請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77763
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴喜美(Hsi-Mei Lai) | |
dc.contributor.author | PIN-YU CHEN | en |
dc.contributor.author | 陳品毓 | zh_TW |
dc.date.accessioned | 2021-07-11T14:34:22Z | - |
dc.date.available | 2024-02-23 | |
dc.date.copyright | 2021-02-20 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-14 | |
dc.identifier.citation | 楊之綺。2020。鈉蒙特石-幾丁聚醣-TEMPO觸媒氧化澱粉抗菌複合膜之製備及性質分析。國立台灣大學生物資源暨農學院農業化學系,碩士論文,臺北,臺灣。
Ahmed, J., Auras, R. (2011). Effect of acid hydrolysis on rheological and thermal characteristics of lentil starch slurry. LWT - Food Science and Technology, 44(4), 976-983. Badenhuizen, N. P. (1937). Die Strukur des Starkekorns. Protoplasma, 28, 293-326. Bertoft, E. (2017). Understanding Starch Structure: Recent Progress. Agronomy, 7(3). Bertuzzi, M. A., Armada, M., Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering, 82(1), 17-25. Buleon, A., Colonna, P., Planchot, V., Ball, S. (1998). Starch granules structure and biosynthesis. International Journal of Biological Macromolecules, 23, 85-112. Dey, A., Sit, N. (2017). Modification of foxtail millet starch by combining physical, chemical and enzymatic methods. International Journal of Biological Macromolecules, 95, 314-320. Donovan, J. W. (1979). Phase Transitions of the Starch-Water System. In Biopolymer (Vol. 18, pp. 263-275). DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., Smith, F. (2002). Colorimetric Method for Determination of Sugars and Related Substances. Analytical Chemistry, 28(3), 350-356. Dundar, A. N., Gocmen, D. (2013). Effects of autoclaving temperature and storing time on resistant starch formation and its functional and physicochemical properties. Carbohydrate Polymers, 97(2), 764-771. Dura, A., Rosell, C. M. (2016). Physico-chemical properties of corn starch modified with cyclodextrin glycosyltransferase. International Journal of Biological Macromolecules, 87, 466-472. Gallant, D. J. (1974). Contribution a l’etude de la structure et de I’ultrastructure du grain d’amidon. N°CNRS A0, 10823. Gallant, D. J., Bouchet, B., Baldwin, P. M. (1997). Microscopy of starch evidence of a new level of granule organization. Carbohydrate Polymers, 32, 177-191. Ghanbarzadeh, B., Almasi, H., Entezami, A. A. (2011). Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Industrial Crops and Products, 33(1), 229-235. Golova, O., Nosova, N. (1973). Degradation of Cellulose by Alkaline Oxidation. Russian Chemical Reviews, 42(4), 327-335. Gurunathan, T., Mohanty, S., Nayak, S. K. (2015). A review of the recent developments in biocomposites based on natural fibres and their application perspectives. Composites Part A: Applied Science and Manufacturing, 77, 1-25. Han, J. (2004). Structural changes in corn starches during alkaline dissolution by