請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77706完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏炳郎 | |
| dc.contributor.author | Yi-Jing Chu | en |
| dc.contributor.author | 朱怡靜 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:17:03Z | - |
| dc.date.available | 2021-07-10T22:17:03Z | - |
| dc.date.copyright | 2017-08-31 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-14 | |
| dc.identifier.citation | Akbarshahi, M., A. G. Schache, J. W. Fernandez, R. Baker, S. Banks, and M. G. Pandy. 2010. Non-invasive assessment of soft-tissue artifact and its effect on knee joint kinematics during functional activity. Journal of Biomechanics 43(7):1292-1301.
Amanatullah, D. F., P. E. Di Cesare, P. A. Meere, and G. C. Pereira. 2013. Identification of the landmark registration safe zones during total knee arthroplasty using an imageless navigation system. J Arthroplasty 28(6):938-942. Amin, D. V., T. Kanade, A. M. DiGioia, 3rd, and B. Jaramaz. 2003. Ultrasound registration of the bone surface for surgical navigation. Comput Aided Surg 8(1):1-16. Amiot, L.-P., K. Lang, M. Putzier, H. Zippel, and H. Labelle. 2000. Comparative Results Between Conventional and Computer-Assisted Pedicle Screw Installation in the Thoracic, Lumbar, and Sacral Spine. Spine 25(5):606-614. An, K. N., M. C. Jacobsen, L. J. Berglund, and E. Y. Chao. 1988. Application of a magnetic tracking device to kinesiologic studies. J Biomech 21(7):613-620. Andriacchi, T. P., and E. J. Alexander. 2000. Studies of human locomotion: past, present and future. J Biomech 33(10):1217-1224. Asano, T., M. Akagi, and T. Nakamura. 2005. The Functional Flexion-Extension Axis of the Knee Corresponds to the Surgical Epicondylar Axis: In Vivo Analysis Using a Biplanar Image-Matching Technique. J Arthroplasty 20(8):1060-1067. Bell, A. L., D. R. Pedersen, and R. A. Brand. 1990. A comparison of the accuracy of several hip center location prediction methods. Journal of Biomechanics 23(6):617-621. Belmont, P. J., Jr., W. R. Klemme, M. Robinson, and D. W. Polly, Jr. 2002. Accuracy of thoracic pedicle screws in patients with and without coronal plane spinal deformities. Spine (Phila Pa 1976) 27(14):1558-1566. Benoit, D. L., D. K. Ramsey, M. Lamontagne, L. Xu, P. Wretenberg, and P. Renstrom. 2006. Effect of skin movement artifact on knee kinematics during gait and cutting motions measured in vivo. Gait Posture 24(2):152-164. Besl, P. J., and N. D. McKay. 1992. A method for registration of 3-D shapes. Pattern Analysis and Machine Intelligence, IEEE Transactions on 14(2):239-256. Blankevoort, L., R. Huiskes, and A. de Lange. 1990. Helical axes of passive knee joint motions. Journal of Biomechanics 23(12):1219-1229. Bourne, D. A., A. M. Choo, W. D. Regan, D. L. MacIntyre, and T. R. Oxland. 2011. The placement of skin surface markers for non-invasive measurement of scapular kinematics affects accuracy and reliability. Ann Biomed Eng 39(2):777-785. Camomilla, V., A. Cereatti, G. Vannozzi, and A. Cappozzo. 2006. An optimized protocol for hip joint centre determination using the functional method. J Biomech 39(6):1096-1106. Cappello, A., A. Cappozzo, P. F. La Palombara, L. Lucchetti, and A. Leardini. 1997. Multiple anatomical landmark calibration for optimal bone pose estimation. Human Movement Science 16(2):259-274. Cappozzo, A., F. Catani, U. D. Croce, and A. Leardini. 1995. Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 10(4):171-178. Cappozzo, A., F. Catani, A. Leardini, M. G. Benedetti, and U. D. Croce. 1996. Position and orientation in space of bones during movement: experimental artefacts. Clin Biomech (Bristol, Avon) 11(2):90-100. Cheng, T., S. Zhao, X. Peng, and X. Zhang. 2012. Does computer-assisted surgery improve postoperative leg alignment and implant positioning following total knee arthroplasty? A meta-analysis of randomized controlled trials? Knee Surgery, Sports Traumatology, Arthroscopy 20(7):1307-1322. Choong, P. F., M. M. Dowsey, and J. D. Stoney. 2009. Does accurate anatomical alignment result in better function and quality of life? Comparing conventional and computer-assisted total knee arthroplasty. J Arthroplasty 24(4):560-569. Churchill, D. L., S. J. Incavo, C. C. Johnson, and B. D. Beynnon. 1998. The transepicondylar axis approximates the optimal flexion axis of the knee. Clin Orthop Relat Res(356):111-118. Colle, F., S. Bignozzi, N. Lopomo, S. Zaffagnini, L. Sun, and M. Marcacci. 2012. Knee functional flexion axis in osteoarthritic patients: comparison in vivo with transepicondylar axis using a navigation system. Knee Surg Sports Traumatol Arthrosc 20(3):552-558. Das, B. 2015. Basic Principles of CT Imaging. In Positron Emission Tomography, 181-184. B. K. Das, ed: Springer India. Davne, S. H., and D. L. Myers. 1992. Complications of lumbar spinal fusion with transpedicular instrumentation. Spine (Phila Pa 1976) 17(6 Suppl):S184-189. de Bruin, P. W., B. L. Kaptein, B. C. Stoel, J. H. Reiber, P. M. Rozing, and E. R. Valstar. 2008. Image-based RSA: Roentgen stereophotogrammetric analysis based on 2D-3D image registration. J Biomech 41(1):155-164. Delp, S. L., D. S. Stulberg, B. Davies, F. Picard, and F. Leitner. 1998. Computer assisted knee replacement. Clin Orthop Relat Res 354:49-56. Ehrig, R. M., W. R. Taylor, G. N. Duda, and M. O. Heller. 2006. A survey of formal methods for determining the centre of rotation of ball joints. J Biomech 39(15):2798-2809. Ehrig, R. M., W. R. Taylor, G. N. Duda, and M. O. Heller. 2007. A survey of formal methods for determining functional joint axes. J Biomech 40(10):2150-2157. Estépar, R. S. J., A. Brun, and C.-F. Westin. 2004. Robust Generalized Total Least Squares Iterative Closest Point Registration. In Medical Image Computing and Computer-Assisted Intervention – MICCAI 2004: 7th International Conference, Saint-Malo, France, September 26-29, 2004. Proceedings, Part I, 234-241. C. Barillot, D. R. Haynor, and P. Hellier, eds. Berlin, Heidelberg: Springer Berlin Heidelberg. Ewers, R., K. Schicho, G. Undt, F. Wanschitz, M. Truppe, R. Seemann, and A. Wagner. 2005. Basic research and 12 years of clinical experience in computer-assisted navigation technology: a review. Int J Oral Maxillofac Surg 34(1):1-8. Folkerts, M. M. 2015. Digitally Reconstructed Radiographs. In Graphics Processing Unit-Based High Performance Computing in Radiation Therapy, 15-30. X. Jia, and S. B. Jiang, eds: CRC Press. Fuller, J., L. J. Liu, M. C. Murphy, and R. W. Mann. 1997. A comparison of lower-extremity skeletal kinematics measured using skin- and pin-mounted markers. Human Movement Science 16(2):219-242. Gamage, S. S., and J. Lasenby. 2002. New least squares solutions for estimating the average centre of rotation and the axis of rotation. J Biomech 35(1):87-93. Gelalis, I. D., N. K. Paschos, E. E. Pakos, A. N. Politis, C. M. Arnaoutoglou, A. C. Karageorgos, A. Ploumis, and T. A. Xenakis. 2012. Accuracy of pedicle screw placement: a systematic review of prospective in vivo studies comparing free hand, fluoroscopy guidance and navigation techniques. Eur Spine J 21(2):247-255. Gertzbein, S. D., and S. E. Robbins. 1990. Accuracy of Pedicular Screw Placement In Vivo. Spine 15(1):11-14. Glocker, B., D. Zikic, E. Konukoglu, D. R. Haynor, and A. Criminisi. 2013. Vertebrae localization in pathological spine CT via dense classification from sparse annotations. In Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, 262-270. Springer. Granger, S., and X. Pennec. 2002. Multi-scale EM-ICP: A Fast and Robust Approach for Surface Registration. In Computer Vision — ECCV 2002: 7th European Conference on Computer Vision Copenhagen, Denmark, May 28–31, 2002 Proceedings, Part IV, 418-432. A. Heyden, G. Sparr, M. Nielsen, and P. Johansen, eds. Berlin, Heidelberg: Springer Berlin Heidelberg. Gremban, K. D., C. E. Thorpe, and T. Kanade. 1988. Geometric camera calibration using systems of linear equations. In Robotics and Automation, 1988. Proceedings., 1988 IEEE International Conference on. IEEE. Grood, E. S., and W. J. Suntay. 1983. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. Journal of Biomechanical Engineering 105(2):136-144. Grunert, P., K. Darabi, J. Espinosa, and R. Filippi. 2003. Computer-aided navigation in neurosurgery. Neurosurg Rev 26(2):73-99; discussion 100-101. Herring, J. L., B. M. Dawant, C. R. Maurer, Jr., D. M. Muratore, R. L. Galloway, and J. M. Fitzpatrick. 1998. Surface-based registration of CT images to physical space for image-guided surgery of the spine: a sensitivity study. IEEE Trans Med Imaging 17(5):743-752. Holden, J. P., J. A. Orsini, K. L. Siegel, T. M. Kepple, L. H. Gerber, and S. J. Stanhope. 1997. Surface movement errors in shank kinematics and knee kinetics during gait. Gait & Posture 5(3):217-227. Hollister, A. M., S. Jatana, A. K. Singh, W. W. Sullivan, and A. G. Lupichuk. 1993. The axes of rotation of the knee. Clin Orthop Relat Res(290):259-268. Horn, B. K. 1987. Closed-form solution of absolute orientation using unit quaternions. JOSA A 4(4):629-642. Hufnagel, H., X. Pennec, J. Ehrhardt, N. Ayache, and H. Handels. 2008. Generation of a statistical shape model with probabilistic point correspondences and the expectation maximization- iterative closest point algorithm. International Journal of Computer Assisted Radiology and Surgery 2(5):265-273. Köhler, T., H. Turbell, and M. Grass. 2000. Efficient forward projection through discrete data sets using tri-linear interpolation. In Nuclear Science Symposium Conference Record, 2000 IEEE. Klimek, L., U. Ecke, B. Lubben, J. Witte, and W. Mann. 1999. A passive-marker-based optical system for computer-aided surgery in otorhinolaryngology: development and first clinical experiences. Laryngoscope 109(9):1509-1515. Konermann, W. H., and S. Kistner. 2007. CT-free Navigation including Soft-Tissue Balancing: LCS Total Knee Arthroplasty and VectorVision System. In Navigation and MIS in Orthopedic Surgery, 112-122. J. Stiehl, W. Konermann, R. Haaker, and A. DiGioia, III, eds: Springer Berlin Heidelberg. Lavallé, S., P. Sautot, J. Troccaz, P. Cinquin, and P. Merloz. 1995. Computer-assisted spine surgery: A technique for accurate transpedicular screw fixation using CT data and a 3-D optical localizer. Journal of image guided surgery 1(1):65-73. Leardini, A., A. Cappozzo, F. Catani, S. Toksvig-Larsen, A. Petitto, V. Sforza, G. Cassanelli, and S. Giannini. 1999. Validation of a functional method for the estimation of hip joint centre location. Journal of Biomechanics 32(1):99-103. Leardini, A., L. Chiari, U. Della Croce, and A. Cappozzo. 2005. Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture 21(2):212-225. Li, K., L. Zheng, S. Tashman, and X. Zhang. 2012. The inaccuracy of surface-measured model-derived tibiofemoral kinematics. Journal of Biomechanics 45(15):2719-2723. Lorensen, W. E., and H. E. Cline. 1987. Marching cubes: A high resolution 3D surface construction algorithm. In ACM siggraph computer graphics. ACM. Lu, T. W., and J. J. O'Connor. 1999. Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech 32(2):129-134. Lucchetti, L., A. Cappozzo, A. Cappello, and U. Della Croce. 1998. Skin movement artefact assessment and compensation in the estimation of knee-joint kinematics. J Biomech 31(11):977-984. Manal, K., I. McClay Davis, B. Galinat, and S. Stanhope. 2003. The accuracy of estimating proximal tibial translation during natural cadence walking: bone vs. skin mounted targets. Clin Biomech (Bristol, Avon) 18(2):126-131. Manal, K., I. McClay, S. Stanhope, J. Richards, and B. Galinat. 2000. Comparison of surface mounted markers and attachment methods in estimating tibial rotations during walking: an in vivo study. Gait Posture 11(1):38-45. Mantas, J. P., R. D. Bloebaum, J. G. Skedros, and A. A. Hofmann. 1992. Implications of reference axes used for rotational alignment of the femoral component in primary and revision knee arthroplasty. J Arthroplasty 7(4):531-535. Martins, H., J. Birk, and R. Kelley. 1981. Camera models based on data from two calibration planes. Computer Graphics and Image Processing 17(2):173-180. McClure, P. W., L. A. Michener, B. J. Sennett, and A. R. Karduna. 2001. Direct 3-dimensional measurement of scapular kinematics during dynamic movements in vivo. J Shoulder Elbow Surg 10(3):269-277. Mobbs, R. J., P. Sivabalan, and J. Li. 2011. Technique, challenges and indications for percutaneous pedicle screw fixation. J Clin Neurosci 18(6):741-749. Molteni, R. 2013. Prospects and challenges of rendering tissue density in Hounsfield units for cone beam computed tomography. Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology 116(1):105-119. Moore, K. L., A. F. Dalley, and A. M. R. Agur. 2006. Clinically Oriented Anatomy. 5th ed. Lippincott Williams & Wilkins. Most, E., J. Axe, H. Rubash, and G. Li. 2004. Sensitivity of the knee joint kinematics calculation to selection of flexion axes. Journal of Biomechanics 37(11):1743-1748. Nester, C., R. K. Jones, A. Liu, D. Howard, A. Lundberg, A. Arndt, P. Lundgren, A. Stacoff, and P. Wolf. 2007. Foot kinematics during walking measured using bone and surface mounted markers. J Biomech 40(15):3412-3423. Orthopedics today, H. 2005. CAS adds precision to several types of orthopedic surgery. Available at: https://www.healio.com/orthopedics/business-of-orthopedics/news/print/orthopedics-today/%7B1ba45cd5-4e8a-4c64-b8e4-52a9bfa38fbd%7D/cas-adds-precision-to-several-types-of-orthopedic-surgery. Parker, S. L., M. J. McGirt, S. H. Farber, A. G. Amin, A. M. Rick, I. Suk, A. Bydon, D. M. Sciubba, J. P. Wolinsky, Z. L. Gokaslan, and T. F. Witham. 2011. Accuracy of free-hand pedicle screws in the thoracic and lumbar spine: analysis of 6816 consecutive screws. Neurosurgery 68(1):170-178; discussion 178. Piazza, S. J., A. Erdemir, N. Okita, and P. R. Cavanagh. 2004. Assessment of the functional method of hip joint center location subject to reduced range of hip motion. J Biomech 37(3):349-356. Piazza, S. J., N. Okita, and P. R. Cavanagh. 2001. Accuracy of the functional method of hip joint center location: effects of limited motion and varied implementation. J Biomech 34(7):967-973. Rabinowitz, R. S., and B. L. Currier. 1997. Disorder Of The Lumbar SpineTranspedicular screw fixation of the lumbar spine: review and technique. Operative Techniques in Orthopaedics 7(1):71-78. Rampersaud, Y. R., D. A. Simon, and K. T. Foley. 2001. Accuracy Requirements for Image-Guided Spinal Pedicle Screw Placement. Spine 26(4):352-359. Reichl, I., W. Auzinger, H. B. Schmiedmayer, and E. Weinmuller. 2010. Reconstructing the knee joint mechanism from kinematic data. Math Comput Model Dyn Syst 16(5):403-415. Reinschmidt, C., A. J. van den Bogert, A. Lundberg, B. M. Nigg, N. Murphy, A. Stacoff, and A. Stano. 1997. Tibiofemoral and tibiocalcaneal motion during walking: external vs. skeletal markers. Gait & Posture 6(2):98-109. Robinson, M., D. G. Eckhoff, K. D. Reinig, M. M. Bagur, and J. M. Bach. 2006. Variability of landmark identification in total knee arthroplasty. Clin Orthop Relat Res 442:57-62. Roland, M., M. L. Hull, and S. M. Howell. 2009. Virtual Axis Finder: A New Method to Determine the Two Kinematic Axes of Rotation for the Tibio-Femoral Joint. Journal of Biomechanical Engineering 132(1):011009-011009. Söyüncü, Y., F. B. Yldrm, H. Sekban, H. Özdemir, F. Akyldz, and M. Sindel. 2005. Anatomic Evaluation and Relationship Between the Lumbar Pedicle and Adjacent Neural Structures: An Anatomic Study. Clinical Spine Surgery 18(3):243-246. Schatlo, B., G. Molliqaj, V. Cuvinciuc, M. Kotowski, K. Schaller, and E. Tessitore. 2014. Safety and accuracy of robot-assisted versus fluoroscopy-guided pedicle screw insertion for degenerative diseases of the lumbar spine: a matched cohort comparison. J Neurosurg Spine 20(6):636-643. Schwartz, M. H., and A. Rozumalski. 2005. A new method for estimating joint parameters from motion data. J Biomech 38(1):107-116. Schwarzenbach, O., U. Berlemann, B. Jost, H. Visarius, E. Arm, F. Langlotz, L.-P. Nolte, and C. Ozdoba. 1997. Accuracy of Computer‐Assisted Pedicle Screw Placement: An In Vivo Computed Tomography Analysis. Spine 22(4):452-458. Sherouse, G. W., K. Novins, and E. L. Chaney. 1990. Computation of digitally reconstructed radiographs for use in radiotherapy treatment design. International Journal of Radiation Oncology*Biology*Physics 18(3):651-658. Siddon, R. L. 1985. Fast calculation of the exact radiological path for a three‐dimensional CT array. Medical Physics 12(2):252-255. Sießegger, M., B. T. Schneider, R. A. Mischkowski, F. Lazar, B. Krug, B. Klesper, and J. E. Zöller. 2001. Use of an image-guided navigation system in dental implant surgery in anatomically complex operation sites. Journal of Cranio-Maxillofacial Surgery 29(5):276-281. Siston, R. A., and S. L. Delp. 2006. Evaluation of a new algorithm to determine the hip joint center. J Biomech 39(1):125-130. Siston, R. A., N. J. Giori, S. B. Goodman, and S. L. Delp. 2007. Surgical navigation for total knee arthroplasty: A perspective. Journal of Biomechanics 40(4):728-735. Soleimani, M., and T. Pengpen. 2015. Introduction: a brief overview of iterative algorithms in X-ray computed tomography. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 373(2043). Sonntag, V. K. H., and F. F. Marciano. 1995. Is Fusion Indicated for Lumbar Spinal Disorders? Spine 20:143S. Spoor, C. W., and F. E. Veldpaus. 1980. Rigid body motion calculated from spatial co-ordinates of markers. J Biomech 13(4):391-393. Tamura, Y., N. Sugano, T. Sasama, Y. Sato, S. Tamura, K. Yonenobu, H. Yoshikawa, and T. Ochi. 2005. Surface-based registration accuracy of CT-based image-guided spine surgery. Eur Spine J 14(3):291-297. Traina, F., M. De Fine, and S. Affatato. 2013a. 4 - Anatomy of the hip and suitable prostheses. In Wear of Orthopaedic Implants and Artificial Joints, 93-114. S. Affatato, ed: Woodhead Publishing. Traina, F., M. De Fine, and S. Affatato. 2013b. 5 - Anatomy of the knee and suitable prostheses. In Wear of Orthopaedic Implants and Artificial Joints, 115-132. S. Affatato, ed: Woodhead Publishing. Trujillo, D., and H. Busby. 1990. A mathematical method for the measurement of bone motion with skin-mounted accelerometers. Journal of Biomechanical Engineering 112(2):229-231. Tsai, T.-Y., T.-W. Lu, M.-Y. Kuo, and C.-C. Lin. 2011. Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. Journal of Biomechanics 44(6):1182-1188. Uğur, H. Ç., A. Attar, A. Uz, I. Tekdemir, N. Egemen, and Y. Genç. 2001. Thoracic Pedicle: Surgical Anatomic Evaluation and Relations. Clinical Spine Surgery 14(1):39-45. van den Bogert, A. J., P. R. van Weeren, and H. C. Schamhardt. 1990. Correction for skin displacement errors in movement analysis of the horse. J Biomech 23(1):97-101. Veldpaus, F. E., H. J. Woltring, and L. J. Dortmans. 1988. A least-squares algorithm for the equiform transformation from spatial marker co-ordinates. J Biomech 21(1):45-54. Weinstein, J. N., B. L. Rydevik, and W. Rauschning. 1992. Anatomic and Technical Considerations of Pedicle Screw Fixation. Clin Orthop Relat Res 284:34-46. Weise, L., O. Suess, T. Picht, and T. Kombos. 2008. Transpedicular screw fixation in the thoracic and lumbar spine with a novel cannulated polyaxial screw system. Medical Devices (Auckland, N.Z.) 1:33-39. Yahiro, M. A. 1994. Comprehensive literature review. Pedicle screw fixation devices. Spine (Phila Pa 1976) 19(20 Suppl):2274S-2278S. Yoshioka, Y., D. Siu, and T. D. Cooke. 1987. The anatomy and functional axes of the femur. J Bone Joint Surg Am 69(6):873-880. Zafar, H., P. O. Eriksson, E. Nordh, and B. Haggman-Henrikson. 2000. Wireless optoelectronic recordings of mandibular and associated head-neck movements in man: a methodological study. J Oral Rehabil 27(3):227-238. Zinβer, T., J. Schmidt, and H. Niemann. 2003. A refined ICP algorithm for robust 3-D correspondence estimation. In Image Processing, 2003. ICIP 2003. Proceedings. 2003 International Conference on. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77706 | - |
| dc.description.abstract | 機器人輔助手術中,有三個重要元素:模型、機器人與模型-機器人座標系統轉換關係。模型係手術標的之資訊總和,根據手術應用,提供標的外表形狀及/或力學資訊。機器人則由醫師操作以進行手術,包含傳統器械及主動式引導或保護器具。兩者的整合可以透過之間座標轉換達成,這也是輔助手術系統中最重要的一部分,直接影響手術的精度。輔助系統的目的,在於手術提供即時之模型與機器人資訊,以提高非侵入性、降低手術誤差並最佳化手術結果;但不能因導入輔助系統而增加過多的手術時間、手術繁複度。故本研究的重點在於對不同手術應用找出一套更有效率且較少侵入性的模型-機器人轉換方案。
本論文以兩個普遍的骨科手術應用,探討兩種導航系統之開發:全膝關節置換手術,係將受損膝關節內的軟骨、韌帶、骨頭表面切除,植入人工關節,以重新提供膝關節之運動功能,即使手術失敗亦不會造成生命危險。在第二章中,藉由使用蒐集到關節運動數據計算髖關節中心與膝關節旋轉軸,對於全膝關節置換提出一更具效率的模型建立方法。由於作為模型建立基準之標記,需固定於手術目標周遭之骨頭中,需額外之切口,故於第三章中,透過分析皮膚固定標記取代骨骼固定標記之可行性,嘗試降低模型建立的侵入性。 而椎弓釘固定是脊椎手術常見的植入物固定方式。骨釘沿著椎弓進入椎體內完成固定。由於骨釘和椎弓尺寸接近,且結構複雜、緊臨神經,植入角度、深度稍有偏差即可能傷到神經,帶來不可回復之傷害,具有高度風險性。其導引模型通常需要使用病患自身電腦斷層影像作為基準,醫師需要在術前花費額外之時間於模型上進行手術規劃、模擬。在開放式脊椎手術(第四章)中,因為醫師可以直接取得手術目標之表面拓樸,與術前影像疊合,故探討不同取點區域或區域組合對疊合精度之影響。在微創手術(第五章)中,無法直接接觸目標表面,需通過術中X光影像完成手術。為了疊合病患和導引模型,需將術前之CT影像進行投影,與實際術中影像進行比對,以找出最可能之姿態。 經過兩種手術的不同施行方式可得知:針對不同適應症,手術模型應有所調整,連帶著工作流程亦需有所變動。膝關節手術講究效率,如何減少時間花費為開發重點,可藉由直接於術中建立模型,減少醫師負擔。而脊椎手術具有高風險性,需要以電腦斷層影像作為準確之手術依據,術前之規畫與模擬亦不可缺少。不論何種手術與工作方式,模型與手術標的疊合直接影響手術精準度,善用解剖特徵找出模型-機器人座標轉換關係,更是輔助系統於開發過程中應考慮之重點項目。 | zh_TW |
| dc.description.abstract | In computer-assisted or robot-assisted surgery, there are three important components of the assisted system. That is model, robot and transformation between model and robot coordinates: Model is a combination of information of surgical target, such as the appearance model and/or mechanical properties of target according to the surgical indications. Surgeon manipulates robots to operate the surgery. With the presence of power, the robot is classified as passive instruments and active robots for guiding or protection. The relationship between coordinates of model and robot is used integrate the two components which is the essential part of computer-assisted system affecting the accuracy directly. Computer-assisted navigation has a role in some orthopedic procedures. It offers the potential to decrease intraoperative errors, optimize the surgical result and make the surgery less invasively by providing real-time feedback. But the introduction of assisted system must not increase the operation time and procedures. Therefore, the purpose of this study is to find a protocol to build the transformation between model and robot for different orthopedic surgical application with more efficiency and less invasiveness.
Based on two popular applications of orthopedic surgery, this study explores the development of navigation systems in two extremes: Total knee replacement is a set of surgical procedures cutting away the damaged bone and cartilage in the end of the femur and tibia to replace the diseased or damaged knee joint by an artificial one. For the purpose to restore knee function, surgery failure is not fatal. In Chapter 2, a model-building method with more efficiency for total knee replacement is proposed by collecting the kinematic data and calculating the center of hip joint and the rotation axis of knee joint. As references of navigation surgery, it needs fiducial markers rigid fixed on bones near to the target through an extra incision. For decreasing the invasiveness, a feasible analysis for replacement of traditional skeleton-pined markers with skin-attached ones was employed in Chapter 3. Fixing implants through pedicles of vertebra by screws is common in spinal surgery. Due to the similar sizes of screw and pedicle and the complex anatomical structure, it exists high risks that nerve damage caused by the error of operation and the damage may be irreversible and fatal. Surgeons have to spend additional time for pre-operative planning and simulation on the model developed from the patient’s own CT image. In the open spine surgery (Chapter 4), surgeon can access the surgical target directly. A collection of 3D points from vertebral surface of the patient is matched to the specific image-based model by iterative closest point (ICP) algorithm. A discussion about the registration accuracy affected by point-sampling from different region or region combinations was raised. On the other hand, surgeon cannot access the surgical target directly and carries out the operation with a mobile image intensifier system (C-arm) in the minimally invasive surgery (Chapter 5). For purpose of registration, set of digitally reconstructed radiographs (DRR) is generated to simulate the image taken intra-operatively by C-arm. A similarity function is used to evaluate the posture of CT image with the highest possibility In conclusion, models differ from the indications of surgeries with different requirement of accuracy, so do the workflows. The model for application of TKA can be simplified as geometric model and be constructed intra-operatively to reduce time consumption. In fixation of pedicle screw, a more precise model based on CT image is needed, in addition to pre-operative planning and simulation. Both the two applications, registration process is the most important for integrating model and robot and affects the surgical accuracy directly Make a good use of anatomical feature for registration may be worthy of attention for development of navigation system. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:17:03Z (GMT). No. of bitstreams: 1 ntu-106-D97631005-1.pdf: 3524879 bytes, checksum: 59a862d1d35d151bb1371beed6328417 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要 i
Abstract iii Content vii Content of Tables xi Content of Figures xiii 1 Introduction 1 2 Knee Joint Coordinate System 5 2.1 Introduction 5 2.2 Methods 10 2.3 Experiment 14 2.3.1 Experimental Setup 14 2.3.2 Measurement assessment of hip center measuring 15 2.3.3 The operations for assessment of rotation axis 16 2.3.4 Data collection and compensation 17 2.3.5 Model for estimation of hip center 18 2.3.6 Model for computing rotation axis of knee joint 20 2.3.7 Building up the bone coordinate 21 2.4 Results 23 2.4.1 Data compensation 23 2.4.2 Examination of the hip center 23 2.4.3 Examination of the knee joint rotation axis 25 2.5 Discussion 28 2.5.1 Estimation of hip joint center 28 2.5.2 Estimation of knee rotation axis 29 2.6 Conclusion 32 3 Skin Marker for Posture Tracking 35 3.1 Introduction 35 3.2 Definition of problem 36 3.3 Literature Survey 39 3.4 Method and Material 43 3.5 Results and Discussions 46 3.6 Conclusion 56 4 Surface Matching Region for Registration 57 4.1 Introduction 57 4.2 Method 63 4.2.1 Iterative closest point (ICP) algorithm 63 4.2.2 Simulation 73 4.3 Experimental setup 76 4.4 Results and Discussion 78 4.5 Conclusion 83 5 Non-invasive Registration between CT Model and Anatomy 85 5.1 Introduction 85 5.2 Definition of the Problem 87 5.3 C-arm projection model 89 5.3.1 Back projection 91 5.3.2 Projection 95 5.4 Digital Reconstructed Radiograph (DRR) model 97 5.5 2D/3D registration 106 5.6 Conclusion 109 6 Conclusion 111 7 Reference 113 | |
| dc.language.iso | en | |
| dc.subject | 全膝關節置換 | zh_TW |
| dc.subject | 解剖特徵 | zh_TW |
| dc.subject | 模型-機器人座標轉換 | zh_TW |
| dc.subject | 機器人輔助手術 | zh_TW |
| dc.subject | 椎弓釘固定 | zh_TW |
| dc.subject | total knee replacement | en |
| dc.subject | computer-assisted surgery | en |
| dc.subject | anatomical feature | en |
| dc.subject | registration | en |
| dc.subject | pedicle screw fixation | en |
| dc.title | 用於電腦輔助骨科手術之導航系統開發 | zh_TW |
| dc.title | Navigation System Development for Computer Assisted Orthopedics Surgery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 鄭宗記,洪碩穗,林沛群,Brian Davies | |
| dc.subject.keyword | 機器人輔助手術,全膝關節置換,椎弓釘固定,模型-機器人座標轉換,解剖特徵, | zh_TW |
| dc.subject.keyword | computer-assisted surgery,total knee replacement,pedicle screw fixation,registration,anatomical feature, | en |
| dc.relation.page | 124 | |
| dc.identifier.doi | 10.6342/NTU201702245 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2017-08-15 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
| 顯示於系所單位: | 生物機電工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-D97631005-1.pdf 未授權公開取用 | 3.44 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
