。利用插入式突變方法,分別將pCB28、pEar上的fosA3基因破壞,此兩株菌株的最小抑制濃度皆由大於8192 µg/ml下降至256 µg/ml,證實其抗藥機轉為質體上的fosA3基因所導致。 總結來說,本研究發現52株臨床CRKP中,11株對磷黴素具有抗性(最小抑制濃度大於等於256 µg/ml),(11/52,22%),其中四株抗藥性機轉為GlpT蛋白質功能喪失導致(4/11,36%),一株為UhpA蛋白質功能喪失使UhpT蛋白質表現量降低 (1/11,9%),兩株為質體上帶有修飾磷黴素的酵素FosA3 (2/11,18%),而剩餘4株磷黴素抗性較低(最小抑制濃度等於256-512 µg/ml)的菌株機轉仍未知。 | zh_TW |
dc.description.abstract | The problem of carbapenem resistant Klebsiella pneumoniae (CRKP) have become serious and fosfomycin is one of the last-line antibiotic candidates. Unfortunately, the fosfomycin resistant strains have been found.
Our previous findings tested 52 CRKP strains. Eleven strains of these isolates were resistant to fosfomycin (minimal inhibitory concentration,MIC ≥ 256 µg/ml). Four of these resistant strains were found to have mutation on the glpT gene, resulting in loss of the function of fosfomycin transporter. Resistance of the other 7 strains remained unknown. In this study, we continued to study the 7 remaining strains. Deletion of the 226th nucleotide of uhpA gene resulted in early termination of UhpA protein was observed in 9921 strain (MIC ≥ 8192 µg/ml). The wild-type uhpA gene in NTUH-K2044 was replaced by mutated uhpA gene in the 9921 strain and increased the MIC of this strain from 64 µg/ml to 1024 µg/ml, a 16-fold increase. In addition, the expression of uhpT RNA in NTUH-K2044-9921uhpA was lower than that in NTUH-K2044-wt by the real time polymerase chain reation assay. Using a transporter functional test, NTUH-K2044-9921uhpA was unable to grow on the M9 salt agar plate containing 0.2% g6p compared to NTUH-K2044-wt. These results indicated that the transporter function of UhpT protein was defect in NTUH-K2044-9921uhpA. Meanwhile, plasmids from seven resistant strains were extracted and then electrotransferred to fosfomycin susceptible Escherichia coli DH10B (MIC = 1 µg/ml). pCB28 and pEar bearing recombinant DH10B become resistant to fosfomycin, respectively (MIC=2048 µg/ml). pCB28 and pEar plasmid were sequenced by Pacbio and illumine, respectively. The pCB28 plasmid with size of 134Kb carrys a gene encoding fosfomycin modified enzyme FosA3. By BLAST analysis, pCB28 plasmid showed high sequence similarity (84%) to the pCT-KPC plasmid of K pneumoniae strain LJ04. Fosfomycin modified enzyme FosA3 was also found on pEar plasmid. The sequence similarity of pEar plasmid was 53% to the K. pneumoniae strain KP1034 plasmid. Insertional mutation of fosA3 gene on CB28 and Ear all decreased the MIC of these two strains from ≥ 8192 µg/ml to 256 µg/ml. Taken together, 11 of 52 clinical CRKP strains were resistant to fosfomycin in this study(22%,11/52). Among these, four strains were loss of GlpT protein function (4/11,36%), one strain was loss of UhpA protein function and resulted in decreased the expression of UhpT protein (1/11,9%), and two strains contained fosfomycin modified enzyme FosA3 on their plasmids (2/11,18%). The resistant mechanisms of the remaining 4 strains with low resistance (MIC = 256-512 µg/ml) were unclear (4/11,36%). | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:34:44Z (GMT). No. of bitstreams: 1 ntu-107-R05445104-1.pdf: 27949344 bytes, checksum: 46bdd30b983e205f3068c39bd23c98b3 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 口試委員審定書 i
致謝 ii 中文摘要 iii Abstract v 目錄 vii 第一章、緒論 1 1.1克雷伯氏肺炎桿菌簡介 (Klebsiella pneumoniae) 1 1.2 製造超廣效β-內醯氨酶(Extended spectrum beta-lactamase; ESBL)的克雷伯氏肺炎桿菌(Klebsiella pneumoniae) 2 1.3抗carbapenem類抗生素的克雷伯氏肺炎桿菌(carbapenem-resistant Klebsiella pneumoniae, CRKP) 3 1.4克雷伯氏肺炎桿菌用藥演進與多重抗藥性治療 4 1.5磷黴素(fosfomycin) 4 1.6磷黴素抗藥機轉 6 1.7研究動機 7 第二章、材料與方法 9 2.1 材料 9 2.1.1. 菌株(strains) 9 2.1.2. 質體(plasmids) 9 2.1.3. 培養基(media) 10 2.1.4. 抗生素(antibiotic) 11 2.1.5. 引子(primer) 11 2.2 方法 11 2.2.1 抗生素感受性試驗(antimicrobial susceptibility test) 11 2.2.2 運輸蛋白質功能試驗(transporter functional test) 13 2.2.3 NucleoBond PC100抽細菌質體 14 2.2.4 抽細菌genome DNA 14 2.2.5 胺基酸置換(amino acid substitution) 15 第三章、實驗結果 17 3.1 CRKP對磷黴素之最小抑菌濃度試驗(MIC) 17 3.2定序分析抗磷黴素之基因 17 3.3 9921內膜運輸調控蛋白質uhpA基因置換進NTUH-K2044 18 3.4偵測9921 uhpA基因序列置換進NTUH-K2044後與NTUH-K2044的uhpT RNA表現量 18 3.5偵測9921 uhpA基因序列置換進NTUH-K2044後與NTUH-K2044的UhpT 蛋白質功能表現 19 3.6 CRKP質體轉移進磷黴素感受性大腸桿菌後對磷黴素之最小抑菌濃度(MIC) 19 3.7以Pacbio、illumina定序平台進行細菌基因定序 20 3.8以插入突變(Insertional mutation)破壞質體上的FosA3酵素功能 20 第四章、討論 22 第五章、參考文獻 26 附錄 45 | - |
dc.language.iso | zh_TW | - |
dc.title | 抗碳青黴烯類抗生素之克雷伯氏肺炎桿菌對於磷黴素抗藥性研究(II) | zh_TW |
dc.title | Fosfomycin resistance mechanism(s)in carbapenem-resistant Klebsiella pneumoniae (II) | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 賴信志;張永祺;董馨蓮 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | 克雷伯氏肺炎桿菌,磷黴素,抗藥性,UhpA,UhpT,FosA3, | zh_TW |
dc.subject.keyword | Klebsiella pneumoniae,fosfomycin,drug resistance,UhpA,UhpT,FosA3, | en |
dc.relation.page | 45 | - |
dc.identifier.doi | 10.6342/NTU201801664 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-07-18 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 微生物學研究所 | - |
dc.date.embargo-lift | 2023-10-11 | - |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-2.pdf 目前未授權公開取用 | 27.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。