vortexing. Carbohydrate Polymers, 55(2), 193-199. Kibar, E., Gönenç, İ., Us, F. (2010). Gelatinization of waxy, normal and high amylose corn starches. The Journal of Food, 35, 237-244. Le Corre, D., Angellier-Coussy, H. (2014). Preparation and application of starch nanoparticles for nanocomposites: A review. Reactive and Functional Polymers, 85, 97-120. Liu, Y., Yu, J., Copeland, L., Wang, S., Wang, S. (2019). Gelatinization behavior of starch: Reflecting beyond the endotherm measured by differential scanning calorimetry. Food Chemistry, 284, 53-59. Ma, X. f., Chang, P. R., Yu, J., Stumborg, M. (2009). Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydrate Polymers, 75(1), 1-8. Mahanta, C. L., Ali, S. Z., Bhattacharya, K. R., Mukherjee, P. S. (1989). Nature of Starch Crystallinity in Parboiled Rice. Starch-Stärke, 41, 171-176. Maher, G. G. (1983). Alkali Gelatinization of Starches. Starch - Stärke, 35(7). Martin, C., Smith, M. A. (1995). Starch Biosynthesis The Plant Cell, 7, 971-985. Mei, J. Q., Zhou, D. N., Jin, Z. Y., Xu, X. M., Chen, H. Q. (2015). Effects of citric acid esterification on digestibility, structural and physicochemical properties of cassava starch. Food Chemistry, 187, 378-384. Menzel, C., Olsson, E., Plivelic, T. S., Andersson, R., Johansson, C., Kuktaite, R., Jarnstrom, L., Koch, K. (2013). Molecular structure of citric acid cross-linked starch films. Carbohydr Polym, 96(1), 270-276. Miao, M., Jiang, B., Zhang, T. (2009). Effect of pullulanase debranching and recrystallization on structure and digestibility of waxy maize starch. Carbohydrate Polymers, 76(2), 214-221. Olivato, J. B., Grossmann, M. V. E., Yamashita, F., Eiras, D., Pessan, L. A. (2012). Citric acid and maleic anhydride as compatibilizers in starch/poly(butylene adipate-co-terephthalate) blends by one-step reactive extrusion. Carbohydrate Polymers, 87(4), 2614-2618. Olsson, E., Menzel, C., Johansson, C., Andersson, R., Koch, K., Jarnstrom, L. (2013). The effect of pH on hydrolysis, cross-linking and barrier properties of starch barriers containing citric acid. Carbohydrate Polymers, 98(2), 1505-1513. Qin, Y., Zhang, H., Dai, Y., Hou, H., Dong, H. (2019). Effect of Alkali Treatment on Structure and Properties of High Amylose Corn Starch Film. Materials (Basel), 12(10), 1705. Reddy, N., Yang, Y. (2010). Citric acid cross-linking of starch films. Food Chemistry, 118(3), 702-711. Remya, R., Jyothi, A. N., Sreekumar, J. (2018). Effect of chemical modification with citric acid on the physicochemical properties and resistant starch formation in different starches. Carbohydrate Polymers, 202, 29-38. Seligra, P. G., Medina Jaramillo, C., Fama, L., Goyanes, S. (2016). Biodegradable and non-retrogradable eco-films based on starch-glycerol with citric acid as crosslinking agent. Carbohydrate Polymers, 138, 66-74. Sun, Liu, P., Ji, N., Hou, H., Dong, H. (2018). Effects of various cross-linking agents on the physicochemical properties of starch/PHA composite films produced by extrusion blowing. Food Hydrocolloids, 77, 964-975. Sun, Z., Kang, J., Shi, Y.