請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77720完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲(Jui-che Tsai) | |
| dc.contributor.author | Kuan-Ho Chu | en |
| dc.contributor.author | 朱冠合 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:17:52Z | - |
| dc.date.available | 2021-07-10T22:17:52Z | - |
| dc.date.copyright | 2017-08-30 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-11 | |
| dc.identifier.citation | [1] 劉瑞祥,液晶之基礎與應用,國立編譯館,民國 85 年。
[2] 蔡佳怡,摻雜染料「液晶-聚合物」薄膜在光學快速記錄性質之研究,成功大學物理所碩士論文,2002。 [3] Denis Andrienko, Introduction to liquid crystals, Sep. 2006. [4] Deng Ke Yang, Fundamentals of liquid crystal devices, John Wiley & Sons, 2014. [5] Toralf Scharf, Polarized light in liquid crystals and polymers, John Wiley & Sons, 2007. [6] L. Bouteiller, and P. L. Barny, 'Polymer-dispersed liquid crystals: Preparation, operation and application,' Liquid crystals, vol. 21, no. 2, pp. 157-174, 1996. [7] P. J. W. Hands, A. K. Kirby, and G. D. Love, 'Phase modulation with polymer-dispersed liquid crystals,' Optics & Photonics 2005, International Society for Optics and Photonics, 2005. [8] M. Jamil, et al, 'Nanoparticle-doped polymer-dispersed liquid crystal display,' Current Science(Bangalore), vol. 101, no. 12, pp. 1544-1552, 2011. [9] J. Kim, and J. I. Han, 'Effect of liquid crystal concentration on electro-optical properties of polymer dispersed liquid crystal lens for smart electronic glasses with auto-shading and auto-focusing function,' Electronic Materials Letters, vol. 10, no. 3, pp. 607-610, 2014. [10] J. Kim, and J. I. Han, 'Effect of UV intensity on the electro-optical properties of polymer dispersed liquid crystal lens for smart electronic glasses,' Electronic Materials Letters, vol. 10, no. 3, pp. 665-669, 2014. [11] J. W. Doane, et al, 'Polymer dispersed liquid crystals for display application,' Molecular Crystals and Liquid Crystals, vol. 165, no. 1, pp. 511-532, 1988. [12] A. M. Lackner, et al, 'Droplet size control in polymer dispersed liquid crystal films,' OE/LASE'89, International Society for Optics and Photonics, 1989. [13] H. C. Lin, and Y. H. Lin, 'An electrically tunable focusing pico-projector adopting a liquid crystal lens,' Japanese Journal of Applied Physics, vol. 49, 102502, 2010. [14] B. Wang, M. Ye, and S. Sato, 'Liquid crystal lens with focal length variable from negative to positive values,' IEEE Photonics Technology Letters, vol. 18, no. 1, pp. 79-81 , 2006. [15] H. S. Chen, and Y. H. Lin, 'An endoscopic system adopting a liquid crystal lens with an electrically tunable depth-of-field,' Optics express, vol. 21, no. 15, pp. 18079-18088, 2013. [16] H. T. Dai, et al, 'A negative-positive tunable liquid-crystal microlens array by printing,' Optics express, vol. 17, no. 6, pp. 4317-4323, 2009. [17] T. Y. Tu, P. C. P. Chao, and C. T. Lin, 'A new liquid crystal lens with axis-tunability via three sector electrodes,' Microsystem technologies, vol. 18, pp. 1297-1307, 2012. [18] M. Ye, B. Wang, and S. Sato, 'Liquid crystal lens with focus movable in focal plane,' Optics Communications,' vol. 259, no. 2, pp. 710-722, 2006. [19] H. Ren, and S. T. Wu, 'Adaptive liquid crystal lens with large focal length tunability,' Optics Express, vol. 14, no. 23, pp. 11292-11298, 2006. [20] H. Ren, et al, 'Liquid crystal lens with large focal length tunability and low operating voltage,' Optics express, vol. 15, no. 18, pp. 11328-11335, 2007. [21] H. Ren, and S. T. Wu, 'Tunable electronic lens using a gradient polymer network liquid crystal,' Applied Physics Letters, vol. 82, no. 1, pp. 22-24, 2003. [22] H. S. Ji, J. H. Kim, and S. Kumar, 'Electrically controllable microlens array fabricated by anisotropic phase separation from liquid-crystal and polymer composite materials,' Optics letters, vol. 28, no. 13, pp. 1147-1149, 2003. [23] H. Ren, et al, 'Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets.' Optics communications, vol. 247, no.1, pp. 101-106, 2005. [24] D. Li, et al, 'Electrically controlled hole-patterned tunable-focus lens with polymer dispersed liquid crystal doped with Ag nanoparticles,' Optik-International Journal for Light and Electron Optics, vol. 127, no. 19, pp. 7788-7793, 2016. [25] P. Formentin, et al, 'Polymer-dispersed liquid crystal based on E7: Morphology and characterization.' Synthetic Metals, vol. 158, no. 21, pp. 1004-1008, 2008. [26] 呂承桓,固態微型可調變光圈之設計、製作與特性量測,國立臺灣大學光電工程研究所碩士論文,2016。 [27] https://www.norlandprod.com/adhesives/noa%2065.html [28] A. Davis, and K. Frank, 'Optical design using Fresnel lenses,' Optik & Photonik, vol. 2, no. 4, pp. 52-55, 2017. [29] http://www.fresneltech.com/pdf/FresnelLenses.pdf [30] Drzaic, Paul S, Liquid crystal dispersions, Vol. 1, World Scientific, 1995. [31] G. Kun, et al, 'Electrically Controlled Fast Response Cascading Tunable Polymer Dispersed Liquid Crystal Focusing Lenses,' Microwave and Optical Technology Letters, vol. 55, no. 12, pp. 2830-2835, 2013. [32] D. E. Lucchetta, et al, 'Phase-only modulation by nanosized polymer-dispersed liquid crystals,' Journal of applied physics, vol. 91, no. 9, pp. 6060-6065, 2002. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77720 | - |
| dc.description.abstract | 本研究提出了一個創新的方法來製作出可調變焦距之透鏡。透鏡之焦距長短可以藉由施加不同的電壓來改變。
在元件的設計中主要討論的重點在於選擇材料和元件的結構這兩大部分。在材料的部分,選擇了高分子分散型液晶(Polymer-dispersed liquid crystal, PDLC),其最大的特點為液晶具有光學的異向性,不使用一般液晶,而選擇PDLC的原因在於其不依賴光的偏振性,因此元件不需要外加偏振片。在研究中,使用低濃度液晶比例配製PDLC且用高光強度之紫外光曝光,使材料呈現透明狀。在元件結構上,製作成菲涅爾透鏡(Fresnel lens)之形狀取代一般平凸透鏡,菲涅爾透鏡原理是將傳統之透鏡分成數個區域,再將每個區域中的厚度去除掉,僅保留原本表面之曲率,此結構具有質量輕和厚度薄等優點。 元件之運作原理為使用兩平行之導電玻璃基板當作導電層,藉由施加電壓使PDLC材料產生折射率的變化,當元件結構之折射率產生變化,透鏡之焦距也會因此產生改變。最後,藉由不同的元件製作方式,進一步探討利用高分子分散型液晶製作菲涅爾透鏡之可行性。 | zh_TW |
| dc.description.abstract | The study proposes an innovative way to fabricate tunable-focus lenses. The focal length of the lens can be changed by the applied different voltage.
The design is divided into two parts. One is the material and the other is the structure of the components. We select polymer dispersed liquid crystal (PDLC) as the material because of optical anisotropy characteristic and independent of light polarization. In this reason, we use PDLC instead of the general liquid crystal. The device has high transmittance because it do not extra need to add polarizers. In the study, we use PDLC with low concentration liquid crystal and high exposure intensity by UV light. In this way, it can make this material has highly transparent. In the device structure, we use Fresnel lens shape to replace the general planar-convex lens. The principle of the Fresnel lens is as follows: The lens is divided into several regions, and then remove the thickness of each region. After that, we only retain the original surface of the curvature. This structure of Fresnel len has the characteristics of light weight and thin thickness. We use two parallel conductive glass substrates and then apply voltage to cause a change of the refractive index in the PDLC material. When the refractive index of the device structure changes, the focal length also changes. Finally, we discuss its possible use for Fresnel lenses by using the PDLC with low LC concentration. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:17:52Z (GMT). No. of bitstreams: 1 ntu-106-R04941033-1.pdf: 4312196 bytes, checksum: 2a7b570635d9d9df37efde20a7804664 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii ABSTRACT iii 目錄 iv 圖目錄 vi 表目錄 xii Chapter 1 緒論 1 1.1 前言 1 1.2 液晶 1 1.2.1 液晶介紹 1 1.2.2 液晶配向 3 1.2.3 液晶物理特性 4 1.3 高分子分散型液晶(PDLC)介紹 6 1.3.1 PDLC簡介 6 1.3.2 PDLC工作原理 7 1.3.3 PDLC製作方法 8 1.4 以液晶製作可調變透鏡之文獻回顧 10 1.4.1 利用液晶製作可調變透鏡 10 1.4.2 利用高分子混合液晶製作可調變透鏡 14 1.5 研究動機 18 Chapter 2 高分子分散型液晶配製與特性量測 20 2.1 PDLC製作 20 2.1.1 液晶與高分子基本特性 20 2.1.2 高分子和液晶混合配置 22 2.2 PDLC特性量測 24 2.2.1 未施加電壓之PDLC薄膜量測 24 2.2.2 施加電壓之PDLC薄膜量測 29 Chapter 3 可變焦菲涅爾透鏡設計與製作 33 3.1 菲涅爾透鏡介紹 33 3.2 可調變透鏡設計概念 37 3.2.1 設計概念 37 3.2.2 結構設計 39 3.3 可變焦菲涅爾透鏡元件製作 41 3.3.1 使用PDMS及PDLC製作可變焦菲涅爾透鏡 41 3.3.2 使用NOA65及PDLC製作可變焦菲涅爾透鏡 44 3.3.3 PDLC製作可變焦菲涅爾透鏡 48 3.3.4 間隙物(Spacer)製作 49 Chapter 4 變焦菲涅爾透鏡模擬與量測 53 4.1 菲涅爾透鏡模擬 53 4.1.1 繪製菲涅爾透鏡 53 4.1.2 Zemax光學模擬 54 4.2 可調變焦距之菲涅爾透鏡量測 57 4.2.1 未加電壓時透鏡特性量測 57 4.2.2 加電壓時菲涅爾透鏡光點變化量測 60 Chapter 5 結論與未來展望 64 5.1 結論 64 5.2 未來展望 65 參考文獻 68 | |
| dc.language.iso | zh-TW | |
| dc.subject | 可變焦液晶透鏡 | zh_TW |
| dc.subject | 液晶 | zh_TW |
| dc.subject | 高分子分散型液晶 | zh_TW |
| dc.subject | 凸透鏡 | zh_TW |
| dc.subject | 菲涅爾透鏡 | zh_TW |
| dc.subject | Convex lens | en |
| dc.subject | Tunable-focus of liquid crystal lens | en |
| dc.subject | Fresnel lens | en |
| dc.subject | Liquid crystal | en |
| dc.subject | Polymer dispersed liquid crystal (PDLC) | en |
| dc.title | 低液晶濃度之高分子分散型液晶製作及其用於菲涅爾透鏡之可行性 | zh_TW |
| dc.title | Fabrication of the Polymer-Dispersed Liquid Crystal (PDLC) with a Low LC Concentration and Its Possible Use for Fresnel Lenses | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 孫家偉(Chia-Wei Sun),鍾仁傑(Ren-Jei Chung) | |
| dc.subject.keyword | 液晶,高分子分散型液晶,凸透鏡,菲涅爾透鏡,可變焦液晶透鏡, | zh_TW |
| dc.subject.keyword | Liquid crystal,Polymer dispersed liquid crystal (PDLC),Convex lens,Fresnel lens,Tunable-focus of liquid crystal lens, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU201702914 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-08-11 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-R04941033-1.pdf 未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
