Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 臨床動物醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77642
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor武敬和(Ching-Ho Wu)
dc.contributor.authorMing Luen
dc.contributor.author呂明zh_TW
dc.date.accessioned2021-07-10T22:13:15Z-
dc.date.available2021-07-10T22:13:15Z-
dc.date.copyright2018-07-04
dc.date.issued2018
dc.date.submitted2018-06-29
dc.identifier.citation1. Cappozzo, A., Gait analysis methodology. Human Movement Science, 1984. 3(1): p. 27-50.
2. Orr, J.F. and J.C. Shelton, Optical measurement methods in biomechanics. 1997: Springer.
3. Aggarwal, J. and R.O. Duda, Computer analysis of moving polygonal images. IEEE Transactions on Computers, 1975. 100(10): p. 966-976.
4. Murray, M.P., A.B. Drought, and R.C. Kory, Walking patterns of normal men. J Bone Joint Surg Am, 1964. 46(2): p. 335-360.
5. Webb, J.A. and J.K. Aggarwal, Structure from motion of rigid and jointed objects. Artificial Intelligence, 1982. 19(1): p. 107-130.
6. Jaegger, G., D.J. Marcellin-Little, and D. Levine, Reliability of goniometry in Labrador Retrievers. American journal of veterinary research, 2002. 63(7): p. 979-986.
7. Cook, J.L., et al., Measurement of angles of abduction for diagnosis of shoulder instability in dogs using goniometry and digital image analysis. Veterinary Surgery, 2005. 34(5): p. 463-468.
8. Thomas, T.M., et al., Comparison of measurements obtained by use of an electrogoniometer and a universal plastic goniometer for the assessment of joint motion in dogs. American Journal of Veterinary Research, 2006. 67(12): p. 1974-1979.
9. Duerr, F.M., et al., Evaluation of inertial measurement units as a novel method for kinematic gait evaluation in dogs. Veterinary and Comparative Orthopaedics and Traumatology (VCOT), 2016. 29(6): p. 475-483.
10. Genc, Y., et al. Marker-less tracking for AR: A learning-based approach. in Proceedings of the 1st International Symposium on Mixed and Augmented Reality. 2002. IEEE Computer Society.
11. Ceseracciu, E., Z. Sawacha, and C. Cobelli, Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. PLoS One, 2014. 9(3): p. e87640.
12. Wang, L.A., W.M. Hu, and T.N. Tan, Recent developments in human motion analysis. Pattern Recognition, 2003. 36(3): p. 585-601.
13. Haggag, H., et al. Semantic body parts segmentation for quadrupedal animals. in Systems, Man, and Cybernetics (SMC), 2016 IEEE International Conference on. 2016. IEEE.
14. Torres, B.T., et al., The Effect of Examiner Variability on Multiple Canine Stifle Kinematic Gait Collections in a 3-Dimensional Model. Vet Surg, 2015. 44(5): p. 581-7.
15. Waxman, A.S., et al., Relationship between objective and subjective assessment of limb function in normal dogs with an experimentally induced lameness. Veterinary Surgery, 2008. 37(3): p. 241-246.
16. Bockstahler, B.A., et al., Influence of borderline hip dysplasia on joint kinematics of clinically sound Belgian Shepherd dogs. American Journal of Veterinary Research, 2007. 68(3): p. 271-276.
17. Miqueleto, N., et al., Kinematic analysis in healthy and hip-dysplastic German Shepherd dogs. The Veterinary Journal, 2013. 195(2): p. 210-215.
18. DeCamp, C.E., et al., Kinematic gait analysis of the trot in healthy greyhounds. Am J Vet Res, 1993. 54(4): p. 627-34.
19. Allen, K., et al., Kinematic gait analysis of the trot in healthy mixed breed dogs. VCOT Archive, 1994. 7(4): p. 17-22.
20. Hottinger, H.A., et al., Noninvasive kinematic analysis of the walk in healthy large-breed dogs. American Journal of Veterinary Research, 1996. 57(3): p. 381-8.
21. Bennett, R.L., et al., Kinematic gait analysis in dogs with hip dysplasia. American Journal of Veterinary Research, 1996. 57(7): p. 966-71.
22. DeCamp, C.E., et al., Kinematic evaluation of gait in dogs with cranial cruciate ligament rupture. American Journal of Veterinary Research, 1996. 57(1): p. 120-6.
23. Marsh, A.P., et al., Kinematics of gait in Golden Retriever Muscular Dystrophy. Neuromuscular Disorders, 2010. 20(1): p. 16-20.
24. Agostinho, F.S., et al., Kinematic analysis of Labrador Retrievers and Rottweilers trotting on a treadmill. Veterinary and Comparative Orthopaedics and Traumatology (VCOT), 2011(0932-0814 (Print)).
25. Boddeker, J., et al., Computer-assisted gait analysis of the dog: Comparison of two surgical techniques for the ruptured cranial cruciate ligament. Veterinary and Comparative Orthopaedics and Traumatology, 2012. 25(1): p. 11-21.
26. Hogy, S.M., et al., Kinematic and kinetic analysis of dogs during trotting after amputation of a pelvic limb. American Journal of Veterinary Research, 2013. 74(9): p. 1164-1171.
27. Torres, B.T., et al., Comparison of overground and treadmill-based gaits of dogs. American Journal of Veterinary Research, 2013. 74(4): p. 535-41.
28. Torres, B.T., et al., Pelvic limb kinematics in the dog with and without a stifle orthosis. Vet Surg, 2017.
29. Suntay, W., A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. Journal of biomechanical engineering, 1983. 105: p. 136.
30. Fu, Y.C., B.T. Torres, and S.C. Budsberg, Evaluation of a three-dimensional kinematic model for canine gait analysis. American Journal of Veterinary Research, 2010. 71(10): p. 1118-22.
31. Torres, B.T., et al., Comparison of Canine Stifle Kinematic Data Collected with Three Different Targeting Models. Veterinary Surgery, 2010. 39(4): p. 504-512.
32. Chailleux, N., et al., In vitro 3-dimensional kinematic evaluation of 2 corrective operations for cranial cruciate ligament-deficient stifle. Canadian journal of veterinary research, 2007. 71(3): p. 175-180.
33. Sanchez-Bustinduy, M., et al., Comparison of kinematic variables in defining lameness caused by naturally occurring rupture of the cranial cruciate ligament in dogs. Veterinary Surgery, 2010. 39(4): p. 523-30.
34. Kim, S.Y., et al., Skin movement during the kinematic analysis of the canine pelvic limb. Veterinary and Comparative Orthopaedics and Traumatology, 2011. 24(5): p. 326-32.
35. Schwencke, M., et al., Soft tissue artifact in canine kinematic gait analysis. Veterinary Surgery, 2012. 41(7): p. 829-37.
36. Peters, A., et al., Quantification of soft tissue artifact in lower limb human motion analysis: a systematic review. Gait Posture, 2010. 31(1): p. 1-8.
37. Houck, J., H.J. Yack, and T. Cuddeford, Validity and comparisons of tibiofemoral orientations and displacement using a femoral tracking device during early to mid stance of walking. Gait & Posture, 2004. 19(1): p. 76-84.
38. Andersen, M.S., et al., Do kinematic models reduce the effects of soft tissue artefacts in skin marker-based motion analysis? An in vivo study of knee kinematics. Journal of Biomechanics, 2010. 43(2): p. 268-73.
39. Holden, J.P., et al., Surface movement errors in shank kinematics and knee kinetics during gait. Gait & Posture, 1997. 5(3): p. 217-227.
40. Manal, K., et al., The accuracy of estimating proximal tibial translation during natural cadence walking: bone vs. skin mounted targets. Clinical Biomechanics, 2003. 18(2): p. 126-131.