-C. (2020). Changes in molecular size and shape of waxy maize starch during dextrinization. Food Chemistry, 348(30). Tanetrungroj, Y., Prachayawarakorn, J. (2018). Effect of dual modification on properties of biodegradable crosslinked-oxidized starch and oxidized-crosslinked starch films. International Journal of Biological Macromolecules, 120(Pt A), 1240-1246. Tang, H., Mitsunaga, T., Kawamura, Y. (2006). Molecular arrangement in blocklets and starch granule architecture. Carbohydrate Polymers, 63(4), 555-560. Tester, R., Karkalas, J., Qi, X. (2004). Starch—composition, fine structure and architecture. Journal of Cereal Science, 39, 151-165. Wang, S., Copeland, L. (2012). Effect of alkali treatment on structure and function of pea starch granules. Food Chemistry, 135(3), 1635-1642. Wang, Y., Zhan, J., Lu, H., Chang, R., Qiu, L., Tian, Y. (2021). Amylopectin crystal seeds: Characterization and their effect on amylopectin retrogradation. Food Hydrocolloids, 111. Weil, W., Weil, R. C., Keawsompong, S., Sriroth, K., Seib, P. A., Shi, Y.-C. (2020). Pyrodextrin from waxy and normal tapioca starches: Physicochemical properties. Food Hydrocolloids, 104. Wing, R. E., Peoria, I. (1996). Starch Citrate: Preparation and Ion Exchange Properties. Starch-Stärke, 48, 275-279. Wu, H., Lei, Y., Lu, J., Zhu, R., Xiao, D., Jiao, C., Xia, R., Zhang, Z., Shen, G., Liu, Y., Li, S., Li, M. (2019). Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocolloids, 97. Xie, X., Liu, Q. (2004). Development and Physicochemical Characterization of New Resistant Citrate Starch from Different Corn Starches. Starch - Stärke, 56(8), 364-370. Yang, C. Q., Andrews, A. K. (1991). Infrared Spectroscopic Studies of the Nonformaldehyde. Journal of Applied Polymer Science, 43, 1609-1616. Zheng, M. Z., Xiao, Y., Yang, S., Liu, H. M., Liu, M. H., Yaqoob, S., Xu, X. Y., Liu, J. S. (2020). Effects of heat-moisture, autoclaving, and microwave treatments on physicochemical properties of proso millet starch. Food Science Nutrure, 8(2), 735-743. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77763 | - |
dc.description.abstract | 本研究以檸檬酸(citric acid, CA)對一般玉米澱粉(normal corn starch, NS)經二階段加熱處理進行澱粉修飾,並取雙酯化程度(degree of di-esterification, DDE)為4.81、7.93及10.45%之檸檬酸修飾澱粉(citric acid modified starch, CS)進行澱粉膜製備,而為了提升檸檬酸修飾澱粉之成膜性質,在製膜過程中分別以鹼及高溫進行處理。第一階段低溫(60℃)熱處理於pH 4.5下反應4 hr後,可達最高尖峰糊液黏度(peak viscosity, PV),顯示此條件下檸檬酸已與澱粉進行取代反應,使水合能力上升。二階段加熱處理製得之檸檬酸修飾澱粉分析結果顯示,隨著第二階段乾熱處理溫度與時間提升,單取代程度(degree of mono-esterification, DME)逐漸下降,雙取代程度逐漸上升,且尖峰糊液黏度逐漸下降,顯示修飾效果逐漸由取代轉為交聯反應;十字偏光性質減弱,糊化熱焓值與相對結晶度下降,顯示檸檬酸修飾過程會破壞澱粉結晶結構;澱粉糊精化反應(dextrinization)更加劇烈,造成澱粉鏈斷裂,分子量降解。以鹼處理製備之檸檬酸酸修飾澱粉膜,雙取代程度下降至1.68-2.65%,顯示雙酯鍵在鹼性環境下會幾乎被完全水解;鹼處理使檸檬酸修飾澱粉膜抗拉強度(tensile strength, TS)、斷裂伸長率(elongation at break, EB)及水氣滲透性(water vapor permeability, WVP)下降,透光度(light transmittance)上升,且隨著檸檬酸修飾澱粉雙酯化程度提升,趨勢更為顯著,此乃因澱粉分子量降解程度提高,膜內澱粉分子結構差異所致。以高溫處理製備之檸檬酸酸修飾澱粉膜,雙取代程度下降至6.91-12.90%,顯示雙酯鍵在高溫處理下會斷裂,但仍有一定程度的保留。高溫處理後,檸檬酸修飾澱粉膜相較於一般玉米澱粉膜抗拉強度較高,此乃因交聯反應形成澱粉鏈之間架橋所致;而斷裂伸長率提升可歸因於降解後的小分子澱粉,作為塑化劑提升澱粉鏈移動性;疏水性雙酯鍵的存在則會增強水氣阻隔性;透光度隨著檸檬酸修飾澱粉樣品雙酯化程度提升,呈現先升後降之趨勢,顯示雙酯鍵數量多者,較不易受高溫處理而完全糊化,膜內較大之澱粉分子易造成光散射。 | zh_TW |
dc.description.abstract | The study is aimed to prepare citric acid (CA) modified starch (CS) with normal corn starch (NS) through two-stage heating treatment, and the CS with degree of di-esterification (DDE) of 4.81, 7.93, and 10.45% were chosen for starch films preparation. To enhance the film-forming property, alkaline and high temperature treatments were applied during film-forming process. After the first stage low temperature (60℃) heating treatment under ph 4.5 for 4 hr, the highest peak viscosity (PV) could be obtained, suggested that CA had start substituting to NS, and the hydration abilities were increased. As the treatment temperature and time period of the second stage dry henting treatment increased, DME, PV decreased, and DDE increased, indicating that the efficiency of cross-linking was gradually larger than substitution; the brightness of birefringent pattern diminished, the enthalpies and crystallinities decreased, which suggested that the modification of CA altered the crystalline structure of NS; the dextrinization of starch was more significant, which resulted in the break of starch chains. Analyzing the alkaline treated CS films, DDE decreased to 1.68 to 2.65%, which suggested that the di-ester bonds were almost completely hydrolyzed. In addition, the tensile strength (TS), elongation at break (EB), and water vapor permeability (WVP) decreased as DDE of CS increased because the degrees of starch molecules degradation enhanced, which leads to the structure difference of molecules in films. Analyzing the high temperature treated CS films, DDE decreased to 6.91 to 12.90%, which suggested that the di-ester bonds were partially hydrolyzed. The high temperature treatment leaded to the increase of TS of CS films due to the cross-links formed between starch chains. The enhancement of EB could be attributed to the degraded starch molecules served as plasticizers to improve the chain mobility. Besides, the di-ester bonds increased the water barrier property. In addition, the light transmittance increased initially and then decreased as the DDE of CS increased, which suggested that the CS with more di-ester bonds was difficult to completely gelatinized and the larger starch molecules in films contributed to the light scattering. | en |
dc.description.provenance | Made available in DSpace on 2021-07-11T14:34:22Z (GMT). No. of bitstreams: 1 U0001-0802202118265800.pdf: 6019668 bytes, checksum: 6aa67542558204a08ea58d76d7fea1e1 (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 中文摘要 I Abstract III 目錄 V 表目錄 X 圖目錄 XII 第一章、 前言 1 第二章、 文獻整理 2 2.1 澱粉基本性質 2 2.1.1澱粉內部組成與結構 2 2.1.2直鏈澱粉與支鏈澱粉 4 2.1.3澱粉之糊化與回凝 5 2.2 修飾澱粉 5 2.2.1天然澱粉應用上之優缺點 5 2.2.2修飾澱粉種類 6 2.2.3檸檬酸修飾澱粉研究現況 6 2.3澱粉材料 8 2.3.1 澱粉材料應用趨勢 8 2.3.2 澱粉膜製備技術 9 2.3.3提升糊化過程澱粉分子溶出量之方法 9 2.3.3.1 鹼處理法 10 2.3.3.2 高溫處理法 11 第三章、材料與方法 12 3.1 試驗架構 12 3.2 材料 13 3.3 樣品製備 13 3.3.1 第一階段檸檬酸修飾澱粉製備 13 3.3.2 二階段檸檬酸修飾澱粉製備 13 3.3.3 檸檬酸修飾澱粉膜與成膜溶液樣品製備 14 3.3.3.1鹼處理檸檬酸修飾澱粉膜製備 14 3.3.3.2高溫處理檸檬酸修飾澱粉膜製備 15 3.3.3.3檸檬酸修飾澱粉成膜溶液樣品製備 15 3.4 性質分析 16 3.4.1 檸檬酸修飾澱粉性質分析 16 3.4.1.1 糊液黏度性質測定 16 3.4.1.2 單酯化程度與雙酯化程度測定 16 3.4.1.3 傅立葉轉換紅外光譜測定 17 3.4.1.4 光學與偏光顯微鏡觀察 17 3.4.1.5 熱性質分析 17 3.4.1.6 X光繞射圖譜 17 3.4.1.7 分子量分布 17 3.4.1.7.1DMSO溶出法 17 3.4.1.7.2NaOH溶出法 18 3.4.1.8過濾回收率測定 18 3.4.2 成膜溶液性質分析 19 3.4.2.1 單酯化程度與雙酯化程度測定 19 3.4.2.2 分子量分布 19 3.4.3 檸檬酸修飾澱粉膜性質分析 19 3.4.3.1 外觀影像 19 3.4.3.2 色澤 19 3.4.3.3 掃描式電子顯微鏡觀察 19 3.4.3.4 厚度測定 19 3.4.3.5 傅立葉轉換紅外光譜測定 20 3.4.3.6 單酯化程度與雙酯化程度測定 20 3.4.3.7 分子量分布 20 3.4.3.8 機械性質測定 20 3.4.3.9 水氣穿透性測定 20 3.4.3.10 透光率測定 21 3.4.2.3 X光繞射圖譜 21 3.5 統計分析 21 第四章、 結果與討論 22 4.1 檸檬酸修飾澱粉之製備與性質探討 22 4.1.1 反應條件決定 22 4.1.1.1 CA濃度及第一階段低溫熱處理時間之影響 22 4.1.1.2反應環境pH值之影響 24 4.1.2 第二階段高溫乾熱處理對交聯反應之影響 26 4.1.3 傅立葉轉換紅外光譜 28 4.1.4 單酯化與雙酯化程度 29 4.1.5 光學與偏光顯微影像 30 4.1.6 熱性質 31 4.1.7 X光繞射圖譜 33 4.1.8 分子量分布 35 4.2 鹼處理檸檬酸修飾澱粉膜之性質探討 38 4.2.1 鹼處理條件確認 38 4.2.2 外觀影像 39 4.2.3 色澤 40 4.2.4 掃描式電子顯微影像 41 4.2.5 單酯化程度與雙酯化程度 42 4.2.6 傅立葉轉換紅外光譜 44 4.2.7 分子量分布 46 4.2.8 機械性質 47 4.2.9 水氣穿透性 49 4.2.10 透光率 50 4.2.11 X光繞射圖譜 52 4.3 高溫處理檸檬酸修飾澱粉膜之性質探討 54 4.3.1 高溫處理條件確認 54 4.3.2 外觀影像 56 4.3.3 色澤 57 4.3.4 掃描式電子顯微影像 58 4.3.5 單酯化程度與雙酯化程度 59 4.3.6 傅立葉轉換紅外光譜 60 4.3.7 分子量分布 62 4.3.8 機械性質 64 4.3.9 水氣穿透性 66 4.3.10 透光率 67 4.3.11 X光繞射圖譜 68 第五章、 結論 69 第六章、參考文獻 71 | |
dc.language.iso | zh-TW | |
dc.title | 檸檬酸修飾澱粉之製備與澱粉膜物化性質分析 | zh_TW |
dc.title | Preparation of citric acid modified starch and characterization of physicochemical properties of the starch films | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 張永和(Yung-Ho Chang),邵貽沅(Yi-Yuan Shao) | |
dc.subject.keyword | 檸檬酸修飾澱粉,二階段加熱處理,取代,交聯,鹼處理,高溫處理, | zh_TW |
dc.subject.keyword | citric acid modified starch,two-stage heating treatment,substitution,cross linking,alkaline treatment,high temperature treatment, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU202100684 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-02-16 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農業化學研究所 | zh_TW |
dc.date.embargo-lift | 2024-02-23 | - |
顯示於系所單位: | 農業化學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-0802202118265800.pdf 目前未授權公開取用 | 5.88 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。