請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77675
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 董桂書 | |
dc.contributor.author | Chin Chuang | en |
dc.contributor.author | 莊欽 | zh_TW |
dc.date.accessioned | 2021-07-10T22:15:11Z | - |
dc.date.available | 2021-07-10T22:15:11Z | - |
dc.date.copyright | 2017-09-04 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-18 | |
dc.identifier.citation | Ahmed, N.T., Bungard, D., Shin, M.E., Moore, M., and Winter, E. (2009). The Ime2 protein kinase enhances the disassociation of the Sum1 repressor from middle meiotic promoters. Molecular and cellular biology 29, 4352-4362.
Alexandru, G., Uhlmann, F., Mechtler, K., Poupart, M.-A., and Nasmyth, K. (2001). Phosphorylation of the cohesin subunit Scc1 by Polo/Cdc5 kinase regulates sister chromatid separation in yeast. Cell 105, 459-472. Altmannová, V., Kolesár, P., and Krejčí, L. (2012). SUMO wrestles with recombination. Biomolecules 2, 350-375. Asano, S., Park, J.E., Sakchaisri, K., Yu, L.R., Song, S., Supavilai, P., Veenstra, T.D., and Lee, K.S. (2005). Concerted mechanism of Swe1/Wee1 regulation by multiple kinases in budding yeast. The EMBO journal 24, 2194-2204. Attner, M.A., Miller, M.P., Ee, L.-s., Elkin, S.K., and Amon, A. (2013). Polo kinase Cdc5 is a central regulator of meiosis I. Proceedings of the National Academy of Sciences 110, 14278-14283. Barr, F.A., Silljé, H.H., and Nigg, E.A. (2004). Polo-like kinases and the orchestration of cell division. Nature reviews Molecular cell biology 5, 429-441. Bell, S.P., and Dutta, A. (2002). DNA replication in eukaryotic cells. Annu Rev Biochem 71, 333-374. Bell, S.P., and Stillman, B. (1992). ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature 357, 128-134. Benjamin, K.R., Zhang, C., Shokat, K.M., and Herskowitz, I. (2003). Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev 17, 1524-1539. Berchowitz, L.E., Gajadhar, A.S., van Werven, F.J., De Rosa, A.A., Samoylova, M.L., Brar, G.A., Xu, Y., Xiao, C., Futcher, B., Weissman, J.S., et al. (2013). A developmentally regulated translational control pathway establishes the meiotic chromosome segregation pattern. Genes Dev 27, 2147-2163. Bishop, A.C., Ubersax, J.A., Petsch, D.T., Matheos, D.P., Gray, N.S., Blethrow, J., Shimizu, E., Tsien, J.Z., Schultz, P.G., and Rose, M.D. (2000). A chemical switch for inhibitor-sensitive alleles of any protein kinase. nature 407, 395-401. Bishop, D.K., Park, D., Xu, L., and Kleckner, N. (1992). DMC1: a meiosis-specific yeast homolog of E. coli recA required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69, 439-456. Bloom, J., and Cross, F.R. (2007). Multiple levels of cyclin specificity in cell-cycle control. Nat Rev Mol Cell Biol 8, 149-160. Blow, J.J., and Dutta, A. (2005). Preventing re-replication of chromosomal DNA. Nat Rev Mol Cell Biol 6, 476-486. Callan, H.G. (1974). DNA replication in the chromosomes of eukaryotes. Paper presented at: Cold Spring Harbor symposia on quantitative biology (Cold Spring Harbor Laboratory Press). Carlile, T.M., and Amon, A. (2008). Meiosis I is established through division-specific translational control of a cyclin. Cell 133, 280-291. Chan, Y.-L., Brown, M.S., Qin, D., Handa, N., and Bishop, D.K. (2014). The third exon of the budding yeast meiotic recombination gene HOP2 is required for calcium-dependent and recombinase Dmc1-specific stimulation of homologous strand assimilation. Journal of Biological Chemistry 289, 18076-18086. Cho, H.-R., Kong, Y.-J., Hong, S.-G., and Kim, K.P. (2016). Hop2 and Sae3 Are Required for Dmc1-Mediated Double-Strand Break Repair via Homolog Bias during Meiosis. Molecules and cells 39, 550. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P.O., and Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast. Science 282, 699-705. Chu, S., and Herskowitz, I. (1998). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol Cell 1, 685-696. Clifford, D.M., Marinco, S.M., and Brush, G.S. (2004). The meiosis-specific protein kinase Ime2 directs phosphorylation of replication protein A. J Biol Chem 279, 6163-6170. Clifford, D.M., Stark, K.E., Gardner, K.E., Hoffmann-Benning, S., and Brush, G.S. (2005). Mechanistic insight into the Cdc28-related protein kinase Ime2 through analysis of replication protein A phosphorylation. Cell Cycle 4, 1826-1833. Clyne, R.K., Katis, V.L., Jessop, L., Benjamin, K.R., Herskowitz, I., Lichten, M., and Nasmyth, K. (2003). Polo-like kinase Cdc5 promotes chiasmata formation and cosegregation of sister centromeres at meiosis I. Nature Cell Biology 5, 480-485. Collins, I., and Newlon, C.S. (1994). Meiosis-specific formation of joint DNA molecules containing sequences from homologous chromosomes. Cell 76, 65-75. Day, A., Markwardt, J., Delaguila, R., Zhang, J., Purnapatre, K., Honigberg, S.M., and Schneider, B.L. (2004). Cell size and Cln-Cdc28 complexes mediate entry into meiosis by modulating cell growth. Cell cycle 3, 1433-1439. Dharmasiri, N., Dharmasiri, S., Weijers, D., Lechner, E., Yamada, M., Hobbie, L., Ehrismann, J.S., Jürgens, G., and Estelle, M. (2005). Plant development is regulated by a family of auxin receptor F box proteins. Developmental cell 9, 109-119. Diffley, J.F., and Cocker, J.H. (1992). Protein-DNA interactions at a yeast replication origin. Nature 357, 169. Diffley, J.F., Cocker, J.H., Dowell, S.J., and Rowley, A. (1994). Two steps in the assembly of complexes at yeast replication origins in vivo. Cell 78, 303-316. Diffley, J.F.X. (2004). Regulation of Early Events in Chromosome Replication. Current Biology 14, R778-R786. Dirick, L., Goetsch, L., Ammerer, G., and Byers, B. (1998). Regulation of meiotic S phase by Ime2 and a Clb5, 6-associated kinase in Saccharomyces cerevisiae. Science 281, 1854-1857. Elia, A.E., Rellos, P., Haire, L.F., Chao, J.W., Ivins, F.J., Hoepker, K., Mohammad, D., Cantley, L.C., Smerdon, S.J., and Yaffe, M.B. (2003). The molecular basis for phosphodependent substrate targeting and regulation of Plks by the Polo-box domain. Cell 115, 83-95. Elsasser, S., Chi, Y., Yang, P., and Campbell, J.L. (1999). Phosphorylation controls timing of Cdc6p destruction: a biochemical analysis. Molecular Biology of the Cell 10, 3263-3277. Enserink, J.M., Hombauer, H., Huang, M.-E., and Kolodner, R.D. (2009). Cdc28/Cdk1 positively and negatively affects genome stability in S. cerevisiae. The Journal of cell biology 185, 423-437. Esposito, M.S., and Esposito, R.E. (1974). Genes controlling meiosis and spore formation in yeast. Genetics 78, 215. Foiani, M., Nadjar-Boger, E., Capone, R., Sagee, S., Hashimshoni, T., and Kassir, Y. (1996). A meiosis-specific protein kinase, Ime2, is required for the correct timing of DNA replication and for spore formation in yeast meiosis. Molecular and General Genetics MGG 253, 278-288. Fragkos, M., Ganier, O., Coulombe, P., and Mechali, M. (2015). DNA replication origin activation in space and time. Nat Rev Mol Cell Biol 16, 360-374. Furuno, N., Nishizawa, M., Okazaki, K., Tanaka, H., Iwashita, J., Nakajo, N., Ogawa, Y., and Sagata, N. (1994). Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes. The EMBO journal 13, 2399. Futcher, B. (2008). Cyclins in meiosis: lost in translation. Developmental cell 14, 644-645. Grandin, N., and Reed, S.I. (1993). Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Molecular and cellular biology 13, 2113-2125. Green, B.M., Finn, K.J., and Li, J.J. (2010). Loss of DNA replication control is a potent inducer of gene amplification. Science 329, 943-946. Guttmann-Raviv, N., Martin, S., and Kassir, Y. (2002). Ime2, a Meiosis-Specific Kinase in Yeast, Is Required for Destabilization of Its Transcriptional Activator, Ime1. Molecular and Cellular Biology 22, 2047-2056. Heller, R.C., Kang, S., Lam, W.M., Chen, S., Chan, C.S., and Bell, S.P. (2011). Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of DDK and S-CDK kinases. Cell 146, 80-91. Henderson, K.A., Kee, K., Maleki, S., Santini, P.A., and Keeney, S. (2006). Cyclin-dependent kinase directly regulates initiation of meiotic recombination. Cell 125, 1321-1332. Henry, J.M., Camahort, R., Rice, D.A., Florens, L., Swanson, S.K., Washburn, M.P., and Gerton, J.L. (2006). Mnd1/Hop2 facilitates Dmc1-dependent interhomolog crossover formation in meiosis of budding yeast. Molecular and cellular biology 26, 2913-2923. Hepworth, S.R., Friesen, H., and Segall, J. (1998). NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol Cell Biol 18, 5750-5761. Holm, P.B. (1977). The premeiotic DNA replication of euchromatin and heterochromatin in Lilium longiflorum (Thunb.). Carlsberg Research Communications 42, 249-281. Holt, L.J., Hutti, J.E., Cantley, L.C., and Morgan, D.O. (2007). Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Mol Cell 25, 689-702. Honigberg, S.M. (2004). Ime2p and Cdc28p: co-pilots driving meiotic development. J Cell Biochem 92, 1025-1033. Hornig, N.C., and Uhlmann, F. (2004). Preferential cleavage of chromatin‐bound cohesin after targeted phosphorylation by Polo‐like kinase. The EMBO journal 23, 3144-3153. Hunter, T., and Plowman, G.D. (1997). The protein kinases of budding yeast: six score and more. Trends in biochemical sciences 22, 18-22. Ilves, I., Petojevic, T., Pesavento, J.J., and Botchan, M.R. (2010). Activation of the MCM2-7 helicase by association with Cdc45 and GINS proteins. Molecular cell 37, 247-258. Irniger, S. (2002). Cyclin destruction in mitosis: a crucial task of Cdc20. FEBS letters 532, 7-11. Irniger, S. (2011). The Ime2 protein kinase family in fungi: more duties than just meiosis. Molecular microbiology 80, 1-13. Jallepalli, P.V., and Kelley, T.J. (1997). Cyclin-dependent kinase and initiation at eukaryotic origins: a replication switch? Current opinion in cell biology 9, 358-363. Kelly, T.J., and Brown, G.W. (2000). Regulation of chromosome replication. Annual review of biochemistry 69, 829-880. Kepinski, S., and Leyser, O. (2005). The Arabidopsis F-box protein TIR1 is an auxin receptor. Nature 435, 446-451. Klutstein, M., Siegfried, Z., Gispan, A., Farkash-Amar, S., Zinman, G., Bar-Joseph, Z., Simchen, G., and Simon, I. (2010). Combination of genomic approaches with functional genetic experiments reveals two modes of repression of yeast middle-phase meiosis genes. BMC genomics 11, 478. Lamoureux, J.S., and Glover, J.N. (2006). Principles of protein-DNA recognition revealed in the structural analysis of Ndt80-MSE DNA complexes. Structure 14, 555-565. Lee, B.H., and Amon, A. (2003). Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300, 482-486. Lee, K.S., Park, J.-E., Asano, S., and Park, C.J. (2005). Yeast polo-like kinases: functionally conserved multitask mitotic regulators. Oncogene 24, 217-229. Leu, J.-Y., Chua, P.R., and Roeder, G.S. (1998). The meiosis-specific Hop2 protein of S. cerevisiae ensures synapsis between homologous chromosomes. Cell 94, 375-386. Leu, J.Y., and Roeder, G.S. (1999). The pachytene checkpoint in S. cerevisiae depends on Swe1-mediated phosphorylation of the cyclin-dependent kinase Cdc28. Mol Cell 4, 805-814. Lew, D. (1997). Cell cycle control in Saccharomyces cerevisiae. The Molecular and Cellular Biology of the Yeast Saccharomyces: Cell Cycle and Cell Biology. Lowery, D.M., Lim, D., and Yaffe, M.B. (2005). Structure and function of Polo-like kinases. Oncogene 24, 248-259. Marston, A.L., and Amon, A. (2004). Meiosis: cell-cycle controls shuffle and deal. Nature reviews Molecular cell biology 5, 983. Mitchell, A.P. (1994). Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiological reviews 58, 56-70. Mitchell, A.P., Driscoll, S.E., and Smith, H.E. (1990). Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae. Molecular and cellular biology 10, 2104-2110. Moore, M., Shin, M.E., Bruning, A., Schindler, K., Vershon, A., and Winter, E. (2007). Arg-Pro-X-Ser/Thr is a consensus phosphoacceptor sequence for the meiosis-specific Ime2 protein kinase in Saccharomyces cerevisiae. Biochemistry 46, 271-278. Nash, P., Tang, X., Orlicky, S., Chen, Q., Gertler, F.B., Mendenhall, M.D., Sicheri, F., Pawson, T., and Tyers, M. (2001). Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication. Nature 414, 514-521. Nguyen, V.Q., and Li, J.J. (2001). Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411, 1068-1073. Nishimura, K., and Kanemaki, M.T. (2014). Rapid depletion of budding yeast proteins via the fusion of an auxin‐inducible degron (AID). Current protocols in cell biology, 20.29. 21-20.29. 16. Ofir, Y., Sagee, S., Guttmann-Raviv, N., Pnueli, L., and Kassir, Y. (2004). The role and regulation of the preRC component Cdc6 in the initiation of premeiotic DNA replication. Mol Biol Cell 15, 2230-2242. Perkins, G., Drury, L.S., and Diffley, J.F. (2001). Separate SCF CDC4 recognition elements target Cdc6 for proteolysis in S phase and mitosis. The EMBO journal 20, 4836-4845. Pierce, M., Benjamin, K.R., Montano, S.P., Georgiadis, M.M., Winter, E., and Vershon, A.K. (2003). Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Molecular and cellular biology 23, 4814-4825. Raghuraman, M., Winzeler, E.A., Collingwood, D., Hunt, S., Wodicka, L., Conway, A., Lockhart, D.J., Davis, R.W., Brewer, B.J., and Fangman, W.L. (2001). Replication dynamics of the yeast genome. science 294, 115-121. Rice, L.M., Plakas, C., and Nickels, J.T. (2005). Loss of meiotic rereplication block in Saccharomyces cerevisiae cells defective in Cdc28p regulation. Eukaryotic Cell 4, 55-62. Rockmill, B., Sym, M., Scherthan, H., and Roeder, G.S. (1995). Roles for two RecA homologs in promoting meiotic chromosome synapsis. Genes Dev 9, 2684-2695. Roeder, G.S. (1997). Meiotic chromosomes: it takes two to tango. Genes & development 11, 2600-2621. Roeder, G.S., and Bailis, J.M. (2000). The pachytene checkpoint. Trends in genetics 16, 395-403. Sawarynski, K.E., Kaplun, A., Tzivion, G., and Brush, G.S. (2007). Distinct activities of the related protein kinases Cdk1 and Ime2. Biochim Biophys Acta 1773, 450-456. Sawarynski, K.E., Najor, N.A., Kepsel, A.C., and Brush, G.S. (2009). Sic1-induced DNA rereplication during meiosis. Proceedings of the National Academy of Sciences 106, 232-237. Sedgwick, C., Rawluk, M., Decesare, J., Raithatha, S., Wohlschlegel, J., Semchuk, P., Ellison, M., Yates, J., 3rd, and Stuart, D. (2006). Saccharomyces cerevisiae Ime2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation. Biochem J 399, 151-160. Shin, M.E., Skokotas, A., and Winter, E. (2010). The Cdk1 and Ime2 protein kinases trigger exit from meiotic prophase in Saccharomyces cerevisiae by inhibiting the Sum1 transcriptional repressor. Mol Cell Biol 30, 2996-3003. Shuster, E.O., and Byers, B. (1989). Pachytene arrest and other meiotic effects of the start mutations in Saccharomyces cerevisiae. Genetics 123, 29-43. Simchen, G. (1974). Are mitotic functions required in meiosis? Genetics 76, 745-753. Smith, H.E., and Mitchell, A.P. (1989). A transcriptional cascade governs entry into meiosis in Saccharomyces cerevisiae. Molecular and cellular biology 9, 2142-2152. Sopko, R., Raithatha, S., and Stuart, D. (2002a). Phosphorylation and maximal activity of Saccharomyces cerevisiae meiosis-specific transcription factor Ndt80 is dependent on Ime2. Mol Cell Biol 22, 7024-7040. Sopko, R., Raithatha, S., and Stuart, D. (2002b). Phosphorylation and Maximal Activity of Saccharomyces cerevisiae Meiosis-Specific Transcription Factor Ndt80 Is Dependent on Ime2. Molecular and Cellular Biology 22, 7024-7040. Sourirajan, A., and Lichten, M. (2008). Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes & development 22, 2627-2632. Stegmeier, F., Visintin, R., and Amon, A. (2002). Separase, polo kinase, the kinetochore protein Slk19, and Spo12 function in a network that controls Cdc14 localization during early anaphase. Cell 108, 207-220. Stillman, B. (1996). Cell cycle control of DNA replication. Science 274, 1659. Strich, R., Mallory, M.J., Jarnik, M., and Cooper, K.F. (2004). Cyclin B-Cdk activity stimulates meiotic rereplication in budding yeast. Genetics 167, 1621-1628. Stuart, D., and Wittenberg, C. (1998). CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes & Development 12, 2698-2710. Sym, M., Engebrecht, J., and Roeder, G.S. (1993). ZIP1 is a synaptonemal complex protein required for meiotic chromosome synapsis. Cell 72, 365-378. Tanaka, S., and Araki, H. (2010). Regulation of the initiation step of DNA replication by cyclin-dependent kinases. Chromosoma 119, 565-574. Tanaka, S., Umemori, T., Hirai, K., Muramatsu, S., Kamimura, Y., and Araki, H. (2007). CDK-dependent phosphorylation of Sld2 and Sld3 initiates DNA replication in budding yeast. Nature 445, 328-332. Tsubouchi, H., and Roeder, G.S. (2002). The Mndl protein forms a complex with Hop2 to promote homologous chromosome pairing and meiotic double-strand break. Molecular and Cellular Biology 22, 3078-3088. Tung, K.-S., Hong, E.-J.E., and Roeder, G.S. (2000). The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80. Proceedings of the National Academy of Sciences 97, 12187-12192. Vas, A., Mok, W., and Leatherwood, J. (2001). Control of DNA Rereplication via Cdc2 Phosphorylation Sites in the Origin Recognition Complex. Molecular and Cellular Biology 21, 5767-5777. Verma, R., Annan, R., Huddleston, M., Carr, S., Reynard, G., and Deshaies, R. (1997). Phosphorylation of Sic1p by G1 Cdk required for its degradation and entry into S phase. Science 278, 455-460. Visintin, R., Stegmeier, F., and Amon, A. (2003). The role of the polo kinase Cdc5 in controlling Cdc14 localization. Molecular biology of the cell 14, 4486-4498. Wang, Y., Chang, C.Y., Wu, J.F., and Tung, K.S. (2011). Nuclear localization of the meiosis-specific transcription factor Ndt80 is regulated by the pachytene checkpoint. Mol Biol Cell 22, 1878-1886. Wilkins, A.S., and Holliday, R. (2009). The evolution of meiosis from mitosis. Genetics 181, 3-12. Winter, E. (2012). The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiology and Molecular Biology Reviews 76, 1-15. Wyrick, J.J., Aparicio, J.G., Chen, T., Barnett, J.D., Jennings, E.G., Young, R.A., Bell, S.P., and Aparicio, O.M. (2001). Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294, 2357-2360. Xie, J., Pierce, M., Gailus‐Durner, V., Wagner, M., Winter, E., and Vershon, A.K. (1999). Sum1 and Hst1 repress middle sporulation‐specific gene expression during mitosis in Saccharomyces cerevisiae. The EMBO journal 18, 6448-6454. Yoshida, M., Kawaguchi, H., Sakata, Y., Kominami, K.-i., Hirano, M., Shima, H., Akada, R., and Yamashita, I. (1990). Initiation of meiosis and sporulation in Saccharomyces cerevisiae requires a novel protein kinase homologue. Molecular and General Genetics MGG 221, 176-186. Yoshida, S., and Toh-e, A. (2002). Budding yeast Cdc5 phosphorylates Net1 and assists Cdc14 release from the nucleolus. Biochemical and biophysical research communications 294, 687-691. Zamb, T., and Roth, R. (1977). Role of mitotic replication genes in chromosome duplication during meiosis. Proceedings of the National Academy of Sciences 74, 3951-3955. Zegerman, P., and Diffley, J.F. (2007). Phosphorylation of Sld2 and Sld3 by cyclin-dependent kinases promotes DNA replication in budding yeast. Nature 445, 281-285. Zimmerman, E.S., Schulman, B.A., and Zheng, N. (2010). Structural assembly of cullin-RING ubiquitin ligase complexes. Current opinion in structural biology 20, 714-721. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77675 | - |
dc.description.abstract | 減數分裂在一次的DNA複製之後,連續進行兩次的核分裂。目前對於出芽酵母菌 (Saccharomyces cerevisiae)在減數分裂時期如何在兩次分裂期之間去防止DNA再複製的機制並不清楚,但是一些研究指出出芽酵母菌中的週期蛋白依賴性激酶 (cyclin-dependent Kinase) 蛋白Cdc28可能參與其中。在本實驗室過去的研究發現Ndt80與抑制DNA再複製可能也有關。Ndt80為一個減數分裂時特定表現的轉錄因子 (transcription factor) ,可以調控下游至少150個與細胞核分裂以及孢子形成相關的基因。有趣的是,在營養生長的細胞中異位表現 (ectopic expression) Ndt80時會抑制DNA複製,因此我們推測Ndt80除了扮演轉錄因子的角色之外,可能也參與了在兩次核分裂之間抑制DNA再次複製。為了證明此一假設,我們藉由調控Cdc28的活性配合剔除Ndt80,觀察在減數分裂複製其後是否會發生DNA再次複製的現象。我們發現正常表現Ndt80的細胞在減數分裂的DNA複製期之後短暫的抑制Cdc28的活性,並不會造成DNA再複製,然而在缺乏Ndt80的細胞中短暫的抑制Cdc28活性卻能夠造成DNA再複製。這說明在減數分裂中Cdc28和Ndt80都具有防止DNA再複製的功能,確保能夠產生單倍體的配子。
我們也利用相同的策略針對另一個被懷疑可能也參與在控制DNA複製的蛋白激酶Ime2進行研究。我們發現,在細胞完成減數分裂的DNA複製後,將Ime2的活性短暫的移除並不會造成DNA的再複製。即使在缺乏Ndt80的菌株中短暫移除Ime2活性也不會發生;而同時抑制Cdc28和Ime2的活性只能讓極小部分的細胞進行再複製。另外,我們也發現在缺乏Ndt80的菌株中單獨抑制Cdc28活性和同時抑制Cdc28和Ime2的活性時,DNA再複製的能力無明顯差異。因此Ime2可能在此階段不參與抑制DNA 複製。 | zh_TW |
dc.description.abstract | Meiosis consists of one round of DNA replication and two consecutive nuclear divisions without an intervening DNA synthesis. The mechanism to prevent another round of DNA replication in yeast is not clear, but Cdc28, the CDK in budding yeast, was supposed to be responsible for the control. Here we show the evidence for that Ndt80 is also involved in preventing another round of DNA replication. Ndt80 is a meiosis-specific transcription factor, which transcribes more than 150 genes required for meiotic division and spore formation. Interestingly, our lab found that ectopic expression of Ndt80 in mitotic cells inhibits DNA replication. We proposed that Ndt80 might be involved in preventing DNA replication between the two meiotic nuclear divisions. To verify this hypothesis, we constructed cdc28-as1 strains in which the Cdc28 activity could be attenuated by the 1-NM-PP1 inhibitor. Transient inhibition of Cdc28 activity alone after the pre-meiotic S phase did not cause DNA re-replication. On the other hand, DNA re-replication did occur when Cdc28 activity was transiently inhibited in the absence of Ndt80. These results support our hypothesis that Ndt80 could be involved in regulation of meiotic DNA replication.
Since it was speculated that Ime2 may also be involved in preventing DNA re-replication, we constructed ime2-as1 strains in which the Ime2 activity is sensitive to the 1-NA-PP1 inhibitor. Transient inhibition of Ime2 activity alone after the pre-meiotic S phase did not lead to DNA re-replication, whereas inhibition of both Ime2 and Cdc28 only caused a very minor proportion of the cells to undergo another round of DNA duplication. Moreover, in Ndt80-depleted strains, transient inhibition of both Cdc28 and Ime2 activity did not enhance the re-replication efficiency compared with that of only Cdc28 inhibited. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:15:11Z (GMT). No. of bitstreams: 1 ntu-106-R03b43017-1.pdf: 5275755 bytes, checksum: a884fa8d9b6ab274e023ca301c225fc1 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | TABLE OF CONTENTS
中文摘要 ------------------------------------------------i ABSTRACT ----------------------------------------------ii TABLE OF CONTENTS--------------------------------------iv LIST OF TABLES --------------------------------------viii LIST OF FIGURES ---------------------------------------ix CHAPTER 1. INTRODUCTION --------------------------------1 I. Meiosis -------------------------------------1 A. Overview ---------------------------------1 B. Yeast sporulation -------------------------2 II. Kinases in regulation of yeast meiosis------3 A. CDC28--------------------------------------3 B. IME2---------------------------------------5 III. Regulation of DNA replication--------------7 A. Mitotic DNA replication--------------------8 B. pre-meiotic DNA replication----------------9 C. Prevention of extra round of DNA replication-------------------------------10 IV. Progression into meiotic nuclear division--12 A. The pachytene stage-----------------------12 B. NDT80 ------------------------------------14 C. CDC5----------------------------------------15 V. Ndt80 and pre-meiotic DNA replication-------17 VI. Specific aim and strategy------------------18 CHAPTER 2. MATERIALS AND METHODS ----------------------20 I. Strains, Media, and Culture condition-------20 PP1-analog inhibitors ----------------------21 II. Molecular biology methods -----------------22 A. DNA preparation and transformation----------22 B. Plasmid constructions---------------------23 C. Yeast strains construction----------------25 III. DNA content analysis----------------------28 IV. Protein extraction and Western blot analysis-----------------------------------29 CHAPTER 3. RESULTS-------------------------------------31 I. Construction of ATP-analogue-sensitive kinases, Cdc28-as1 and Ime2-as1-------------31 A. cdc28-as1-----------------------------------32 1. The cdc28-as1 mutant was sensitive to 1-NM-PP1 in mitosis-----------------32 2. The effect of 1-NM-PP1 on sporulation of cdc28-as1 strain-----------------33 3. The cdc28-as1 strain was sensitive to both 1-NM-PP1 and 1-NA-PP1----------34 B. ime2-as1------------------------------------35 1. The Ime2-as1 was functional and could rescue the ime2Δ defects in produce of spores---------------------------35 2. Ime2-as1 was sensitive to 1-NA-PP1 but only moderate to 1-NM-PP1-----------36 II. Analysis of DNA content by flow cytometry--37 Transient inhibition of Cdc28-as1 activity in strains with or without Ndt80------------------37 III. Two possible causes for DNA re-replication in cdc28-as1 ndt80Δ-----------------------41 A. Cells arrested after ndt80 defects did not cause another DNA replication---------------41 B. Cells arrested before ndt80 defects did not observe DNA re-replication------------------42 IV. Analysis of the effects of Ime2 in prohibition another DNA synthesis during meiosis------------------------------------43 A. Ime2 alone could not inhibit another round of DNA replication during meiosis--------------43 B. Ime2 did not have the ability to control DNA replication if at all.----------------------44 CHAPTER 4. DISCUSSION ---------------------------------45 I. Distinguish between Cdc28-as1 and Ime2-as1--45 II. The cdc28-as1mutant cells showed a faster pre-meiotic DNA replication----------------46 III. Cdc28 activity and Ndt80 are two separate factors in prevention of another round of DNA replication---------------------------47 IV. DNA re-replication is due to the absence of Ndt80, but not due to the pachytene arrest-48 V. The pachytene checkpoint may inhibit DNA replication in the cdc28-as1 ndt80 hop2 cells----------------------------------49 VI. Ime2 may not be required for prevention of DNA re-replication in the meiotic stage of this study---------------------------------49 VII. Auxin-inducible-degron might be a potential method to remove Ndt80 after meiosis I----51 REFERENCES---------------------------------------------53 APPENDIX----------------------------------------------108 LIST OF TABLES Table Page 1.Yeast strains used in this study --------------------72 2.Plasmids used in this study -------------------------75 3.Oligonucleotides used in this study------------------76 4.Comparison of the sporulation frequencies between wild type and analogous-sensitive kinase mutant strains---77 5.The proportion of cells with 2N, 4N and >4N DNA content under different times of inhibition and the times after releasing from inhibition----------------------------78 6.Sporulation frequencies of cdc28-as1 treated with 1-NM-PP1---------------------------------------------79 7.Sporulation frequencies of cdc28-as1 pCLB2-CDC5 and cdc28-as1 hop2Δ allele-------------------------------80 8.The proportion of cells with 2N, 4N and >4N DNA content in cdc28-as1 ime2-as1 strain after inhibition of Cdc28- as1 and Ime2-as1 activities--------------------------81 LIST OF FIGURES Figure Page 1.Cdc28-as1 was able to rescue the growth defect in cdc28-ts strain at non-permissive temperature--------82 2.cdc28-as1 mutant cells were sensitive to the 1-NM-PP1 inhibitor in mitosis---------------------------------83 3.The morphology of asci in wild type and cdc28-as1 strain-----------------------------------------------84 4.Both the 1-NM-PP1 and 1-NA-PP1 inhibitors could inhibit the Cdc28-as1 activity during meiosis----------------85 5.ime2-as1 mutant cells were sensitive to the 1-NA-PP1 inhibitor--------------------------------------------86 6.Strategy for transiently inhibited the activity of analogous sensitive kinase mutants-------------------87 7.Time course analysis of DNA replication and Ndt80 protein expression in NDT80-HA strain----------------88 8.Time course analysis of DNA replication and Ndt80 protein expression in cdc28-as1 NDT80-HA strain------90 9.The DNA replication profiles after transient inhibition of Cdc28 activity for different times in cdc28-as1 ndt80Δ strain----------------------------------------92 10.The DNA replication profiles after transient inhibition of Cdc28 activity in wild type, ndt80Δ, cdc28-as1, and cdc28-as1 ndt80Δ---------------------94 11.The DNA replication profiles after transient inhibition of Cdc28 activity in pCLB2-CDC5, cdc28-as1 pCLB2-CDC5 and cdc28-as1 pCLB2-CDC5 ndt80Δ----------97 12.The DNA replication profiles after transient inhibition of Cdc28 activity in hop2Δ, hop2Δ ndt80Δ, hop2Δ cdc28-as1, and hop2Δ cdc28-as1 ndt80Δ--------100 13.The DNA replication profiles after transient inhibition of Ime2-as1 activity in ime2-as1 and ime2-as1 ndt80Δ------------------------------------103 14.The DNA replication profiles after transient inhibition of Cdc28-as1 and Ime2-as1 activities in cdc28-as1 ime2-as1, cdc28-as1 ime2-as1 ndt80Δ and cdc28-as1 ndt80Δ-----------------------------------105 | |
dc.language.iso | en | |
dc.title | 探討酵母菌Ndt80蛋白在減數分裂中對於DNA複製之調控 | zh_TW |
dc.title | Studies on the role of Ndt80 in regulating DNA replication during yeast meiosis | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 周子賓,王廷方 | |
dc.subject.keyword | 酵母菌,減數分裂,DNA複製,週期蛋白依賴性激?,調控, | zh_TW |
dc.subject.keyword | Ndt80,cdc28-as1,ime2-as1,regulation of DNA replication,meiosis, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU201703849 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2017-08-19 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-R03b43017-1.pdf 目前未授權公開取用 | 5.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。