41. Cappozzo, A., et al., Position and orientation in space of bones during movement: experimental artefacts. Clinical Biomechanics, 1996. 11(2): p. 90-100.
42. Leardini, A., et al., Human movement analysis using stereophotogrammetry. Part 3. Soft tissue artifact assessment and compensation. Gait Posture, 2005. 21(2): p. 212-25.
43. Maslen, B.A. and T.R. Ackland, Radiographic study of skin displacement errors in the foot and ankle during standing. Clinical Biomechanics, 1994. 9(5): p. 291-6.
44. Tranberg, R. and D. Karlsson, The relative skin movement of the foot: a 2-D roentgen photogrammetry study. Clinical Biomechanics, 1998. 13(1): p. 71-76.
45. Banks, S.A. and W.A. Hodge, Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. IEEE Transactions on Biomedical Engineering, 1996. 43(6): p. 638-649.
46. Hoff, W.A., et al., Three-dimensional determination of femoral-tibial contact positions under in vivo conditions using fluoroscopy. Clinical Biomechanics, 1998. 13(7): p. 455-472.
47. Tsai, T.Y., et al., A volumetric model-based 2D to 3D registration method for measuring kinematics of natural knees with single-plane fluoroscopy. Medical Physics, 2010. 37(3): p. 1273-84.
48. Cappozzo, A., et al., Surface-Marker Cluster Design Criteria for 3-D Bone Movement Reconstruction. IEEE Trans Biomed Eng, 1997. 44(12): p. 1165-74.
49. Cappozzo, A., et al., Human movement analysis using stereophotogrammetry. Part 1: theoretical background. Gait Posture, 2005. 21(2): p. 186-96.
50. Mantovani, G. and M. Lamontagne, How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework. Journal of Biomechanical Engineering, 2016.
51. Bonci, T., The reconstruction of skeletal movement : the soft tissue artefact issue. 2015, Université Claude Bernard - Lyon I.
52. Taylor, W.R., et al., On the influence of soft tissue coverage in the determination of bone kinematics using skin markers. Journal of Orthopaedic Research, 2005. 23(4): p. 726-734.
53. Grimpampi, E., et al., Metrics for describing soft-tissue artefact and its effect on pose, size, and shape of marker clusters. IEEE Transactions on Biomedical Engineering, 2014. 61(2): p. 362-367.
54. Benoit, D.L., M. Damsgaard, and M.S. Andersen, Surface marker cluster translation, rotation, scaling and deformation: Their contribution to soft tissue artefact and impact on knee joint kinematics. J Biomech, 2015. 48(10): p. 2124-9.
55. de Rosario, H., et al., Kinematic description of soft tissue artifacts: quantifying rigid versus deformation components and their relation with bone motion. Med Biol Eng Comput, 2012. 50(11): p. 1173-81.
56. Barre, A., et al., Soft tissue artifact assessment during treadmill walking in subjects with total knee arthroplasty. IEEE transactions on information technology in biomedicine, 2013. 60(11): p. 3131-40.
57. Garling, E.H., et al., Soft-tissue artefact assessment during step-up using fluoroscopy and skin-mounted markers. Journal of Biomechanics, 2007. 40 Suppl 1: p. S18-24.
58. Mantovani, G. and M. Lamontagne, How Different Marker Sets Affect Joint Angles in Inverse Kinematics Framework. J Biomech Eng, 2017. 139(4).
59. Ferrari, A., et al., Quantitative comparison of five current protocols in gait analysis. Gait Posture, 2008. 28(2): p. 207-16.
60. Agostinho, F., et al., Kinematic analysis of Labrador Retrievers and Rottweilers trotting on a treadmill. Veterinary and Comparative Orthopaedics and Traumatology, 2011. 24(3): p. 185.
61. Ragetly, C., et al., Kinetic and kinematic analysis of the right hind limb during trotting on a treadmill in Labrador Retrievers presumed predisposed or not predisposed to cranial cruciate ligament disease. American Journal of Veterinary Research, 2012(1943-5681 (Electronic)).
62. Vilar, J.M., et al., Biomechanic characteristics of gait of four breeds of dogs with different conformations at walk on a treadmill. Journal of Applied Animal Research, 2015. 44(1): p. 252-257.
63. Sutton, J.S., et al., Kinetic and kinematic gait analysis in the pelvic limbs of normal and post-hemilaminectomy Dachshunds. Veterinary and Comparative Orthopaedics and Traumatology, 2016. 29(3): p. 202-8.
64. Torres, B.T., et al., The effect of marker location variability on noninvasive canine stifle kinematics. Vet Surg, 2011. 40(6): p. 715-9.
65. Wu, G., et al., ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech, 2002. 35(4): p. 543-8.
66. Tashman, S. and W. Anderst, In-vivo measurement of dynamic joint motion using high speed biplane radiography and CT: application to canine ACL deficiency. J Biomech Eng, 2003. 125(2): p. 238-45.
67. Kim, S.E., et al., In-vivo three-dimensional knee kinematics during daily activities in dogs. J Orthop Res, 2015. 33(11): p. 1603-10.
68. Chang, C.-L., C.-H. Wu, and C.-C. Lin, Quantitative Analysis of Soft Tissue Artifacts on the Thigh and Shank of the Canine Hindlimb in Passive Stifle Flexion/Extension. Unpublished master's thesis, National Taiwan University, Taipei, Taiwan., 2017.
69. Kim, S.-Y., et al., Effect of Limb Position at the Time of Skin Marker Application on Sagittal Plane Kinematics of the Dog. Veterinary and Comparative Orthopaedics and Traumatology (VCOT), 2017. 30(6): p. 438-443.
70. Voss, K., et al., Effect of dog breed and body conformation on vertical ground reaction forces, impulses, and stance times. Vet Comp Orthop Traumatol, 2011. 24(2): p. 106-12.
71. Evans, H.E. and A. De Lahunta, Miller's Anatomy of the Dog. 2013: Elsevier Health Sciences.
72. Brady, R.B., et al., Evaluation of gait-related variables in lean and obese dogs at a trot. American journal of veterinary research, 2013. 74(5): p. 757-762.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77642-
dc.description.abstract在獸醫臨床醫學領域,評估健康犬隻、骨關節或神經性疾病患犬的運動力學時, 已廣泛使用皮膚標記點為基礎的動作分析系統。然而,此方法會受到無法預測的軟 組織移動誤差影響,導致追蹤皮膚標記點時無法真實呈現骨骼運動狀況。過去人類 動作分析研究也曾報導在同一次動作若使用不同的皮膚標記點作為追蹤目標,會 計算出不同的關節角度。目前在犬隻動作分析尚無一致的皮膚標記點模型、或是標 準黏貼位置選擇。此研究目標希望評估犬後肢皮膚標記點組合的皮膚移動誤差,與 使用不同的標記點組合造成的膝關節角度偏移狀況。
研究共招募十隻混種中大型成犬,排除骨骼肌肉異常與系統性疾病後,進行電 腦斷層掃描,取得病患股骨脛骨骨骼表面模型。接著於大小腿黏貼 19 顆紅外線反 光球,並同時以透視攝影設備與紅外線攝影機拍攝後肢被動屈曲伸展運動狀況。本 研究使用模型為基礎的影像追蹤與定位技術,透過電腦斷層取得之骨頭表面模型 與膝關節透視攝影影響,取得股骨脛骨於三維空間中的位置,並將計算出的關節角 度定為參考值。將紅外線攝影機取得之不同皮膚標記點,依據人類動作分析研究之 標記點組合設計原則,分別於股骨與脛骨選擇數組適當標記點組合作為追蹤目標。 使用普氏分析(Procrustes Analysis)量化標記點組合的形狀移動與改變,將位移量、 旋轉量、縮放量與變形量作為標記點組合的皮膚移動誤差參數。接著,搭配大小腿 不同的標記點組合計算出膝關節角度,並評估計算出的角度與參考角度差異。除此 之外,本研究也使用不同的標記點組合選擇方式,選取黏貼於骨特徵點與非骨特徵 點的皮膚標記點組成標記點組合,觀察標記點組成是否影響標記點組合之整體皮 膚移動誤差。研究結果顯示使用皮膚標記點位置計算膝關節角度,在膝關節屈曲角 度超過 50% 時,計算出之屈曲/伸展、內收/外展、內轉/外轉角度有很高比例與參 考角度有顯著差異。在屈曲/伸展動作中,因關節活動度較大,誤差造成之影響相 對較小;在內收/外展動作,不同標記點組合搭配計算之關節角度差異較大,使用 位移量與旋轉量較小的股骨標記點組合搭配位移量較小的脛骨標記點組合,可以 計算出較準確的關節角度;在內轉/外轉角度中,本研究選擇的標記點組合皆高估 脛骨於膝關節屈曲時的內轉角度。除此之外,犬隻後肢細長的特徵也影響標記點組成,使符合設計原則的標記點組合數量有限。目前在犬後肢動作分析尚無統一皮膚 標記點模型,在進行研究結果比較時建議需將此差異列入考量。未來研究在進行後 肢動作分析時,建議選用誤差較少之標記點組合進行關節角度計算。
zh_TW
dc.description.abstractSkin marker-based motion analysis had been widely used in veterinary medicine for quantitative investigations of kinematics in healthy and diseases dogs. However, the precision and accuracy were compromised by the unpredictable interference of soft tissues between markers and bones, namely the Soft Tissue Artifacts (STA). Previous studies in human motion analysis have demonstrated that marker clusters with different marker locations led to discrepant joint angles when describing identical joint movement. Currently, no consistent protocol or recommended cluster composition of canine gait analysis was proposed. Therefore, the objectives of this study are to evaluate quantitatively the STA in cluster level and the effects of different marker cluster compositions on the calculated kinematics variables of canine stifle joint.
Ten adult mixed-breed dogs without history of musculoskeletal diseases and detectable abnormality during physical and orthopedic examination were enrolled in the IACUC approved study. Each patient underwent a CT scan to acquire a subject-specific volumetric data of the femur and tibia. Nine retroreflective markers were affixed to thigh and ten to shank at several anatomic and non-anatomic landmarks. A laboratory space was equipped with a single-plane video-fluoroscopy system to collect real-time fluoroscopic images of the tibiofemoral joint during movement. The testing space was also equipped with a motion analysis system to simultaneously track the retroreflective markers during tests. A subject calibration trial and three successful trials of isolated stifle passive extension movement were collected when the subjects were under general anesthesia. The true bone poses were determined using a validated model-based tracking method integrating real-time fluoroscopic images and volumetric CT data of bones, which were used to derive the standard reference of the stifle kinematics. The STA in cluster level was first studied to observe the different patterns in clusters composing with markers that were attached to anatomical or non-anatomical landmarks. Next, thigh and shank clusters were selected from all four-marker combinations with isotropy index greater than 0.5. Based on Procrustes superimposition approach for shape analysis, cluster-level STAs of each cluster composition were expressed in four variables: position, orientation, size and shape ranges, following previous studies. Clusters with smallest and largest position and orientation ranges were paired to calculate stifle joint angles in three anatomical planes. Paired t-tests were used to exam the difference between joint angles derived using different cluster compositions and the standard reference angles.
The marker composition with smallest error in the description of joint kinematics was suggested in future research and clinical gait analysis. The findings would contribute to improve our knowledge of STA in canine hindlimb and their effect on joint kinematics measurement.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:13:15Z (GMT). No. of bitstreams: 1
ntu-107-R04643010-1.pdf: 2261432 bytes, checksum: 334a8e7bfc65622c2d453c46bc57d59c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES x
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 The History of Modern Kinematic Analysis Using Motion Capture Techniques 3
2.2 Human Kinematic Motion Analysis Techniques 4
2.2.1 Non-optical Methods 4
2.2.2 Optical Methods 7
2.3 Developments in Canine Kinematic Motion Analysis 9
2.4 Soft Tissue Artifacts 11
2.4.1 Definition 11
2.4.2 Soft Tissue Artifact Assessment — Invasive Methods 12
2.4.3 Soft Tissue Artifact Assessment — Noninvasive Methods 13
2.5 Marker Clusters and STA 15
2.5.1 Marker Cluster 15
2.5.2 STA in Cluster Level 16
2.5.3 Marker Set Selection 18
2.6 Purpose 21
Chapter 3 Material and Methods 22
3.1 Subjects 22
3.2 Equipment 23
3.2.1 Computerized Tomography (CT) 23
3.2.2 Fluoroscopy Imaging 24
3.2.3 Optical Capture System 25
3.2.4 Hammock 26
3.3 Experimental Procedures 26
3.3.1 Equipment Set Up and Calibration 26
3.3.2 Transformation of the Coordinates and the Calibration Box 28
3.3.3 Subject Positioning and Skin Marker Application 29
3.3.4 Data Collection 30
3.4 Data Processing 31
3.4.1 CT-base Bone Surface Model 31
3.4.2 Skin Marker Trajectories 31
3.4.3 Model-based Tracking: Integration of CT and Dynamic Fluoroscopy 32
3.5 Data Analysis 33
3.5.1 STA in Marker Level 33
3.5.2 STA in Cluster Level 33
3.5.3 Joint Angle Derived Using Different Marker Clusters 34
3.5.4 Effects of Marker Cluster Composition on the Calculated Stifle Kinematics 36
3.5.5 Evaluation of the Effect of Marker Composition on STA in Cluster Level 36
Chapter 4 Results 38
4.1 Clinical Data 38
4.2 Marker-set Selection 39
4.3 STA in Cluster Level 40
4.4 Joint Angle Derived Using Different Marker Clusters 42
4.5 The Effect of Marker Composition on STA in Cluster Level 47
Chapter 5 Discussion 49
5.1 STA in Canine Kinematics — Methodology 49
5.2 Cluster Composition in Canine Subjects 52
5.3 Deviations in Kinematics and STA 55
5.3.1 Sagittal Plane Motions 55
5.3.2 Frontal Plane Motions 56
5.3.3 Transverse Plane Motions 57
5.4 Difference between Different Cluster Combinations 59
5.5 The Effect of Marker Composition on Cluster-Level STA 60
5.6 Limitations 61
Chapter 6 Conclusion 64
Reference 65
dc.language.isoen
dc.subject犬動作分析zh_TW
dc.subject皮膚標記點組合zh_TW
dc.subject皮膚標記點zh_TW
dc.subject軟組織移動誤差zh_TW
dc.subjectmodel-based trackingen
dc.subjectcanine kinematic analysisen
dc.subjectmarker clusteren
dc.subjectsoft tissue artifacten
dc.subjectstereophotogrammetryen
dc.subjectmarker-based motion captureen
dc.title犬隻動作分析中後肢軟組織移動誤差與標記組選擇之研究zh_TW
dc.titleHindlimb Soft Tissue Artifacts and Marker Set Selection in Canine Motion Analysisen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor林正忠(Cheng-Chung Lin)
dc.contributor.oralexamcommittee呂東武,張雅珮
dc.subject.keyword犬動作分析,軟組織移動誤差,皮膚標記點,皮膚標記點組合,zh_TW
dc.subject.keywordcanine kinematic analysis,soft tissue artifact,marker-based motion capture,model-based tracking,stereophotogrammetry,marker cluster,en
dc.relation.page68
dc.identifier.doi10.6342/NTU201801203
dc.rights.note未授權
dc.date.accepted2018-07-02
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept臨床動物醫學研究所zh_TW
顯示於系所單位:臨床動物醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-R04643010-1.pdf
  未授權公開取用
2.21 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved