Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電信工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77708
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李枝宏
dc.contributor.authorYi-Fan Wangen
dc.contributor.author王易凡zh_TW
dc.date.accessioned2021-07-10T22:17:09Z-
dc.date.available2021-07-10T22:17:09Z-
dc.date.copyright2017-08-30
dc.date.issued2017
dc.date.submitted2017-08-14
dc.identifier.citation[1] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser
MIMO systems,” IEEE Trans. Commun., vol. 61, no. 4, pp. 1436-1449, Apr. 2013.
[2] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson,
“Scaling up MIMO: Opportunities and challenges with very large arrays,” IEEE Signal Process.
Mag., vol. 30, no. 1, pp. 40-46, Jan. 2013.
[3] L. Lu, G. Li, A. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO:
Benefits and challenges,” IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742-758, Oct.
2014.
[4] G. Y. Li, Z.-K. Xu, C. Xiong, C.-Y. Yang, S.-Q. Zhang, Y. Chen, and S. Xu, “Energy-efficient
wireless communications: Tutorial, survey, and open issues,” IEEE Wireless Commun. Mag., vol.
18, no. 6, pp. 28-35, Dec. 2011.
[5] A. Pitarokoilis, S. K. Mohammed, and E. G. Larsson, “On the optimality of single-carrier transmission
in large-scale antenna systems,” IEEE Wireless Commun. Lett., vol. 1, no. 4, pp. 276-279,
Aug. 2012.
[6] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,”
IEEE Trans. Wireless Commun., vol. 9, no. 11, pp. 3590-3600, Nov. 2010.
[7] J. Hoydis, S. ten Brink, and M. Debbah, “Massive MIMO in the UL/DL of cellular networks:
How many antennas do we need?,” IEEE J. Sel. Areas Commun., vol. 31, no. 2, pp. 160-171, Feb.
2013.
[8] E. Björnson, L. Sanguinetti, J. Hoydis, and M. Debbah, “Optimal design of energy-efficient multiuser
MIMO systems: Is massive MIMO the answer?,” IEEE Trans. Wireless Commun., vol. 14,
no. 6, pp. 3059-3075, Jun. 2015.
[9] E. G. Larsson, F. Tufvesson, O. Edfors, and T. L. Marzetta, “Massive MIMO for next generation
wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186-195, Feb. 2014.
[10] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang,
“What will 5G be?,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065-1082, Jun. 2014.
[11] C. L. I, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan, “Toward Green and Soft: A 5G Perspective,”
IEEE Commun. Mag., vol. 52, no. 2, pp. 66-73, Feb. 2014.
[12] Y. Wu, Y. Chen, J. Tang, D. K. C. So, Z. Xu, C. L. I., P. Ferrand, J. M. Gorce, C. H. Tang, P.
R. Li, K. T. Feng, L. C. Wang, K. Borner, and L. Thiele, “Green transmission technologies for
balancing the energy efficiency and spectrum efficiency trade-off,” IEEE Commun. Mag., vol.52,
no.11, pp.112-120, Nov. 2014.
[13] C. Han, T. Harrold, S. Armour, I. Krikidis, S. Videv, P. M. Grant, H. Haas, J. S. Thompson, I. Ku,
C. X. Wang, T. A. Le, M. R. Nakhai, J. Zhang, and L. Hanzo, “Green radio: radio techniques to
enable energy-efficient wireless networks,” IEEE Commun. Mag., vol. 49, no. 6, pp. 46-54, Jun.
2011.
[14] G. Y. Li, Z. Xu, C. Xiong, C. Yang, S. Zhang, Y. Chen, and S. Xu, “Energy-efficient wireless
communications: Tutorial, survey, open issues,” IEEE Commun. Mag., vol. 18, no. 6, pp. 28-35,
Dec. 2011.
[15] H. Meyr, M. Moeneclaey, and S. A. Fechtel, Digital Communication Receivers: Synchronization,
Channel Estimation, and Signal Processing, in Wiley-InterScience. New York: Wiley, 1997.
[16] L. Tomba, “On the effect of Wiener phase noise in OFDM systems,” IEEE Trans. Commun., vol.
46, no. 5, pp. 580-583, May 1998.
[17] M. Dohler, R. W. Heath, A. Lozano, C. B. Papadias, and R. A. Valenzuela, “Is the PHY layer
dead?,” IEEE Commun. Mag., vol. 49, no. 4, pp. 159-165, Apr. 2011.
[18] L. Piazzo and P. Mandarini, “Analysis of phase noise effects in OFDM modems,” IEEE Trans.
Commun., vol. 50, no. 10, pp. 1696-1705, Oct. 2002.
[19] A. Georgiadis, “Gain, phase imbalance, phase noise effects on error vector magnitude,” IEEE
Trans. Veh. Technol., vol. 53, no. 2, pp. 443-449, Mar. 2004.
[20] E. Björnson, E. G. Larsson, and T. L. Marzetta, “Massive MIMO: ten myths and one critical
question,” IEEE Commun. Mag., vol. 54, no. 2, pp. 114-123, Feb. 2016.
[21] T. Marzetta, “Massive MIMO: An introduction,” Bell Labs Tech. J., vol. 20, pp. 11–22, Mar.
2015.
[22] Y. F. Wang and J. H. Lee, “A Simple Phase Noise Suppression Scheme for Massive MIMO
Uplink Systems,” IEEE Trans. Veh. Technol., vol. 66, no. 6, pp. 4769-4780, June 2017.
[23] A. Papazafeiropoulos, “Impact of General Channel Aging Conditions on the Downlink Performance
of Massive MIMO,” IEEE Trans. Veh. Technol., vol. 66, no. 2, pp. 1428-1442, Feb. 2017.
[24] G. Caire and S. Shamai, “On the achievable throughput of a multiantenna Gaussian broadcast
channel,” IEEE Trans. Inf. Theory, vol. 49, no. 7, pp. 1691-1706, Jul. 2003.
[25] R. Krishnan, M. R. Khanzadi, N. Krishnan, Y. Wu, A. Graell i Amat, T. Eriksson, and R. Schober,
“Linear massive MIMO precoders in the presence of phase noise-A large-scale analysis,” IEEE
Trans. Veh. Technol., vol. 65, no. 5, pp. 3057-3071, May 2016.
[26] R. Corvaja and A. G. Armada, “Phase Noise Degradation in Massive MIMO Downlink With
Zero-Forcing and Maximum Ratio Transmission Precoding,” IEEE Trans. Veh. Technol., vol. 65,
no. 10, pp. 8052-8059, Oct. 2016.
[27] A. Pitarokoilis, S. K. Mohammed, and E. G. Larsson, “Uplink performance of time-reversal
MRC in massive MIMO systems subject to phase noise,” IEEE Trans. Wireless Commun., vol.14,
no.2, pp.711-723, Feb. 2015.
[28] H. Mehrpouyan, A. A. Nasir, S. D. Blostein, T. Eriksson, G. K. Karagiannidis, and T. Svensson,
“Joint estimation of channel and oscillator phase noise in MIMO systems,” IEEE Trans. Signal
Process., vol. 60, no. 9, pp. 4790-4807, Sep. 2012.
[29] B. Hassibi, B.M. Hochwald, “How Much Training is Needed in Multiple-Antenna Wireless
Links?,” IEEE Trans. Inform. Theory, vol. 49, no. 4, pp. 951-963, April 2003.
[30] S. M. Kay, Fundamentals of Statistical Signal Processing: Estimation Theory, Englewood Cliffs,
NJ: Prentice-Hall, 1993.
[31] A. Hajimiri, S. Limotyrakis, and T. H. Lee, “Jitter and phase noise in ring oscillators,” IEEE J.
Solid-State Circuits, vol. 34, no. 6, pp. 790-804, Jun. 1999.
[32] C. Wang, E. K. S. Au, R. D. Murch, W. H. Mow, R. S. Cheng, and V. Lau, “On the performance
of the MIMO zero-forcing receiver in the presence of channel estimation error,” IEEE Trans.
Wireless Commun., vol. 6, no. 3, pp. 805-810, Mar. 2007.
[33] J. G. Proakis, Digital Communications, Mcgraw-Hill, 2001.
[34] L. C. Andrews, R. L. Phillips, Mathematical techniques for engineers and scientists. SPIE Press,
2003.
[35] C. Mollén, J. Choi, E. G. Larsson and R. W. Heath, “Uplink Performance of Wideband Massive
MIMO With One-Bit ADCs,” IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 87-100, Jan.
2017.
[36] Songping Wu and Y. Bar-Ness, “A phase noise suppression algorithm for OFDM-based
WLANs,” IEEE Commun. Lett., vol. 6, no. 12, pp. 535-537, Dec. 2002.
[37] A. Pitarokoilis, S. K. Mohammed, and E. G. Larsson, “Achievable rates of ZF receivers in massive
MIMO with phase noise impairments,” in Proc. 47th Annu. Asilomar Conf. Signals, Syst.,
Comput., Pacific Grove, VA, USA, pp.1004-1008, 3-6 Nov. 2013.
[38] A. Pitarokoilis, E. Björnson, and E. G. Larsson, “Performance of the Massive MIMO Uplink
with OFDM and Phase Noise,” IEEE Commun. Lett., vol. 20, no. 8, pp. 1595-1598, Aug. 2016.
[39] F. Z. Merli, X. Wang, and G. M. Vitetta, “A Bayesian multiuser detection algorithm for MIMOODFM
systems affected by multipath fading, carrier frequency offset, and phase noise,” IEEE J.
Sel. Areas Commun., vol. 26, no. 3, pp. 506-516, 2008.
[40] A. Pitarokoilis, E. Bjornson and E. G. Larsson, “ML Detection in Phase Noise Impaired SIMO
Channels With Uplink Training,” IEEE Trans. Commun., vol. 64, no. 1, pp. 223-235, Jan. 2016.
[41] M. Biguesh and A. B. Gershman, “Training-based MIMO channel estimation: a study of estimator
tradeoffs and optimal training signals,” IEEE Trans. Signal Process., vol. 54, no. 3, pp.
884-893, Mar. 2006.
[42] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins University Press,1996.
[43] Y. Jiang, M. K. Varanasi, and J. Li, “Performance analysis of ZF and MMSE equalizers for
MIMO systems: an in-depth study of the high SNR regime,” IEEE Trans. Inf. Theory, vol. 57,
no. 4, pp. 2008-2026, Apr. 2011.
[44] D. N. C. Tse and P. Viswanath, Fundamentals of Wireless Communications, Cambridge, U.K.:
Cambridge Univ. Press, 2005.
[45] C. Xiao, Y. R. Zheng, and Z. Ding, “Globally optimal linear precoders for finite alphabet signals
over complex vector Gaussian channels,” IEEE Trans. Signal Process., vol. 59, no. 7, pp. 3301–
3314, July 2011.
[46] A. M. Tulino and S. Verdú, “Random matrix theory and wireless communications,” Foundations
Trends Commun. Inf. Theory, vol. 1, no. 1, pp. 1-182, June 2004.
[47] Y. F. Wang and J. H. Lee, “A ZF-based Precoding scheme with Phase Noise Suppression for
Massive MIMO Downlink Systems,” submitted to IEEE Trans. Veh. Technol..
[48] J. Choi, D. J. Love, and P. Bidigare, “Downlink training techniques for FDD massive MIMO
systems: Open-loop and closed-loop training with memory,” IEEE J. Sel. Topics Signal Process.,
vol. 8, no. 5, pp. 802-814, Oct. 2014.
[49] G. Caire, N. Jindal, M. Kobayashi, and N. Ravindran, “Multiuser MIMO achievable rates with
downlink training and channel state feedback,” IEEE Trans. Inf. Theory, vol. 56, no. 6, pp. 2845-
2866, Jun. 2010.
[50] H. Hoon, G. Caire, H. C. Papadopoulos and S. A. Ramprashad, “Achieving “massive MIMO”
spectral efficiency with a not-so-large number of antennas,” IEEE Trans. Wireless Commun., vol.
11, no. 9, pp. 3226-3239, Sep. 2012.
[51] J. Shen, J. Zhang, K. Chen, and K. B. Letaief, “High-dimensional CSI acquisition in massive
MIMO: Sparsity-inspired approaches,” IEEE Systems Journal, vol. 11, no. 1, pp. 32-40, March
2017.
[52] J. Shen, J. Zhang, E. Alsusa, and K. B. Letaief, “Compressed CSI acquisition in FDD massive
MIMO: How much training is needed?” IEEE Trans. Wireless Commun., vol. 15, no. 6, pp. 4145-
4156, Jun. 2016.
[53] A. Adhikary, J. Nam, J. Ahn, and G. Caire, “Joint spatial division and multiplexing-The largescale
array regime,” IEEE Trans. Inf. Theory, vol.59, no.10, pp.6441-6463, Oct. 2013.
[54] Y. F. Wang and J. H. Lee, “Frame Structure Design for Massive MIMO Systems-PHY Perspective,”
submitted to IEEE Global Communications Conference (GLOBECOM).
[55] A. Garcia Armada, “Understanding the effects of phase noise in orthogonal frequency division
multiplexing (OFDM),” IEEE Trans. Broadcast., vol. 47, no. 2, pp. 153-159, Jun 2001.
[56] Songping Wu and Y. Bar-Ness, “OFDM systems in the presence of phase noise: consequences
and solutions,” IEEE Trans. Commun., vol. 52, no. 11, pp. 1988-1996, Nov. 2004.
[57] S. Wu and Y. Bar-Ness, ““Multiple phase noise correction for OFDM/SDMA,” in Proc. IEEE
Global Telecommun. Conf. (GLOBECOM), vol. 3, San Francisco, USA, Dec. 2003, pp. 1311-
1315.
[58] X. Chen, “OFDM based Multi-Node Transmission in the Presence of Phase Noises for Small
Cell Backhaul,” IEEE Commun. Lett., vol. 21, no. 5, pp. 1207-1210, May 2017.
[59] Y. F. Wang and J. H. Lee, “A Low-Complexity Phase Noise Suppression Scheme for Wideband
Massive MIMO Uplink Systems,” submitted to IEEE Trans. Signal Processing.
[60] J. Mietzner, R. Schober, L. Lampe, W. H. Gerstacker, and P. A. Hoeher, “Multiple-antenna techniques
for wireless communications - a comprehensive literature survey,” IEEE Communications
Surveys & Tutorials, vol.11, no.2, pp.87-105, Second Quarter 2009.
[61] M. O. Damen, H. E. Gamal, and G. Caire, “On maximum-likelihood detection and the search for
the closest lattice point,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2389-2402, Oct. 2003.
[62] K. J. Kim and R. A. Iltis, “Joint detection and channel estimation algorithms for QS-CDMA
signals over time-varying channels,” IEEE Trans. Commun., vol. 50, pp. 845-855, May 2002.
[63] L. G. Barbero and J. S. Thompson, “Fixing the complexity of the sphere decoder for MIMO
detection,” IEEE Trans. Wireless Commun., vol. 7, no. 6, pp. 2131-2142, June 2008.
[64] J.-S. Kim, S.-H. Moon, and I. Lee, “A new reduced complexity ML detection scheme for MIMO
systems,” IEEE Trans. Commun., vol.58, no.4, pp.1302-1310, April 2010.
[65] D. Song and C. W. Chen, “Scalable H.264/SVC video transmission over MIMO wireless systems
with adaptive channel selection based on partial channel information,” IEEE Trans. Circuits Syst.
Video Technol., vol. 17, no. 9, pp. 1218-1226, Sep. 2007.
[66] R. Y. Chang, S.-J. Lin, and W.-H. Chung, “Hierarchical space shift keying for unequal error
protection,” IEEE Commun. Lett., vol. 16, no. 9, pp. 1341-1344, Sep. 2012.
[67] M. Farooq Sabir, A. C. Bovik, and R. W. Heath Jr., “Unequal power allocation for JPEG transmission
over MIMO systems,” IEEE Trans. Image Processing, vol.19, no. 2, pp.410-421, Feb.
2010.
[68] Y. Huo, C. Hellge, T. Wiegand, and L. Hanzo, “A tutorial and review on inter-layer FEC coded
layered video streaming,” IEEE Communications Surveys & Tutorials, vol. 17, no. 2, pp. 1166-
1207, 2015.
[69] H. V. Poor and S. Verdu, “Probability of error in MMSE multiuser detection,” IEEE Trans. Inform.
Theory, vol. 43, pp. 858-871, May 1997.
[70] Z. Sidak, “Rectangular Confidence Regions for the Means of Multivariate Normal Distributions,”
J. Amer. Statist. Assoc., pp. 626-633, 1967.
[71] K. Hwang, Computer arithmetic: principles, architecture, and design, New York: Wiley, 1979.
[72] N. Kim, Y. Lee, and H. Park, “Performance Analysis of MIMO System with Linear MMSE
Receiver,” IEEE Trans. Wireless Commun., vol.7, no.11, pp.4474-4478, November 2008.
[73] P. Li, D. Paul, R. Narasimhan, and J. Cioffi, “On the distribution of SINR for the MMSE MIMO
receiver and performance analysis,” IEEE Trans. Inform. Theory, vol.52, no.1, pp.271-286, Jan.
2006.
[74] Y. F. Wang and J. H. Lee, “A Novel Symbol-Based near ML Detection Scheme with Unequal
Error Protection for MIMO Systems,” in Proc. IEEE WCNC 2017, pp. 1-6, Mar. 2017.
[75] B. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna channel,” IEEE
Trans. Commun., vol. 51, no. 3, pp. 389-399, Mar. 2003.
[76] B. Hassibi and H. Vikalo, “On the Sphere-Decoding Algorithm I. Expected complexity,” IEEE
Trans. Signal Processing, vol. 53, no. 8, pp. 2806-2818, August 2005.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77708-
dc.description.abstract在無線通訊中,基地台具有大量天線之大型多輸入多輸出系統可以提供非常好的頻譜與能量的使用效率,且其使用效率可透過簡單的線性偵測與線性預先編碼來達到。因此,大型多輸入多輸出系統是有機會用於下一代無線通訊系統(5G) 與綠能通訊之關鍵的受矚目技術。然而,由於振盪器不理想特性產生之相位雜訊卻會造成無線通訊系統嚴重的效能損失。對於大型多輸入多輸出系統在上鏈與下鏈傳輸中,要解決相位雜訊的問題是困難的,因為它是一個多變數聯合相位雜訊估測與資料偵測問題。此問題之最佳解是難以推導的,且最佳解可能需要非常大的運算複雜度。在本論文中,我們研究解決大型多輸入多輸出系統之相位雜訊問題。首先,我們提出了一個低運算複雜度之相位雜訊抑制的方法於大型多輸入多輸出之上鏈系統。利用理想無相位雜訊損失之輸出信號雜訊比做為效能之上界,我們提出的上鏈方法,可以達到此無損失之上界效能。第二,我們也提出了一個低運算複雜度之預先編碼與相位雜訊抑制的方法於大型多輸入多輸出之下鏈系統。我們的研究也顯示,此提出的下鏈方法可以達到無相位雜訊損失之效能。因此,我們提出的上鏈與下鏈方法,提供了一個完整的基頻收發機架構於受到相位雜訊影響之大型多輸入多輸出系統,且其整體的運算複雜度也是相當低的。第三,基於所提出的上鏈與下鏈方法,我們設計了一個新的訊框(frame) 架構於頻分雙工(FDD) 與時分雙工(TDD) 兩種模式,兩種模式之效能比較也提供在文中,且此效能比較有助於決定在大型多輸入多輸出系統中應該使用何種模式。第四,我們考慮了單載波配合頻域等化器(SC-FDE) 傳輸於寬頻的大型多輸入多輸出之上鏈系統,並提供了一個低複雜度的方法來解決相位雜訊之問題。不同於正交分頻多工(OFDM) 系統,其中相位雜訊會造成共同相位誤差(CPE) 與載波間干擾(ICI),我們的研究顯示,利用單載波配合頻域等化器的寬頻傳輸與我們所提出的相位雜訊抑制方法可以於寬頻大型多輸入多輸出之上鏈系統獲得無相位雜訊損失之效能。另一方面,在附錄E中,我們也提出了一個新的基於符號之接近最大概似偵測方法於多輸入多輸出天線(MIMO) 系統。不同於大型多輸入多輸出天線系統,在多輸入多輸出天線系統中,如果傳送天線數目與接收天線數目接近時,即使沒有相位雜訊,相較於最大概似偵測方法之效能,線性偵測方法具有一定程度之效能損失。我們提出的新方法不僅能達到接近最大概似方法之效能,還能提供資料不同之錯誤保護(UEP) 能力,也就是傳送於不同天線之資料,可以獲得不同之可靠度。zh_TW
dc.description.abstractIn wireless communications, massive multiple-input multiple-output (MIMO) systems in which the base station (BS) is equipped with a large number of antennas can provide significant spectral and energy efficiency by means of simple linear detection and linear precoding. Therefore, massive MIMO is an attractive technology for next generation (5G) wireless communication systems and for green communications. However, phase noise (PN) introduced by the impairment of oscillators can cause a severe performance loss in wireless communication systems. Solving the PN problem for massive MIMO systems in both the downlink and the uplink is challenging as it is a multivariate joint PN estimation and data detection problem. The optimal solution is difficult to derive and may lead to high complexity. In this dissertation, we focus on solving the PN problem for massive MIMO systems. First, we propose a low-complexity PN suppression scheme for massive MIMO uplink systems. By using the ideal PN free output signal-to-noise ratio (SNR) as a performance upper bound, we show that the proposed uplink scheme can achieve the upper bound. Second, we propose a low-complexity precoding scheme with PN suppression for massive MIMO downlink systems. We also show that the proposed downlink scheme has the potential to achieve PN free performance. Accordingly, the proposed uplink and downlink schemes provide a whole baseband transceiver structure of massive MIMO systems subject to the PN. We also show that the corresponding overall complexity of the proposed schemes is low. Third, based on the proposed uplink and downlink schemes, we recommend new and efficient frame structures for both the time-division duplex (TDD) and frequency-division duplex (FDD) modes. The corresponding performance comparison of the two modes is also provided, and the comparison may help determine which mode should be used for massive MIMO systems. Fourth, we consider single-carrier (SC) transmission with frequency-domain equalizer (FDE) for wideband massive MIMO uplink systems and propose a low-complexity PN suppression scheme to solve the PN problem. Unlike the orthogonal frequency-division multiplexing (OFDM), which suffers both the common phase error (CPE) and the inter carrier interference (ICI), we show that the SC-FDE has the potential to achieve PN free performance for wideband massive MIMO uplink systems. On the other hand, we propose a novel symbol-based near maximum likelihood (ML) detection scheme for MIMO systems in Appendix E. Unlink the massive MIMO systems, for MIMO systems, if the transmit and receive antenna numbers are close, the linear detection suffers considerable performance loss compared to the optimal ML detection even in the absence of PN. The proposed MIMO detection scheme not only provides the near ML performance but also the capability of unequal error protection (UEP), i.e., data from different transmit antennas can have different reliability.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:17:09Z (GMT). No. of bitstreams: 1
ntu-106-D96942025-1.pdf: 3356936 bytes, checksum: 42ab6c08946685a14e12c5b334045e21 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書i
誌謝ii
中文摘要iii
Abstract v
1 Introduction 1
2 Preliminary 5
2.1 Massive MIMO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Orthogonal Frequency-division Multiplexing (OFDM) . . . . . . . . . . . . . . . . 8
2.4 Effects of Phase Noise in OFDM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Phase Noise Suppression Scheme for Massive MIMO Uplink Systems 11
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Uplink System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Uplink PN Suppression Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3.1 Training Sequence and Channel Estimations . . . . . . . . . . . . . . . . . . 15
3.3.2 Proposed PN suppression scheme . . . . . . . . . . . . . . . . . . . . . . . 17
3.3.3 Complexity of the proposed scheme . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4.1 MSEs of the LS and LMMSE Channel Estimations . . . . . . . . . . . . . . 21
3.4.2 Ideal CRB of the PN estimation . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4.3 Output SNR of the proposed PN suppression scheme . . . . . . . . . . . . . 26
3.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4 ZF-based Precoding Scheme with Phase Noise Suppression for Massive MIMO Downlink
Systems 39
4.1 Introuction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Uplink and Downlink System Model . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Downlink PN Suppression Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.3.1 Training Sequence and Channel Estimations . . . . . . . . . . . . . . . . . . 45
4.3.2 Uplink PN Suppression Scheme . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.3 Proposed Downlink Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.4 Complexity of the proposed scheme . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.1 Uplink Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.2 Downlink Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . 54
4.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5 Frame Structure Designs of the TDD and FDD Modes for Massive MIMO Systems and
the Corresponding Data Transmission Efficiency Analysis 66
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
5.2 Frame Structure Models and Proposed Designs . . . . . . . . . . . . . . . . . . . . 67
5.2.1 Frame Structure Model for FDD Mode . . . . . . . . . . . . . . . . . . . . 67
5.2.2 Recommended New Design for FDD Mode . . . . . . . . . . . . . . . . . . 68
5.2.3 Frame Structure Model for TDD Mode . . . . . . . . . . . . . . . . . . . . 69
5.2.4 Recommended New Design for TDD Mode . . . . . . . . . . . . . . . . . . 70
5.3 Data Transmission Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6 Phase Noise Suppression Scheme for Single-carrier Wideband Massive MIMO Uplink
Systems 74
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Single-carrier Wideband Uplink System Model . . . . . . . . . . . . . . . . . . . . 76
6.3 Wideband Uplink PN Suppression Scheme . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Training Sequence and Channel Estimations . . . . . . . . . . . . . . . . . . 79
6.3.2 Proposed PN suppression scheme . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.3 Complexity of the proposed scheme . . . . . . . . . . . . . . . . . . . . . . 84
6.4 Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.4.1 MSEs of the LS and LMMSE Channel Estimations . . . . . . . . . . . . . . 85
6.4.2 Output SNR of the proposed PN suppression scheme . . . . . . . . . . . . . 89
6.5 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
6.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
7 Conclusion 103
Appendix
A Proof of Proposition 4.2 105
B Proof of Proposition 4.3 111
C Proof of Proposition 4.5 114
D Proof of Proposition 4.6 119
E Symbol-Based Near ML Detection Scheme with Unequal Error Protection for MIMO
Systems 120
E.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
E.2 System Model and Conventional Scheme . . . . . . . . . . . . . . . . . . . . . . . 122
E.3 Proposed Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
E.3.1 New Symbol-based Detection Scheme (NSBD) . . . . . . . . . . . . . . . . 123
E.3.2 Priority Assignment Approach for UEP . . . . . . . . . . . . . . . . . . . . 126
E.3.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
E.3.4 Convergence of the Outage Probability . . . . . . . . . . . . . . . . . . . . 128
E.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
E.4.1 Near ML Performance of the Proposed Scheme . . . . . . . . . . . . . . . . 130
E.4.2 Complexity Comparison between the Proposed Scheme and the Conventional
Scheme under the Same BER . . . . . . . . . . . . . . . . . . . . . . . . . 131
E.4.3 Capability of UEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
E.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
Bibliography 134
dc.language.isoen
dc.title大型多輸入多輸出天線系統之相位雜訊抑制zh_TW
dc.titlePhase Noise Suppression for Massive MIMO Systemsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee謝宏昀,蘇育德,祁忠勇,李大嵩,吳文榕
dc.subject.keyword相位雜訊,抑制,大型多輸入多輸出天線,上鏈,下鏈,預先編碼,資料偵測,估測,5G,zh_TW
dc.subject.keywordPhase noise,suppression,massive MIMO,uplink,downlink,precoding,data detection,estimation,5G,en
dc.relation.page141
dc.identifier.doi10.6342/NTU201703103
dc.rights.note未授權
dc.date.accepted2017-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電信工程學研究所zh_TW
顯示於系所單位:電信工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-D96942025-1.pdf
  目前未授權公開取用
3.28 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved