Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境與職業健康科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77751
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫(Cheng-Fu Wu)
dc.contributor.authorYu-Rui Chenen
dc.contributor.author陳禹叡zh_TW
dc.date.accessioned2021-07-10T22:19:40Z-
dc.date.available2021-07-10T22:19:40Z-
dc.date.copyright2021-02-25
dc.date.issued2020
dc.date.submitted2020-09-22
dc.identifier.citation[1] J. Fenger, 'Air pollution in the last 50 years–From local to global,' Atmospheric environment, vol. 43, no. 1, pp. 13-22, 2009.
[2] J. H. Seinfeld and S. N. Pandis, Atmospheric chemistry and physics: from air pollution to climate change. John Wiley Sons, 2016.
[3] TWEPA, 'Air Quality Annual Report of R.O.C.,' Environmental Protection Administration, Executive Yuan, 2019.
[4] J. R. Odum, T. Jungkamp, R. J. Griffin, H. Forstner, R. C. Flagan, and J. H. Seinfeld, 'Aromatics, reformulated gasoline, and atmospheric organic aerosol formation,' Environmental Science Technology, vol. 31, no. 7, pp. 1890-1897, 1997.
[5] D. Brocco, R. Fratarcangeli, L. Lepore, M. Petricca, and I. Ventrone, 'Determination of aromatic hydrocarbons in urban air of Rome,' Atmospheric Environment, vol. 31, no. 4, pp. 557-566, 1997.
[6] R. Atkinson, 'Atmospheric chemistry of VOCs and NOx,' Atmospheric environment, vol. 34, no. 12-14, pp. 2063-2101, 2000.
[7] M. Kampa and E. Castanas, 'Human health effects of air pollution,' Environmental pollution, vol. 151, no. 2, pp. 362-367, 2008.
[8] G. Hwang, C. Yoon, and J. Choi, 'A case-control study: exposure assessment of VOCs and formaldehyde for asthma in children,' Aerosol and Air Quality Research, vol. 11, no. 7, pp. 908-914, 2011.
[9] M. A. Delucchi, 'Environmental externalities of motor-vehicle use in the US,' Journal of transport economics and policy, pp. 135-168, 2000.
[10] C. Huang et al., 'VOC species and emission inventory from vehicles and their SOA formation potentials estimation in Shanghai, China,' 2015.
[11] S. Lee, M. Chiu, K. Ho, S. Zou, and X. Wang, 'Volatile organic compounds (VOCs) in urban atmosphere of Hong Kong,' Chemosphere, vol. 48, no. 3, pp. 375-382, 2002.
[12] G. Hoek, B. Brunekreef, A. Verhoeff, J. v. Wijnen, and P. Fischer, 'Daily mortality and air pollution in the Netherlands,' Journal of the Air Waste Management Association, vol. 50, no. 8, pp. 1380-1389, 2000.
[13] J. Wu et al., 'Association between ambient fine particulate matter and adult hospital admissions for pneumonia in Beijing, China,' Atmospheric Environment, vol. 231, p. 117497, 2020/06/15/ 2020, doi: https://doi.org/10.1016/j.atmosenv.2020.117497.
[14] A. Biggeri, M. Baccini, P. Bellini, and B. Terracini, 'Meta-analysis of the Italian Studies of Short-term Effects of Air Pollution (MISA), 1990–1999,' International Journal of Occupational and Environmental Health, vol. 11, no. 1, pp. 107-122, 2005/01/01 2005, doi: 10.1179/oeh.2005.11.1.107.
[15] Y. Song et al., 'Source apportionment of ambient volatile organic compounds in Beijing,' Environmental science technology, vol. 41, no. 12, pp. 4348-4353, 2007.
[16] J. Doull et al., 'A cancer risk assessment of di (2-ethylhexyl) phthalate: application of the new US EPA Risk Assessment Guidelines,' Regulatory Toxicology and Pharmacology, vol. 29, no. 3, pp. 327-357, 1999.
[17] J. Wiltse and V. L. Dellarco, 'US Environmental Protection Agency guidelines for carcinogen risk assessment: past and future,' Mutation Research/Reviews in Genetic Toxicology, vol. 365, no. 1-3, pp. 3-15, 1996.
[18] B. Yuan, M. Shao, S. Lu, and B. Wang, 'Source profiles of volatile organic compounds associated with solvent use in Beijing, China,' Atmospheric Environment, vol. 44, no. 15, pp. 1919-1926, 2010.
[19] J. Zheng et al., 'Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China,' Environmental science technology, vol. 43, no. 22, pp. 8580-8586, 2009.
[20] J. G. Watson, L. W. Chen, J. C. Chow, P. Doraiswamy, and D. H. Lowenthal, 'Source apportionment: findings from the U.S. Supersites Program,' (in eng), J Air Waste Manag Assoc, vol. 58, no. 2, pp. 265-88, Feb 2008, doi: 10.3155/1047-3289.58.2.265.
[21] J. A. Cooper and J. G. Watson Jr, 'Receptor oriented methods of air particulate source apportionment,' Journal of the Air Pollution Control Association, vol. 30, no. 10, pp. 1116-1125, 1980.
[22] P. Paatero and U. Tapper, 'Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values,' Environmetrics, vol. 5, no. 2, pp. 111-126, 1994, doi: 10.1002/env.3170050203.
[23] G. D. Thurston and J. D. Spengler, 'A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston,' Atmospheric Environment (1967), vol. 19, no. 1, pp. 9-25, 1985/01/01/ 1985, doi: https://doi.org/10.1016/0004-6981(85)90132-5.
[24] S. Vardoulakis, B. E. A. Fisher, K. Pericleous, and N. Gonzalez-Flesca, 'Modelling air quality in street canyons: a review,' Atmospheric Environment, vol. 37, no. 2, pp. 155-182, 2003/01/01/ 2003, doi: https://doi.org/10.1016/S1352-2310(02)00857-9.
[25] C. D. Wu and S. C. Lung, 'Applying GIS and fine-resolution digital terrain models to assess three-dimensional population distribution under traffic impacts,' (in eng), J Expo Sci Environ Epidemiol, vol. 22, no. 2, pp. 126-34, Mar-Apr 2012, doi: 10.1038/jes.2011.48.
[26] F. M. Rubino, L. Floridia, M. Tavazzani, S. Fustinoni, R. Giampiccolo, and A. Colombi, 'Height profile of some air quality markers in the urban atmosphere surrounding a 100m tower building,' Atmospheric Environment, vol. 32, no. 20, pp. 3569-3580, 1998/09/25/ 1998, doi: https://doi.org/10.1016/S1352-2310(98)00074-0.
[27] S. Zauli Sajani et al., 'Vertical variation of PM2.5 mass and chemical composition, particle size distribution, NO2, and BTEX at a high rise building,' Environmental Pollution, vol. 235, pp. 339-349, 2018/04/01/ 2018, doi: https://doi.org/10.1016/j.envpol.2017.12.090.
[28] S. Yurdakul et al., 'Vertical variation and source evaluation of VOCs and inorganic pollutants in a university building,' Environmental Forensics, vol. 19, no. 4, pp. 327-340, 2018.
[29] B. P. Chandra, C. D. McClure, J. Mulligan, and D. A. Jaffe, 'Optimization of a method for the detection of biomass-burning relevant vocs in urban areas using thermal desorption gas chromatography mass spectrometry,' (in English), Atmosphere, Article vol. 11, no. 3, 2020, Art no. 276, doi: 10.3390/atmos11030276.
[30] E. Woolfenden and W. McClenny, 'METHOD TO-17: Determination of volatile organic compounds in ambient air using active sampling onto sorbent tubes,' Compendium of methods for the determination of toxic organic compounds in ambient air, 1999.
[31] G. Bertoni and R. Tappa, 'Improvement in breakthrough volume evaluation methods for light adsorbent traps employed for volatile organic compounds determination at atmospheric concentration levels,' Journal of Chromatography A, vol. 767, no. 1, pp. 153-161, 1997/04/11/ 1997, doi: https://doi.org/10.1016/S0021-9673(96)01082-5.
[32] M. Harper, 'Sorbent trapping of volatile organic compounds from air,' Journal of Chromatography A, vol. 885, no. 1, pp. 129-151, 2000/07/14/ 2000, doi: https://doi.org/10.1016/S0021-9673(00)00363-0.
[33] G. Norris, R. Duvall, S. Brown, and S. Bai, 'EPA positive matrix factorization (PMF) 5.0 fundamentals and user guide,' U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-14/ 108 (NTIS PB2015-105147), 2014.
[34] T. Banerjee, V. Murari, M. Kumar, and M. P. Raju, 'Source apportionment of airborne particulates through receptor modeling: Indian scenario,' Atmospheric Research, vol. 164-165, pp. 167-187, 2015/10/01/ 2015, doi: https://doi.org/10.1016/j.atmosres.2015.04.017.
[35] F. Geng et al., 'Analysis of VOC emissions using PCA/APCS receptor model at city of Shanghai, China,' Journal of atmospheric chemistry, vol. 62, no. 3, pp. 229-247, 2009.
[36] 黃財尉, '共同因素分析與主成份分析之比較,' 彰化師大輔導學報, no. 25, pp. 63-86, 2003.
[37] J.-O. Kim and C. W. Mueller, Factor analysis: Statistical methods and practical issues (no. 14). sage, 1978.
[38] A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich, 'Principal components analysis corrects for stratification in genome-wide association studies,' Nature genetics, vol. 38, no. 8, pp. 904-909, 2006.
[39] P. K. Hopke, 'It is time to drop principal components analysis as a “receptor model”,' Journal of Atmospheric Chemistry, vol. 72, no. 2, pp. 127-128, 2015/06/01 2015, doi: 10.1007/s10874-015-9309-1.
[40] P. K. Hopke and D. A. Jaffe, 'Letter to the Editor: Ending the Use of Obsolete Data Analysis Methods,' Aerosol and Air Quality Research, vol. 20, no. 4, pp. 688-689, 2020, doi: 10.4209/aaqr.2020.01.0001.
[41] X. Xu, Y. Liao, I. Cheng, and L. Zhang, 'Potential sources and processes affecting speciated atmospheric mercury at Kejimkujik National Park, Canada: Comparison of receptor models and data treatment methods,' Atmospheric Chemistry and Physics, vol. 17, pp. 1381-1400, 01/30 2017, doi: 10.5194/acp-17-1381-2017.
[42] H. Guo, S. Lee, P. K. K. Louie, and K. F. Ho, 'Characterization of hydrocarbons, halocarbons and carbonyls in the atmosphere of Hong Kong,' Chemosphere, vol. 57, pp. 1363-72, 01/01 2005, doi: 10.1016/j.chemosphere.2004.07.055.
[43] S. Shrestha and F. Kazama, 'Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan,' Environ. Modell. Softw., vol. 22, no. 4, pp. 464-475, 2007.
[44] H. F. Kaiser, 'An index of factorial simplicity,' Psychometrika, vol. 39, no. 1, pp. 31-36, 1974.
[45] H. F. Kaiser, 'The varimax criterion for analytic rotation in factor analysis,' Psychometrika, vol. 23, no. 3, pp. 187-200, 1958.
[46] D. Dominick, H. Juahir, M. T. Latif, S. M. Zain, and A. Z. Aris, 'Spatial assessment of air quality patterns in Malaysia using multivariate analysis,' Atmospheric environment, vol. 60, pp. 172-181, 2012.
[47] P. Samuels, 'Advice on exploratory factor analysis,' 2017.
[48] C.-P. Kuo, H.-T. Liao, C. C. K. Chou, and C.-F. Wu, 'Source apportionment of particulate matter and selected volatile organic compounds with multiple time resolution data,' Science of The Total Environment, vol. 472, pp. 880-887, 2014/02/15/ 2014, doi: https://doi.org/10.1016/j.scitotenv.2013.11.114.
[49] A. V. Polissar, P. K. Hopke, P. Paatero, W. C. Malm, and J. F. Sisler, 'Atmospheric aerosol over Alaska: 2. Elemental composition and sources,' Journal of Geophysical Research: Atmospheres, vol. 103, no. D15, pp. 19045-19057, 1998.
[50] H.-T. Liao, J.-C. Chang, T.-T. Tsai, S.-W. Tsai, C. C.-K. Chou, and C.-F. Wu, 'Vertical distribution of source apportioned PM 2.5 using particulate-bound elements and polycyclic aromatic hydrocarbons in an urban area,' Journal of exposure science environmental epidemiology, p. 1, 2019.
[51] E. Lee, C. K. Chan, and P. Paatero, 'Application of positive matrix factorization in source apportionment of particulate pollutants in Hong Kong,' Atmospheric Environment, vol. 33, no. 19, pp. 3201-3212, 1999/08/01/ 1999, doi: https://doi.org/10.1016/S1352-2310(99)00113-2.
[52] P. Anttila, P. Paatero, U. Tapper, and O. Järvinen, 'Source identification of bulk wet deposition in Finland by positive matrix factorization,' Atmospheric Environment, vol. 29, no. 14, pp. 1705-1718, 1995/01/01/ 1995, doi: https://doi.org/10.1016/1352-2310(94)00367-T.
[53] F. Abbasi, H. Pasalari, J. M. Delgado-Saborit, A. Rafiee, A. Abbasi, and M. Hoseini, 'Characterization and risk assessment of BTEX in ambient air of a Middle Eastern City,' Process Safety and Environmental Protection, vol. 139, pp. 98-105, 2020/07/01/ 2020, doi: https://doi.org/10.1016/j.psep.2020.03.019.
[54] USEPA, 'Risk assessment guidance for superfund volume I: human health evaluation manual (Part F, Supplemental guidance for inhalation risk assessment),' Washington DC, 2009.
[55] USEPA, 'Risk Assessment Guidance for Superfund (RAGS), Vol. I: Human Health Evaluation Manual (HHEM), Part B, Development of Risk-Based Preliminary Remediation Goals,' Publication 9285.7-01B, NTIS PB92-963333, Office of Soild Waste and Emergency Response, Washington, DC, 1991.
[56] H.-T. Liao, C. C. K. Chou, J. C. Chow, J. G. Watson, P. K. Hopke, and C.-F. Wu, 'Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data,' Environmental Pollution, vol. 205, pp. 121-130, 2015/10/01/ 2015, doi: https://doi.org/10.1016/j.envpol.2015.05.035.
[57] C.-f. Wu et al., 'Cancer risk assessment of selected hazardous air pollutants in Seattle,' Environment international, vol. 35, no. 3, pp. 516-522, 2009.
[58] M. A. Bari and W. B. Kindzierski, 'Ambient volatile organic compounds (VOCs) in Calgary, Alberta: Sources and screening health risk assessment,' Science of The Total Environment, vol. 631-632, pp. 627-640, 2018/08/01/ 2018, doi: https://doi.org/10.1016/j.scitotenv.2018.03.023.
[59] A. Srivastava, A. E. Joseph, and S. Devotta, 'Volatile organic compounds in ambient air of Mumbai—India,' Atmospheric Environment, vol. 40, no. 5, pp. 892-903, 2006/02/01/ 2006, doi: https://doi.org/10.1016/j.atmosenv.2005.10.045.
[60] A. Srivastava, 'Source apportionment of ambient VOCS in Mumbai city,' Atmospheric Environment, vol. 38, no. 39, pp. 6829-6843, 2004.
[61] E. World Health Organization. Regional Office for, 'Air quality guidelines for Europe,' 2nd ed ed: Copenhagen : WHO Regional Office for Europe, 2000.
[62] A. Sekar, G. K. Varghese, and M. K. Ravi Varma, 'Analysis of benzene air quality standards, monitoring methods and concentrations in indoor and outdoor environment,' Heliyon, vol. 5, no. 11, p. e02918, 2019/11/01/ 2019, doi: https://doi.org/10.1016/j.heliyon.2019.e02918.
[63] W. A. Al Madhoun, N. A. Ramli, A. S. Yahaya, N. F. F. M. Yusuf, N. A. Ghazali, and N. Sansuddin, 'Levels of benzene concentrations emitted from motor vehicles in various sites in Nibong Tebal, Malaysia,' Air Quality, Atmosphere Health, vol. 4, no. 2, pp. 103-109, 2011.
[64] C.-C. Lin, C. Lin, L.-T. Hsieh, C.-Y. Chen, and J. P. Wang, 'Vertical and Diurnal Characterization of Volatile Organic Compounds in Ambient Air in Urban Areas,' Journal of the Air Waste Management Association (1995), vol. 61, pp. 714-20, 07/01 2011, doi: 10.3155/1047-3289.61.7.714.
[65] W. Hernandez, A. Mendez, R. Zalakeviciute, and A. M. Diaz-Marquez, 'Analysis of the information obtained from PM 2.5 concentration measurements in an urban park,' IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 9, pp. 6296-6311, 2020.
[66] L. Hui et al., 'Characteristics, source apportionment and contribution of VOCs to ozone formation in Wuhan, Central China,' Atmospheric Environment, vol. 192, pp. 55-71, 2018/11/01/ 2018, doi: https://doi.org/10.1016/j.atmosenv.2018.08.042.
[67] R. R. Hoque, P. S. Khillare, T. Agarwal, V. Shridhar, and S. Balachandran, 'Spatial and temporal variation of BTEX in the urban atmosphere of Delhi, India,' Science of The Total Environment, vol. 392, no. 1, pp. 30-40, 2008/03/15/ 2008, doi: https://doi.org/10.1016/j.scitotenv.2007.08.036.
[68] N. Bauri, P. Bauri, K. Kumar, and V. K. Jain, 'Evaluation of seasonal variations in abundance of BTXE hydrocarbons and their ozone forming potential in ambient urban atmosphere of Dehradun (India),' Air Quality, Atmosphere Health, vol. 9, no. 1, pp. 95-106, 2016/02/01 2016, doi: 10.1007/s11869-015-0313-z.
[69] W.-K. Jo and K.-Y. Kim, 'Vertical variability of volatile organic compound (VOC) levels in ambient air of high-rise apartment buildings with and without occurrence of surface inversion,' Atmospheric Environment, vol. 36, no. 36, pp. 5645-5652, 2002/12/01/ 2002, doi: https://doi.org/10.1016/S1352-2310(02)00703-3.
[70] R. Hicks, D. Smith, P. Irwin, and T. Mathews, 'Preliminary results of atmospheric acoustic sounding at Calgary,' Boundary-Layer Meteorology, vol. 12, no. 2, pp. 201-212, 1977.
[71] A. Masih, A. S. Lall, A. Taneja, and R. Singhvi, 'Inhalation exposure and related health risks of BTEX in ambient air at different microenvironments of a terai zone in north India,' Atmospheric environment, vol. 147, pp. 55-66, 2016.
[72] S.-J. Kim, H.-O. Kwon, M.-I. Lee, Y. Seo, and S.-D. Choi, 'Spatial and temporal variations of volatile organic compounds using passive air samplers in the multi-industrial city of Ulsan, Korea,' Environmental Science and Pollution Research, vol. 26, no. 6, pp. 5831-5841, 2019/02/01 2019, doi: 10.1007/s11356-018-4032-5.
[73] L. Miller, X. Xu, A. Wheeler, D. O. Atari, A. Grgicak-Mannion, and I. Luginaah, 'Spatial Variability and Application of Ratios between BTEX in Two Canadian Cities,' TheScientificWorldJOURNAL, vol. 11, p. 167973, 2011/12/29 2011, doi: 10.1100/2011/167973.
[74] A. Garg and N. C. Gupta, 'A comprehensive study on spatio-temporal distribution, health risk assessment and ozone formation potential of BTEX emissions in ambient air of Delhi, India,' Science of The Total Environment, vol. 659, pp. 1090-1099, 2019/04/01/ 2019, doi: https://doi.org/10.1016/j.scitotenv.2018.12.426.
[75] C. Li et al., 'Environmental impact and health risk assessment of volatile organic compound emissions during different seasons in Beijing,' Journal of Environmental Sciences, vol. 93, pp. 1-12, 2020/07/01/ 2020, doi: https://doi.org/10.1016/j.jes.2019.11.006.
[76] A. Gelencsér, K. Siszler, and J. Hlavay, 'Toluene−Benzene Concentration Ratio as a Tool for Characterizing the Distance from Vehicular Emission Sources,' Environmental Science Technology, vol. 31, no. 10, pp. 2869-2872, 1997/10/01 1997, doi: 10.1021/es970004c.
[77] C. Yan et al., 'Source characterization of highly oxidized multifunctional compounds in a boreal forest environment using positive matrix factorization,' Atmospheric Chemistry and Physics, 2016.
[78] Y. Liu, M. Shao, L. Fu, S. Lu, L. Zeng, and D. Tang, 'Source profiles of volatile organic compounds (VOCs) measured in China: Part I,' Atmospheric Environment, vol. 42, no. 25, pp. 6247-6260, 2008.
[79] M. Song et al., 'Sources and abatement mechanisms of VOCs in southern China,' Atmospheric Environment, vol. 201, pp. 28-40, 2019/03/15/ 2019, doi: https://doi.org/10.1016/j.atmosenv.2018.12.019.
[80] T. Kronevi, J. Wahlberg, and B. Holmberg, 'Morphological Lesions in Guinea Pigs during Skin Exposure to 1, 1, 2‐trichloroethane,' Acta pharmacologica et toxicologica, vol. 41, no. 4, pp. 298-305, 1977.
[81] K. Na, Y. P. Kim, I. Moon, and K.-C. Moon, 'Chemical composition of major VOC emission sources in the Seoul atmosphere,' Chemosphere, vol. 55, no. 4, pp. 585-594, 2004/04/01/ 2004, doi: https://doi.org/10.1016/j.chemosphere.2004.01.010.
[82] M. Alghamdi et al., 'Seasonal and diurnal variations of BTEX and their potential for ozone formation in the urban background atmosphere of the coastal city Jeddah, Saudi Arabia,' Air quality, atmosphere health, vol. 7, no. 4, pp. 467-480, 2014.
[83] Y. Dumanoglu, M. Kara, H. Altiok, M. Odabasi, T. Elbir, and A. Bayram, 'Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region,' Atmospheric Environment, vol. 98, pp. 168-178, 2014/12/01/ 2014, doi: https://doi.org/10.1016/j.atmosenv.2014.08.048.
[84] T.-Y. Lin, U. Sree, S.-H. Tseng, K. H. Chiu, C.-H. Wu, and J.-G. Lo, 'Volatile organic compound concentrations in ambient air of Kaohsiung petroleum refinery in Taiwan,' Atmospheric Environment, vol. 38, no. 25, pp. 4111-4122, 2004.
[85] Y. Liu, M. Shao, S. Lu, C.-C. Chang, J.-L. Wang, and L. Fu, 'Source apportionment of ambient volatile organic compounds in the Pearl River Delta, China: Part II,' Atmospheric Environment, vol. 42, no. 25, pp. 6261-6274, 2008/08/01/ 2008, doi: https://doi.org/10.1016/j.atmosenv.2008.02.027.
[86] A. Jun-lin, W. Yue-si, W. Fang-kun, and Z. Bin, 'Characterizations of volatile organic compounds during high ozone episodes in Beijing, China,' Environmental monitoring and assessment, vol. 184, no. 4, pp. 1879-1889, 2012.
[87] F. Wu et al., 'Characteristics, source apportionment and reactivity of ambient volatile organic compounds at Dinghu Mountain in Guangdong Province, China,' Science of The Total Environment, vol. 548-549, pp. 347-359, 2016/04/01/ 2016, doi: https://doi.org/10.1016/j.scitotenv.2015.11.069.
[88] Y. S. Huang and C. C. Hsieh, 'Ambient volatile organic compound presence in the highly urbanized city: source apportionment and emission position,' Atmospheric Environment, vol. 206, pp. 45-59, 2019/06/01/ 2019, doi: https://doi.org/10.1016/j.atmosenv.2019.02.046.
[89] C. V. Hampton, W. R. Pierson, T. M. Harvey, and D. Schuetzle, 'Hydrocarbon gases emitted from vehicles on the road. 2. Determination of emission rates from diesel and spark-ignition vehicles,' Environmental science technology, vol. 17, no. 12, pp. 699-708, 1983.
[90] Y.-J. Hong, H. A. Jeng, Y.-Y. Gau, C. Lin, and I.-L. Lee, 'Distribution of volatile organic compounds in ambient air of Kaohsiung, Taiwan,' Environmental monitoring and assessment, vol. 119, no. 1-3, pp. 43-56, 2006.
[91] R. Wu, Y. Zhao, J. Zhang, and L. Zhang, 'Variability and Sources of Ambient Volatile Organic Compounds Based on Online Measurements in a Suburban Region of Nanjing, Eastern China,' Aerosol and Air Quality Research, vol. 20, no. 3, pp. 606-619, 2020.
[92] M. A. Bari and W. B. Kindzierski, 'Ambient volatile organic compounds (VOCs) in communities of the Athabasca oil sands region: Sources and screening health risk assessment,' Environmental Pollution, vol. 235, pp. 602-614, 2018/04/01/ 2018, doi: https://doi.org/10.1016/j.envpol.2017.12.065.
[93] W.-L. Lau and L.-Y. Chan, 'Commuter exposure to aromatic VOCs in public transportation modes in Hong Kong,' Science of The Total Environment, vol. 308, no. 1, pp. 143-155, 2003/06/01/ 2003, doi: https://doi.org/10.1016/S0048-9697(02)00647-2.
[94] K. W. Tham and K. W. D. Cheong, 'Vertical distribution of traffic-generated PM2. 5 and NO2 in a tropical urban environment,' 2010.
[95] W. P. Carter, 'Development of ozone reactivity scales for volatile organic compounds,' Air waste, vol. 44, no. 7, pp. 881-899, 1994.
[96] W. P. Carter, 'Updated maximum incremental reactivity scale and hydrocarbon bin reactivities for regulatory applications,' California Air Resources Board Contract, vol. 2009, p. 339, 2009.
[97] P. Shao et al., 'Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China,' Atmospheric Research, vol. 176, pp. 64-74, 2016.
[98] L. Tohid et al., 'Spatiotemporal variation, ozone formation potential and health risk assessment of ambient air VOCs in an industrialized city in Iran,' Atmospheric Pollution Research, vol. 10, no. 2, pp. 556-563, 2019/03/01/ 2019, doi: https://doi.org/10.1016/j.apr.2018.10.007.
[99] K. L. So and T. Wang, 'C3–C12 non-methane hydrocarbons in subtropical Hong Kong: spatial–temporal variations, source–receptor relationships and photochemical reactivity,' Science of The Total Environment, vol. 328, no. 1, pp. 161-174, 2004/07/26/ 2004, doi: https://doi.org/10.1016/j.scitotenv.2004.01.029.
[100] U. WHO, 'Air quality guidelines: global update 2005,' World Health Organization, 2006.
[101] Y. Shang et al., 'Systematic review of Chinese studies of short-term exposure to air pollution and daily mortality,' Environment international, vol. 54, pp. 100-111, 2013.
[102] P. M. Fine, C. Sioutas, and P. A. Solomon, 'Secondary particulate matter in the United States: insights from the particulate matter supersites program and related studies,' Journal of the Air Waste Management Association, vol. 58, no. 2, pp. 234-253, 2008.
[103] M. A. Ross, 'Integrated science assessment for particulate matter,' US Environmental Protection Agency: Washington DC, USA, pp. 61-161, 2009.
[104] J. H. Kroll and J. H. Seinfeld, 'Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere,' Atmospheric Environment, vol. 42, no. 16, pp. 3593-3624, 2008.
[105] Z. Zhang et al., 'Emission characteristics of volatile organic compounds and their secondary organic aerosol formation potentials from a petroleum refinery in Pearl River Delta, China,' Science of The Total Environment, vol. 584-585, pp. 1162-1174, 2017/04/15/ 2017, doi: https://doi.org/10.1016/j.scitotenv.2017.01.179.
[106] R. G. Derwent, M. E. Jenkin, S. R. Utembe, D. E. Shallcross, T. P. Murrells, and N. R. Passant, 'Secondary organic aerosol formation from a large number of reactive man-made organic compounds,' Science of The Total Environment, vol. 408, no. 16, pp. 3374-3381, 2010/07/15/ 2010, doi: https://doi.org/10.1016/j.scitotenv.2010.04.013.
[107] J. Li, S. Xie, L. Zeng, L. Li, Y. Li, and R. Wu, 'Characterization of ambient volatile organic compounds and their sources in Beijing, before, during, and after Asia-Pacific Economic Cooperation China 2014,' Atmospheric Chemistry Physics, vol. 15, no. 14, 2015.
[108] D. Cesari, F. Amato, M. Pandolfi, A. Alastuey, X. Querol, and D. Contini, 'An inter-comparison of PM 10 source apportionment using PCA and PMF receptor models in three European sites,' Environmental Science and Pollution Research, vol. 23, no. 15, pp. 15133-15148, 2016.
[109] P. K. Hopke et al., 'PM source apportionment and health effects: 1. Intercomparison of source apportionment results,' Journal of exposure science environmental epidemiology, vol. 16, no. 3, pp. 275-286, 2006.
[110] W.-K. Jo, K.-Y. Kim, K.-H. Park, Y.-K. Kim, H.-W. Lee, and J.-K. Park, 'Comparison of outdoor and indoor mobile source-related volatile organic compounds between low- and high-floor apartments,' Environmental Research, vol. 92, no. 2, pp. 166-171, 2003/06/01/ 2003, doi: https://doi.org/10.1016/S0013-9351(03)00013-6.
[111] M. Petrea, R. Kurtenbach, P. Wiesen, U. Vogt, and G. Baumbach, 'NMHC measurements of motorway emissions during the BAB II field campaign,' Atmospheric Environment, vol. 39, no. 31, pp. 5685-5695, 2005/10/01/ 2005, doi: https://doi.org/10.1016/j.atmosenv.2005.07.029.
[112] P. Wang and W. Zhao, 'Assessment of ambient volatile organic compounds (VOCs) near major roads in urban Nanjing, China,' Atmospheric Research, vol. 89, no. 3, pp. 289-297, 2008/08/01/ 2008, doi: https://doi.org/10.1016/j.atmosres.2008.03.013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77751-
dc.description.abstract臭氧以及過氧醯基硝酸酯 (Peroxyacetyl nitrate, PAN) 等二次污染物是近年備受關注的議題,都市大氣中的揮發性有機化合物 (Volatile organic compounds, VOCs) 是形成臭氧以及二次有機氣溶膠 (Secondary organic aerosol, SOA) 的關鍵前體,且本身也被認為是有害空氣污染物 (Hazardous air pollutants, HAPs)。探討VOCs垂直變異的研究目前仍相當稀少,且結果也不一致。因此為了探討都市中VOCs (1) 潛在來源及其垂直分佈;以及基於正矩陣因子分解 (Positive matrix factorization, PMF) 所估算的特定來源之 (2) 二次污染物形成潛勢 (3) 吸入性風險優先排序,本研究於2019年11月21日至2020年6月18日在台北市一棟緊鄰交通要道建築物的3個樓層進行VOCs的長期採樣,三個樓層的高度分別為6公尺 (低樓層)、24公尺 (中樓層) 以及44公尺 (高樓層)。採樣介質為填充Carbopack X吸附劑的熱脫附管,透過串聯Nafion乾燥管以避免水蒸氣的干擾,並使用全自動熱脫附氣相層析儀/火焰離子化偵測器 (ATD/GC-FID) 進行9種VOCs的定量。
分析結果顯示苯是監測地點最豐富的物種 (32%),其次是甲苯 (28%),總VOCs在中樓層有最高的平均濃度 (74.10 µg/m3),其次分別是低樓層 (69.06 µg/m3) 以及高樓層 (69.00 µg/m3),Wilcoxon符號等級檢定得知中樓層以及高樓層之間有顯著差別。透過PMF鑑別出三個主要來源,其分別為因子1:溶劑塗料使用 (28%)、因子2:交通排放 (46%) 以及因子3:與交通相關的老化氣團 (25%),因子1的貢獻隨著高度增加而減少,因子2以及因子3則是在中樓層有最高的貢獻,且這兩個來源對於中樓層以及高樓層的貢獻有顯著差別,推測這可能是造成總VOCs濃度在樓層間顯著變異的主因。臭氧形成潛勢 (Ozone formation potential, OFP) 的結果表明因子1對於OFP有最大的貢獻 (52%),而二次有機氣溶膠潛勢 (Secondary organic aerosol potential, SOAP) 的結果表明3個來源間的SOAP差異不大,但是冬季的SOAP顯著大於其他季節。在風險優先排序的方面,中樓層以及交通排放具有較高的風險。本研究顯示台北都會中VOCs的來源及其垂直變異的情形,而OFP、SOAP以及風險優先排序的結果有助於二次污染物管制政策的擬定進而保障國民的健康。
zh_TW
dc.description.abstractOzone, peroxyacetyl nitrate (PAN) and other secondary pollutants have received considerable attention in recent years. Volatile organic compounds (VOCs) are the key precursors for the formation of ozone and secondary organic aerosols (SOA) in urban atmosphere, and they are also considered hazardous air pollutants (HAPs). Currently, only few studies focus on the vertical variability of VOCs, and their results are not consistent. In order to explore (1) VOCs potential sources and their vertically distributed; (2) secondary pollutants formation potential as well as (3) the inhalation risk prioritization of the specific sources estimated based on positive matrix factorization (PMF) of the VOCs in urban atmosphere, this study conducted long-term VOCs sampling at three different balconies in a high-rise building near a major traffic road in Taipei Metropolis from November 21, 2019 to June 18, 2020. The heights of the three floors were 6 meters (low-level), 24 meters (mid-level), and 44 meters (high-level). Thermal desorption tubes were used to collect VOCs samples on Carbopack X adsorbents, and a Nafion dryer tube was connected to avoid the interference of water vapor. Meanwhile, an automatic thermal desorption system equipped with a gas chromatography flame ionization detector (ATD/GC-FID) was used to quantify 9 selected compounds of VOCs.
The analysis results showed that benzene was the most abundant species at the monitoring site (32%), followed by toluene (28%). The highest average mass concentration of the total VOCs appeared at the mid-level site (74.10 µg/m3), followed by the low-level sites (69.06 µg/m3) and the high-level site (69.00 µg/m3). Wilcoxon signed-rank test revealed that there was a significant difference between the mid-level and high-level sites. Three major sources were identified by PMF, which included factor 1: solvent-use (28%), factor 2: traffic emission (46%), and factor 3: traffic-related aged air (25%). The contribution of factor 1 decreased as the height increased, while factor 2 and factor 3 contributed the most at mid-level site. The contribution of these two sources differed significantly between mid-level and high-level sites. It was speculated that this might be the main cause of the significant difference toward the mass concentration of total VOCs between varied level sites. Ozone formation potential (OFP) results indicated that factor 1 was the largest contributor to OFP (52%), while secondary organic aerosol potential (SOAP) results showed that the SOAP had little difference among the three sources, however, the SOAP in winter was significantly greater than that other seasons. In terms of inhalation risk prioritization, the mid-level site and traffic emission had higher risks.
This study showed the potential sources of VOCs and their vertical variability in Taipei Metropolis. The results of OFP, SOAP, and inhalation risk prioritization are helpful for formulating secondary pollutant control strategies to protect the public’s health.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:19:40Z (GMT). No. of bitstreams: 1
U0001-1709202011512300.pdf: 3241353 bytes, checksum: 5fdc254979edc85b9ad2c896851c8c51 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents摘要 i
Abstract iii
目錄 vi
表目錄 ix
圖目錄 x
公式目錄 xi
第壹章、前言 1
1.1、研究背景 1
1.2、研究目標 4
1.3、研究架構 6
第貳章、研究方法 7
2.1、採樣規劃 7
2.1.1採樣地點 7
2.1.2目標物種 7
2.1.3採樣方法 8
2.1.4監測時間 10
3.1.5分析方法 10
2.2、品保品管 11
2.2.1採樣 11
2.2.2分析 11
2.2.3破出體積測試 11
2.3、模式使用 13
2.4、因素分析 13
2.4.1因素分析原理 13
2.4.2 資料前處理 14
2.4.3 因素分析適確性及因素數量選擇 14
2.5、正矩陣因子分解 16
2.5.1正矩陣因子分解原理 16
2.5.2 資料前處理 17
2.5.3 資料品質確定 17
2.5.4 因子數量選擇 18
2.5.5 圖譜解釋 18
2.6、風險優先排序 19
第參章、結果與討論 21
3.1、描述性統計 21
3.1.1 VOCs採樣分析結果 21
3.1.2 VOCs濃度垂直變異 23
3.1.3 VOCs濃度時序性差異 24
3.1.4 BTEX相關性以及診斷比 25
3.2、因素分析 26
3.3、正矩陣因子分解 27
3.4、VOCs來源貢獻之季節以及樓層變異 29
3.5、臭氧形成潛勢 32
3.6、SOA形成潛勢 34
3.7、風險優先排序 36
3.7.1不同樓層間的VOCs吸入性風險優先排序 36
3.7.2不同來源間的VOCs吸入性風險優先排序 37
3.8、研究限制 37
第肆章、結論與建議 39
第伍章、參考文獻 71
dc.language.isozh-TW
dc.subject二次有機氣溶膠潛勢zh_TW
dc.subject風險優先排序zh_TW
dc.subject受體模式zh_TW
dc.subject正矩陣因子分解zh_TW
dc.subject臭氧形成潛勢zh_TW
dc.subjectOzone formation potentialen
dc.subjectRisk prioritizationen
dc.subjectSecondary organic aerosol potentialen
dc.subjectPositive matrix factorizationen
dc.subjectReceptor modelen
dc.title台北都會區特定揮發性有機化合物污染來源解析及其垂直分布zh_TW
dc.titleSource Apportionment of Selected Volatile Organic Compounds with Vertical Distribution Measurements in Taipei Metropolisen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡詩偉(Shih-wei Tsai),吳俊德(Jyun-De Wu)
dc.subject.keyword受體模式,正矩陣因子分解,臭氧形成潛勢,二次有機氣溶膠潛勢,風險優先排序,zh_TW
dc.subject.keywordReceptor model,Positive matrix factorization,Ozone formation potential,Secondary organic aerosol potential,Risk prioritization,en
dc.relation.page81
dc.identifier.doi10.6342/NTU202004215
dc.rights.note未授權
dc.date.accepted2020-09-22
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境與職業健康科學研究所zh_TW
顯示於系所單位:環境與職業健康科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1709202011512300.pdf
  未授權公開取用
3.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved