請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77755完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝學真(Hsyue-Jen Hsieh) | |
| dc.contributor.author | Chia-Wei Lee | en |
| dc.contributor.author | 李家偉 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:19:54Z | - |
| dc.date.available | 2021-07-10T22:19:54Z | - |
| dc.date.copyright | 2017-08-29 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-01 | |
| dc.identifier.citation | [1] 陳品彣, 多成分幾丁聚醣複合敷料之製作及特性測試. 國立臺灣大學化學工程學研究所碩士論文, 2012.
[2] Tathe, A., Ghodke, M. and Nikalje, A., A brief review: biomaterials and their application. International Journal of Pharmacy and Pharmaceutical Sciences, 2010. 2(4): 19-23. [3] Sionkowska, A., Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Progress in Polymer Science, 2011. 36: 1254-1276. [4] Muzzarelli, R. A. A. (1977). Chitin. Oxford, New York: Pergamon Press. [5] Suh, J.K.F. and Matthew, H.W.T., Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials, 2000. 21(24): 2589-2598. [6] Tangpasuthadol, V., Pongchaisirikul, N. and Hoven, V.P., Surface Modification of chitosan films. Effects of hydrophobicity on protein adsorption. Carbohydrate Research, 2003. 338(9): 937-942. [7] Zhao, L.M., Shi, L.E., Zhang, Z.L., Chen, J.M., Shi, D.D., Yang, J. and Tang, Z.X., Preparation and application of chitosan nanoparticles and nanofibers. Brazilian Journal of Chemical Engineering, 2011. 28: 353-362. [8] Dash, M., Chiellini, F., Ottenbrite, R.M. and Chiellini, E., Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in Polymer Science,. 2011. 36(8): 981-1014. [9] Northcote, D.H., The Cell Walls of Higher Plants – Their Composition, Structure and Growth. Biological Reviews of the Cambridge Philosophical, 1958. 33(1): 53-102. [10] 蔡政翰, 以化學修飾法改進幾丁聚醣之溶解度. 國立臺灣大學食品科技研究所碩士論文, 1996. [11] Norby, M.H., Kjoniksen, A.L., Nystrom, B. and Roots, J., Thermoreversible gelation of aqueous mixtures of pectin and chitosan. Biomacromolecules, 2003. 4(2): 337-343. [12] 陳播暉, 幾丁聚醣/果膠複合材料之製備及特性探討. 國立臺灣大學化學工程學研究所碩士論文, 2004. [13] Street, C.A. and Anderson, D.M.W., Refinement of structures previously proposed for gum Arabic and other acacia gum exudates. Talanta, 1983. 30(11): 887-893. [14] 蔡睿逸, 以幾丁聚醣為主的多成分複合電紡纖維之製備及其特性探討與骨分化之應用. 國立臺灣大學化學工程學研究所博士論文, 2014 [15] Tsai, R.Y., Kuo, T.Y., Hung S.C., Lin, C.M., Hsien, T.Y., Wang, D.M. and Hsieh, H.J., Use of gum Arabic to improve the fabrication of chitosan–gelatin-based nanofibers for tissue engineering. Carbohydrate polymers, 2015. 115: 525-532. [16] Migneault, I., Dartiguenave, C., Bertrand, M.J. and Waldron, K.C., Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques, 2004. 37(5): 790-802 [17] Liang, Y.Q., Zhang, Z.Q., Wu, L.X., Tian, Y.C. and Chen, H.D., Structure control of synthetic bilayer membranes from single-chain amphiphiles containing the Schiff base segment .2. pH and temperature dependence of the aggregational behaviors. Journal of Colloid and Interface Science, 1996. 178(2): 714-719. [18] Eriksson, C.E.A., Asp, N.G. and Theander, O., Maillard Reactions in Food - Chemical, Physiological and Technological Aspects - Preface. Progress in Food and Nutrition Science, 1981. 5(1-6): 1-3. [19] Tual, C., Espuche, E., Escoubes, M. and Domard, A., Transport properties of chitosan membranes: Influence of crosslinking. Journal of Polymer Science Part B-Polymer Physics, 2000. 38(11): 1521-1529. [20] Schiffman, J.D. and Schauer, C.L., Cross-linking chitosan nanofibers. Biomacromolecules, 2007. 8(2): 594-601. [21] 周奕宏, 以電紡絲法製備幾丁聚醣/硫酸軟骨素/聚乙烯醇複合奈米纖維之研究. 國立臺灣大學化學工程學研究所碩士論文, 2011. [22] Hsieh, C.Y., Tsai, S.P., Wang, D.M., Chang, Y.N. and Hsieh, H.J., Preparation of gamma-PGA/chitosan composite tissue engineering matrices. Biomaterials, 2005. 26(28): 5617-5623. [23] Tsai, S.P., Hsieh, C.Y., Hsieh, C.Y., Wang, D.M., Huang, L.L.H., Lai, J.Y. and Hsieh, H.J., Preparation and cell compatibility evaluation of chitosan/collagen composite scaffolds using amino acids as crosslinking bridges. Journal of Applied Polymer Science, 2007. 105(4): 1774-1785. [24] Chen, P.H., Kuo, T.Y., Kuo, J.Y., Tseng, Y.P., Wang, D.M., Lai, J.Y. and Hsieh, H.J., Novel chitosan-pectin composite membranes with enhanced strength, hydrophilicity and controllable disintegration. Carbohydrate Polymers, 2010. 82(4): 1236-1242. [25] 陳敬秉, 將聚乙二醇接枝於聚幾內酯基材表面以調控細胞貼附之研究. 國立臺灣大學化學工程學研究所碩士論文, 2015. [26] Fischer, M.E., Mol, N.J. and Fischer, M.J.E., Amine Coupling Through EDC/NHS: A Practical Approach. Surface Plasmon Resonance, 2010. 627: 55-73. [27] Thirathumthavorn, D. and Charoenrein, S., Aging effects on sorbitol- and non-crystallizing sorbitol-plasticized tapioca starch films. Starch – Stärke, 2007. 59(10): 493-497. [28] Aydin, A.A. and Ilberg, V., Effect of different polyol-based plasticizers on thermal properties of polyvinyl alcohol starch blends. Carbohydrate Polymers, 2016. 136: 441-448. [29] Matet, M., Heuzey, M.C., Pollet, E., Ajji, A. and Avérous, L., Innovative thermoplastic chitosan obtained by thermo-mechanical mixing with polyol plasticizers. Carbohydrate Polymers, 2013. 95(1): 241-251. [30] Desbrières, J., Martinez, C. and Rinaudo, M., Hydrophobic derivatives of chitosan: Characterization and rheological behavior. International Journal of Biological Macromolecules, 1996. 19(1): 21-28. [31] Jothimani, B., Sureshkumar, S. and Venkatachalapathy, B., Hydrophobic structural modification of chitosan and its impact on nanoparticle synthesis – A physicochemical study. Carbohydrate Polymers, 2017. 173: 714-720. [32] Yarbrough J.C., Rolland J.P., DeSimone, J.M., Callow, M.E., Finlay, J.A. and Callow, J.A., Contact Angle Analysis, Surface Dynamics, and Biofouling Characteristics of Cross-Linkable, Random Perfluoropolyether-Based Graft Terpolymers. Macromolecules, 2006. 39(7): 2521-2528. [33] 張雲皓, 製備以生物黏著劑黏合之非對稱雙層膜材及其特性探討. 國立臺灣大學化學工程學研究所碩士論文, 2016. [34] Chopra I. and Roberts M., Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiology and molecular biology reviews, 2001. 65(2): 232-260. [35] Li, X.W., Li, C.Y. and Chen, L.G., Preparation of multifunctional magnetic–fluorescent nanocomposites for analysis of tetracycline hydrochloride. New Journal of Chemistry, 2015. 39(12): 9976-9982. [36] 張翠芳, 以電紡絲法製備幾丁聚醣/聚乙烯醇同軸奈米纖維及其應用. 國立臺灣大學化學工程學研究所碩士論文, 2013. [37] 陳播暉, 以各種有機酸、酸性多醣、及非水溶性塑化劑提昇幾丁聚醣材料的多樣性. 國立臺灣大學化學工程學研究所博士論文, 2009. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77755 | - |
| dc.description.abstract | 本研究以幾丁聚醣(C)為主成分並添加果膠(P)及阿拉伯膠(A),再搭配交聯劑與塑化劑製成多成分複合膜材,期望藉此提升緻密膜材之機械性質,並同時達到改善膜材用於藥物釋放之成效。
首先將交聯劑與塑化劑與幾丁聚醣、果膠、阿拉伯膠均勻混合形成複合溶液,並經由熱風乾燥法形成緻密膜材。實驗所使用之交聯劑為戊二醛(GA)或EDC/NHS系統,用途為提升複合膜材之機械強度;實驗所使用之多元醇類塑化劑為甘油(Gly)或山梨醇(Sor)或木糖醇(Xyl),用途為增進膜材延展性,並使膜材觸感變得柔軟。由膜材機械強度與延展性測定結果,初步挑選出延展性與機械強度皆符合設定門檻之組別,包含:代號為C-P-A-Gly (GA)及C-P-A-Sor (GA),兩者皆以戊二醛作為交聯劑,並以甘油或山梨醇作為塑化劑之膜材組別進行後續的實驗測試。 根據材料崩解測試結果,選用戊二醛作為交聯劑可有效地提升膜材穩定性。此外,經由親水性質測試顯示:以山梨醇為塑化劑,相較於甘油,因其具有較多之羥基(-OH),其構成之複合膜材所量得之接觸角較低、膨潤程度較高。在藥物釋放實驗,分別將四環黴素及牛血清白蛋白(BSA)作為小、大分子乘載藥物置於膜材中。C-P-A-Gly (GA)膜材擁有較為平緩的四環黴素釋放曲線,在延長小分子藥物之釋放時間有較佳的表現。在承載藥物為牛血清白蛋白之試驗中,C-P-A-Sor (GA)及C-P-A-Gly (GA)膜材均會減少此一大分子藥物釋放。而本研究所測得之膜材親水性質、短時間之膨潤效果、長時間之崩解程度均能與藥物釋放曲線趨勢一致。 總觀本研究將幾丁聚醣、果膠及阿拉伯膠經由交聯與塑化改質形成之複合緻密膜材,其機械性質與藥物釋放曲線均有所提升或改變,未來可進一步將此膜材應用在生醫相關領域。 | zh_TW |
| dc.description.abstract | In this research, cross-linking agents and plasticizers were added in order to improve both the mechanical properties and the drug release characteristics of the chitosan-based composite membranes.
During the fabrication process, solutions containing chitosan, pectin and gum Arabic were added with different cross-linking agents and plasticizers, and the composite solutions were dried to form dense films. Cross-linking agents (glutaraldehyde or EDC/NHS) were used to enhance the tensile strength of this composite film. Moreover, polyol plasticizers (glycerol, sorbitol or xylitol) were also added to improve the ductility of the dense film. Based on the results of mechanical property test, glutaraldehyde, glycerol and sorbitol were chosen as the cross-linking agent and plasticizers to conduct the following tests. According to the results of disintegration test, the selected cross-linking agent, glutaraldehyde, enhanced the stability of dense films. Furthermore, owing to more hydroxyl groups that sorbitol has, dense films containing sorbitol showed greater hydrophilicity than that containing glycerol. This result was consistent with the measurements of water contact angles and swelling ratios of dense films. In drug release experiments, tetracycline hydrochloride and bovine serum albumin (BSA) functioned as small and large molecule drugs respectively. The cross-linked chitosan-based dense films with glycerol as the plasticizer could release the small molecule drug (tetracycline hydrochloride) in a steady and sustained manner. For the large molecule drug, the drug release from the cross-linked chitosan-based dense films with glycerol and that with sorbitol significantly decreased. In addition, the results of swelling ratio test and disintegration test of the films corresponded with the trends of the release profiles of the two drugs. In this study, the mechanical properties and the drug release characteristics of chitosan-based dense films had been improved or modified by using the cross-linking agents and the polyol plasticizers. These films can be utilized in biomedical-related areas in the future. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:19:54Z (GMT). No. of bitstreams: 1 ntu-106-R04524024-1.pdf: 3688880 bytes, checksum: 547df566dc5bae1949cf4043ccaf5eb4 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
誌 謝 III 摘 要 VII ABSTRACT IX 目 錄 XI 圖目錄 XIII 表目錄 XV 縮寫與符號說明 XVII 中英對照表 XIX 第 1 章 緒論 1 1.1 研究背景與動機 1 1.2 研究架構與流程 3 第 2 章 文獻回顧 5 2.1 生醫材料 5 2.2 幾丁聚醣 6 2.3 果膠 8 2.4 阿拉伯膠 10 2.5 交聯劑 12 2.5.1 戊二醛 12 2.5.2 EDC/NHS 反應 14 2.6 塑化劑 16 第 3 章 實驗材料、儀器與方法 19 3.1 實驗材料 19 3.2 實驗儀器 20 3.3 實驗方法 22 3.3.1 溶液配製 22 3.3.2 溶液性質分析 25 3.3.3 複合緻密膜材製備 26 3.3.4 複合緻密膜材性質分析 26 3.3.5 複合緻密膜材相關應用 30 第 4 章 結果與討論 33 4.1 機械強度與延展性測定 33 4.2 膜材親水性質測定 37 4.3 膜材膨潤度測定 39 4.4 材料穩定度分析 43 4.5 複合緻密膜材藥物釋放應用 46 4.5.1 小分子藥物釋放特性 (四環黴素) 46 4.5.2 大分子藥物釋放特性 (BSA) 50 4.6 溶液性質分析 54 4.6.1 複合溶液pH值 54 4.6.2 複合溶液黏度 55 4.7 複合緻密膜材結構分析 57 第 5 章 結論與未來研究方向 59 5.1 結論 59 5.2 未來研究方向 61 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 幾丁聚醣 | zh_TW |
| dc.subject | 藥物釋放 | zh_TW |
| dc.subject | 延展性 | zh_TW |
| dc.subject | 機械性質 | zh_TW |
| dc.subject | 交聯劑 | zh_TW |
| dc.subject | 戊二醛 | zh_TW |
| dc.subject | 塑化劑 | zh_TW |
| dc.subject | elongation | en |
| dc.subject | glutaraldehyde | en |
| dc.subject | cross-linking agent | en |
| dc.subject | mechanical property | en |
| dc.subject | chitosan | en |
| dc.subject | drug release | en |
| dc.subject | plasticizer | en |
| dc.title | 交聯劑與塑化劑對幾丁聚醣複合膜材性質之影響 | zh_TW |
| dc.title | Effects of Cross-linking Agents and Plasticizers on the Material Properties of Chitosan-based Membranes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱文英(Wen-Yen Chiu),王大銘(Da-Ming Wang) | |
| dc.subject.keyword | 幾丁聚醣,塑化劑,戊二醛,交聯劑,機械性質,延展性,藥物釋放, | zh_TW |
| dc.subject.keyword | chitosan,plasticizer,glutaraldehyde,cross-linking agent,mechanical property,elongation,drug release, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201702328 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-08-02 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04524024-1.pdf 未授權公開取用 | 3.6 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
