Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77672
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃筱鈞(Hsiao-Chun Huang)
dc.contributor.authorAn-Jou Liangen
dc.contributor.author梁安柔zh_TW
dc.date.accessioned2021-07-10T22:15:00Z-
dc.date.available2021-07-10T22:15:00Z-
dc.date.copyright2017-09-04
dc.date.issued2017
dc.date.submitted2017-08-18
dc.identifier.citation1. Wang, Y. H., Wei, K. Y., & Smolke, C. D. (2013). Synthetic biology: advancing the design of diverse genetic systems. Annual review of chemical and biomolecular engineering, 4, 69-102.
2. Gardner, T. S., Cantor, C. R., & Collins, J. J. (2000). Construction of a genetic toggle switch in Escherichia coli. Nature, 403(6767), 339-342.
3. Elowitz, M. B., & Leibler, S. (2000). A synthetic oscillatory network of transcriptional regulators. Nature, 403(6767), 335-338.
4. Ramos, J. L., Martínez-Bueno, M., Molina-Henares, A. J., Terán, W., Watanabe, K., Zhang, X., ... & Tobes, R. (2005). The TetR family of transcriptional repressors. Microbiology and Molecular Biology Reviews, 69(2), 326-356.
5. Salis, H. M., Mirsky, E. A., & Voigt, C. A. (2009). Automated design of synthetic ribosome binding sites to control protein expression. Nature biotechnology, 27(10), 946-950.
6. Basu, S., Gerchman, Y., Collins, C. H., Arnold, F. H., & Weiss, R. (2005). A synthetic multicellular system for programmed pattern formation. Nature, 434(7037), 1130-1134.
7. Weber, W., Daoud-El Baba, M., & Fussenegger, M. (2007). Synthetic ecosystems based on airborne inter-and intrakingdom communication. Proceedings of the National Academy of Sciences, 104(25), 10435-10440.
8. Chan, C. T., Lee, J. W., Cameron, D. E., Bashor, C. J., & Collins, J. J. (2016). 'Deadman'and'Passcode'microbial kill switches for bacterial containment. Nature chemical biology, 12(2), 82-86.
9. Dietrich JA, McKee AE, Keasling JD. 2010. High-throughput metabolic engineering: advances in smallmolecule screening and selection. Annu. Rev. Biochem. 79:563–90v
10. Rafelski, S. M., & Marshall, W. F. (2008). Building the cell: design principles of cellular architecture. Nature Reviews Molecular Cell Biology, 9(8), 593-602.
11. Bornens, M. (2008). Organelle positioning and cell polarity. Nature Reviews Molecular Cell Biology, 9(11), 874-886.
12. Rappel, W. J., & Edelstein-Keshet, L. (2017). Mechanisms of Cell Polarization. Current Opinion in Systems Biology.
13. Chau, A. H., Walter, J. M., Gerardin, J., Tang, C., & Lim, W. A. (2012). Designing synthetic regulatory networks capable of self-organizing cell polarization. Cell, 151(2), 320-332.
14. Wheeler, R. T., & Shapiro, L. (1999). Differential localization of two histidine kinases controlling bacterial cell differentiation. Molecular cell, 4(5), 683-694.
15. Bowman, G. R., Comolli, L. R., Zhu, J., Eckart, M., Koenig, M., Downing, K. H., ... & Shapiro, L. (2008). A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell, 134(6), 945-955.
16. Bowman, G. R., Perez, A. M., Ptacin, J. L., Ighodaro, E., Folta‐Stogniew, E., Comolli, L. R., & Shapiro, L. (2013). Oligomerization and higher‐order assembly contribute to sub‐cellular localization of a bacterial scaffold. Molecular microbiology, 90(4), 776-795.
17. Bowman, G. R., Comolli, L. R., Gaietta, G. M., Fero, M., Hong, S. H., Jones, Y., ... & Shapiro, L. (2010). Caulobacter PopZ forms a polar subdomain dictating sequential changes in pole composition and function. Molecular microbiology, 76(1), 173-189.
18. Laloux, G., & Jacobs-Wagner, C. (2014). How do bacteria localize proteins to the cell pole?. J Cell Sci, 127(1), 11-19.
19. Ebersbach, G., Briegel, A., Jensen, G. J., & Jacobs-Wagner, C. (2008). A self-associating protein critical for chromosome attachment, division, and polar organization in caulobacter. Cell, 134(6), 956-968.
20. Radhakrishnan, S. K., Thanbichler, M., & Viollier, P. H. (2008). The dynamic interplay between a cell fate determinant and a lysozyme homolog drives the asymmetric division cycle of Caulobacter crescentus. Genes & development, 22(2), 212-225.
21. Jiang, C., Brown, P. J., Ducret, A., & Brun, Y. V. (2014). Sequential evolution of bacterial morphology by co-option of a developmental regulator. Nature, 506(7489), 489.
22. Liu, Y. (2015). A synthetic Biology Platform for Polarized Protein Scaffold in Escherichia coli (Master’s thesis, Institute of Molecular and cellular biology, National Taiwan University)
23. Hung, T. C. (2016). PopZ-based Cellular Polarity Module──A Novel Way to Spatially Regulate Gene Expression (Master’s thesis, Institute of Molecular and cellular biology, National Taiwan University).
24. Pan, C.-J. (2015). An individual based computational model for polarization and asymmetric cell division in Escherichia coli (Master’s thesis, Institute of Molecular and cellular biology, National Taiwan University).
25. Shetty, R. P., Endy, D., & Knight, T. F. (2008). Engineering BioBrick vectors from BioBrick parts. Journal of biological engineering, 2(1), 5.
26. Quan, J., & Tian, J. (2011). Circular polymerase extension cloning for high-throughput cloning of complex and combinatorial DNA libraries. Nature protocols, 6(2), 242.
27. Paintdakhi, A., Parry, B., Campos, M., Irnov, I., Elf, J., Surovtsev, I., & Jacobs‐Wagner, C. (2016). Oufti: an integrated software package for high‐accuracy, high‐throughput quantitative microscopy analysis. Molecular microbiology, 99(4), 767-777.
28. Segall‐Shapiro, T. H., Meyer, A. J., Ellington, A. D., Sontag, E. D., & Voigt, C. A. (2014). A ‘resource allocator’ for transcription based on a highly fragmented T7 RNA polymerase. Molecular systems biology, 10(7), 742.
29. Lin, D. W. (2017). Construction of a spatiotemporal regulatory protein platform for synthetic asymmetry in Escherichia coli (Master’s thesis, Institute of Molecular and cellular biology, National Taiwan University).
30. Halbedel, S., Visser, L., Shaw, M., Wu, L. J., Errington, J., Marenduzzo, D., & Hamoen, L. W. (2009). Localisation of DivIVA by targeting to negatively curved membranes. The EMBO journal, 28(15), 2272-2282.
31. Edwards, D. H., Thomaides, H. B., & Errington, J. (2000). Promiscuous targeting of Bacillus subtilis cell division protein DivIVA to division sites in Escherichia coli and fission yeast. The EMBO journal, 19(11), 2719-2727.
32. Cameron, D. E., & Collins, J. J. (2014). Tunable protein degradation in bacteria. Nature biotechnology, 32(12), 1276-1281.
33. Gur, E., & Sauer, R. T. (2008). Evolution of the ssrA degradation tag in Mycoplasma: specificity switch to a different protease. Proceedings of the National Academy of Sciences, 105(42), 16113-16118.
34. Pazos, M., Natale, P., & Vicente, M. (2013). A Specific Role for the ZipA Protein in Cell Division STABILIZATION OF THE FtsZ PROTEIN. Journal of Biological Chemistry, 288(5), 3219-3226.
35. Mosyak, L., Zhang, Y., Glasfeld, E., Haney, S., Stahl, M., Seehra, J., & Somers, W. S. (2000). The bacterial cell‐division protein ZipA and its interaction with an FtsZ fragment revealed by X‐ray crystallography. The EMBO journal, 19(13), 3179-3191.
36. Camberg, J. L., Hoskins, J. R., & Wickner, S. (2009). ClpXP protease degrades the cytoskeletal protein, FtsZ, and modulates FtsZ polymer dynamics. Proceedings of the National Academy of Sciences, 106(26), 10614-10619.
37. Kannaiah, S., & Amster-Choder, O. (2016). Methods for studying RNA localization in bacteria. Methods, 98, 99-103.
38. Peabody, D. S., & Lim, F. (1996). Complementation of RNA binding site mutations in MS2 coat protein heterodimers. Nucleic acids research, 24(12), 2352-2359.
39. Golding, I., Paulsson, J., Zawilski, S. M., & Cox, E. C. (2005). Real-time kinetics of gene activity in individual bacteria. Cell, 123(6), 1025-1036.
40. Nevo-Dinur, K., Nussbaum-Shochat, A., Ben-Yehuda, S., & Amster-Choder, O. (2011). Translation-independent localization of mRNA in E. coli. Science, 331(6020), 1081-1084.
41. Garcia, J. F., & Parker, R. (2015). MS2 coat proteins bound to yeast mRNAs block 5′ to 3′ degradation and trap mRNA decay products: implications for the localization of mRNAs by MS2-MCP system. Rna, 21(8), 1393-1395.
42. Llopis, P. M., Jackson, A. F., Sliusarenko, O., Surovtsev, I., Heinritz, J., Emonet, T., & Jacobs-Wagner, C. (2010). Spatial organization of the flow of genetic information in bacteria. Nature, 466(7302), 77.
43. Wang, Y. H., Wei, K. Y., & Smolke, C. D. (2013). Synthetic biology: advancing the design of diverse genetic systems. Annual review of chemical and biomolecular engineering, 4, 69-102.
44. Fernandez-Rodriguez, J., & Voigt, C. A. (2016). Post-translational control of genetic circuits using Potyvirus proteases. Nucleic acids research, 44(13), 6493-6502.
45. Huang, T. T., Hwang, J. K., Chen, C. H., Chu, C. S., Lee, C. W., & Chen, C. C. (2015). 2: protein structure prediction server version 3.0. Nucleic acids research, 43(W1), W338-W342.
46. Yachdav, G., Kloppmann, E., Kajan, L., Hecht, M., Goldberg, T., Hamp, T., ... & Richter, L. (2014). PredictProtein—an open resource for online prediction of protein structural and functional features. Nucleic acids research, 42(W1), W337-W343.
47. Varshavsky, A. (1997). The N‐end rule pathway of protein degradation. Genes to cells, 2(1), 13-28.
48. Holmes, J. A., Follett, S. E., Wang, H., Meadows, C. P., Varga, K., & Bowman, G. R. (2016). Caulobacter PopZ forms an intrinsically disordered hub in organizing bacterial cell poles. Proceedings of the National Academy of Sciences, 201602380.
49. Chen, X., Zaro, J. L., & Shen, W. C. (2013). Fusion protein linkers: property, design and functionality. Advanced drug delivery reviews, 65(10), 1357-1369.
50. Ofran, Y., & Rost, B. (2007). ISIS: interaction sites identified from sequence. Bioinformatics, 23(2), e13-e16.
51. Swaminathan, R., Ravi, V. K., Kumar, S., Kumar, M. V. S., & Chandra, N. (2011). Lysozyme: a model protein for amyloid research. Adv Protein Chem Struct Biol, 84(1), 63-111.
52. Thompson, K. E., Bashor, C. J., Lim, W. A., & Keating, A. E. (2012). SYNZIP protein interaction toolbox: in vitro and in vivo specifications of heterospecific coiled-coil interaction domains. ACS synthetic biology, 1(4), 118-129.
53. Bashor, C. J., Helman, N. C., Yan, S., & Lim, W. A. (2008). Using engineered scaffold interactions to reshape MAP kinase pathway signaling dynamics. Science, 319(5869), 1539-1543.
54. Shekhawat, S. S., & Ghosh, I. (2011). Split-protein systems: beyond binary protein–protein interactions. Current opinion in chemical biology, 15(6), 789-797.
55. Stein, V., & Alexandrov, K. (2015). Synthetic protein switches: design principles and applications. Trends in biotechnology, 33(2), 101-110.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77672-
dc.description.abstract細胞的各種行為表現一直以來都為科學家汲汲營營地探求。在多數研究者著墨於調控基因產物的表達以了解細胞行為的改變時,合成生物學家則試圖利用該領域備有之眾多工具來從無到有重組出該現象。在萬端細胞行為中最有趣的莫過於不對稱細胞分裂,於合成生物學的終極目標——人工合成生物——更是不可或缺的一環。為此,我們在大腸桿菌(Escherichia coli)中構築了具有極區組織能力的平臺。
我們引進新月柄桿菌(Caulobacter crecentus)中聚集於極區的兩種蛋白質,分別是極區組織蛋白PopZ以及附著端溶菌酶同源蛋白SpmX。由於極區組織蛋白在大腸桿菌中呈穩定單極化分佈,我們將其作為雛形平臺的支架;至於附著端溶菌酶同源蛋白,我們則去除其穿膜能力、存乎其溶菌酶區域(muramidase domain),作為其他蛋白和極區組織蛋白作用的轉接媒介。經過初步試驗,我們得知將兩者結合確實能將後者所搭載的其他因子拉近距離,從而在極區組織蛋白周遭結合組裝。我們將即進一步擴展物理性的蛋白質團不對稱至實質功能的不對稱。
此研究中引用了數種外源蛋白和合成工具來測試和優化平臺雛形。首先,我們為了測試T7核糖核酸聚合酶(T7 RNA polymerase)與平臺的相容性而更換了下游表達蛋白,又為提升下游蛋白的影響而引入黴漿菌Lon蛋白酶(mfLon protease)。此外,我們還使用了MS2噬菌體蛋白(MS2 coat protein)殼來觀測轉錄活動。於此同時,我們對附著端溶菌酶同源蛋白的溶菌酶區域做了截斷蛋白(protein truncation)試驗,試圖去蕪存菁純化其和極區組織蛋白作用的功能。我們亦嘗試利用合成拉鍊工具(SYNZIP)組來調整極區組織蛋白的結合能力。
綜合以上改動和測試,我們對於此平臺的性能優劣和潛力有了相當程度的理解。據此,我們將以細胞級化平臺為基,繼以合成生物學的方法發展之,希冀能藉此合成人工的不對稱細胞分裂。
zh_TW
dc.description.abstractScientists have been endeavoring to explain how various cell behaviors are brought about. While some researchers comprehend life phenomena by regulating gene products, synthetic biologists have dedicated to recreating them with their synthetic tool miscellany. Among all, the realization of asymmetric cell division will lead to the most progress in achieving the final goal, synthesis of life. In the light, our research group constructed a polar-organized platform in Escherichia coli, making use of biological parts from other organisms.
The prototype of the platform is organized with two Caulobacter crecentus proteins, PopZ the scaffold and SpmX the source of the adapter. PopZ, displaying a stable unipolarity in E.coli, is capable of recruiting the muramidase domain of SpmX (SpmX450) hence enforcing proximity to the factors it carries. Our subsequent objective is to extend the physical PopZ-SpmX asymmetry into functional asymmetry in the model system. For this purpose, we employed various exogenous components and synthetic elements into our platform in this study.
We first tested the adaptability of split T7 RNA polymerase system with different downstream reporters and introduced mfLon protease to elevate their influences. We further utilize the MS2 assay to identify where transcription brings about. On the other hand, truncations were performed on SpmX450 to refine its role as an adapter. Attempts were also made to regulate PopZ’s binding ability with the Synzip toolbox.
With all the efforts, the potentials and the limits of our platform are both revealed. The comprehension will yet give rise to new applicable ideas leading to our goal, i.e. establishment of an asymmetric division platform.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:15:00Z (GMT). No. of bitstreams: 1
ntu-106-R04b43004-1.pdf: 5555671 bytes, checksum: 00afbd3552f4cda213917b39753d7788 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 I
謝誌 II
摘要 IV
ABSTRACT VI
CONTENTS VIII
FIGURE LIST XI
TABLE LIST XII
CHAPTER 1 INTRODUCTION 1
1.1 Synthetic Biology and its Ultimate Goal 1
1.2 From Polarization to Asymmetric Cell Division 2
1.3 The Design of the PopZ-based Platform 3
1.4 Thesis Organization 5
CHAPTER 2 MATERIALS AND METHODS 7
2.1 Bacterial Strains and Culture Methods 7
2.1.1 Strain 7
2.1.2 Culture 7
2.1.3 Long-term Storage 8
2.2 DNA Cloning Methods 8
2.2.0 Flow Chart of Basic Cloning Procedures 8
2.2.1 Plasmid Preparation 9
2.2.3 PCR and Primer Design 10
2.2.3.1 high-fidelity PCR 10
2.2.3.2 colony PCR 12
2.2.3.3 primer design 13
2.2.4 Restriction Enzyme Digestion 13
2.2.5 DNA End Modification 14
2.2.5.1 DNA dephosphorylation 14
2.2.5.2 DNA blunting 15
2.2.6 Electrophoresis 16
2.2.7 Gel extraction 16
2.2.8 Clean Up 16
2.2.9 DNA Assembly 17
2.2.9.1 assembly of enzyme digestions 17
2.2.9.2 CPEC 18
2.2.10 Transformation 19
2.3 Microscopy 20
2.3.1 Device 20
2.3.2 Sample Preparation 20
2.3.3 Image Processing 21
2.4 Microplate Reader 21
CHAPTER 3 ASYMMETRIC CELL DIVISION 22
3.1 Implementation of Split T7 RNA Polymerase 22
3.2 Adding Another Scaffold Protein 23
3.2.1 Substitution of the Downstream Protein 23
3.2.2 Potential Usage of DivIVA 24
3.3 Incorporation with a Counteracting Signal 25
3.3.1 Our Intention to Utilize Protease 25
3.3.2 Diffused mfLon 26
3.3.3 Mid-cell Localized mfLon 27
3.3.4 Susceptibility of different tagged fluorescent protein 28
3.3.5 Other application of mfLon degradation 29
3.4 Visualization of T7 RNAP transcription 30
3.4.1 Detection of Transcriptional Activity 30
3.4.2 Construction and Experimental Setting of the MS2 Assay 31
3.4.3 Preliminary Result of MS2 31
CHAPTER 4 OPTIMIZATION OF THE PLATFORM SYSTEM 34
4.1 A Step Closer to an Ideal Synthetic System 34
4.2 Endeavors to Improve SpmX450 35
4.2.1 The Unexpected Behavior of SpmX450 35
4.2.2 SpmX450 Truncation Approach and Cloning Strategy 36
4.2.3 Inspection of SpmX450 Truncation Variants 37
4.2.4 Discussion 39
4.3 Attempts to Regulate the Binding Affinity of PopZ via SYNZIP 40
4.3.1 Mediation of Protein-protein Interaction 40
4.3.2 Unpredictability of SYNZIP-mediated PopZ Binding Regulation 41
4.4 Potential Adjustments of the Polarized Platform 42
CHAPTER 5 CONCLUSION AND FUTURE WORK 43
FIGURES 45
REFERENCE 66
APPENDIX A : PLASMIDS 71
APPENDIX B : PRIMERS 72
dc.language.isoen
dc.title合成性細胞不對稱系統的改造與優化zh_TW
dc.titleReinforcement and Refinement of the Synthesized Cell Asymmetryen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周信宏(Hsin-Hung Chou),許昭萍(Chao-Ping Hsu)
dc.subject.keyword合成生物學,細胞極化,極區組織蛋白,附著端溶菌?同源蛋白,T7核糖核酸聚合?,細胞分裂蛋白DivIVA,黴漿菌Lon蛋白?,MS2噬菌體蛋白殼,截斷蛋白,合成拉鍊工具組,不對稱細胞分裂,zh_TW
dc.subject.keywordSynthetic biology,cell polarization,PopZ,SpmX,T7 RNA polymerase,DivIVA,mfLon,MS2 coat protein,protein truncation,SYNZIP,asymmetric cell division,en
dc.relation.page76
dc.identifier.doi10.6342/NTU201703986
dc.rights.note未授權
dc.date.accepted2017-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-R04b43004-1.pdf
  目前未授權公開取用
5.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved