Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77623
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor朱有田
dc.contributor.authorChen Hsiaoen
dc.contributor.author蕭楨zh_TW
dc.date.accessioned2021-07-10T22:12:12Z-
dc.date.available2021-07-10T22:12:12Z-
dc.date.copyright2018-08-24
dc.date.issued2018
dc.date.submitted2018-07-23
dc.identifier.citation王穎、朱有田、翁國精。2014。台灣水鹿跨域整合研究(三)。太魯閣國家公園管理處委託研究報告。52-54頁。
朱有田、孫于婷。2014。墾丁國家公園臺灣梅花鹿繁殖群基因多樣性保存及應用計畫。墾丁國家公園管理處委託研究報告。3頁。
程發和。1975。鹿與養鹿。醒華出版社,嘉義市,臺灣。144頁。
趙安雄。1988。綠島鄉志。臺東縣綠島鄉鄉公所,臺東縣,臺灣。20-21頁。
Asher, G. W., D. S. Gallagher, M. L. Tate, and C. Tedford. 1999. Hybridization between sika deer (Cervus nippon) and axis deer (Axis axis). J .Hered. Jan-Feb;90(1):236-40.
Bakhtiarizadeh, M. R., M. Ebrahimi, and E. Ebrahimie. 2011. Discovery of EST-SSRs in lung cancer: tagged ESTs with SSRs lead to differential amino acid and protein expression patterns in cancerous tissues. PLoS One. 6(11):e27118. doi: 10.1371/journal.pone.0027118
Banks, M. A., W. Eichert, and J. B. Olsen. 2003. Which genetic loci have greater population assignment power? Bioinformatics. Jul 22;19(11):1436-8.
Bogachev, O., A. Majdalawieh, X. Pan, L. Zhang, H. S. Ro. 2011. Adipocyte enhancer-binding protein 1 (AEBP1) (a novel macrophage proinflammatory mediator) overexpression promotes and ablation attenuates atherosclerosis in ApoE (-/-) and LDLR (-/-) mice. Mol. Med. Sep-Oct;17(9-10):1056-64. doi: 10.2119/molmed.2011.00141. Epub 2011 Jun 14.
Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32, 314–331.
Brooke, V. 1878. On the classification of the Cervidae, with a synopsis of the existing species. Proc. Zool. Soc. Lond. 883-928.
Cabart, P., H. K. Chew, and S. Murphy. 2004. BRCA1 cooperates with NUFIP and P-TEFb to activate transcription by RNA polymerase II. Oncogene. Jul 8;23(31):5316-29.
Casillas, S., and A. Barbadilla. 2017. Molecular Population Genetics. Genetics. 205(3):1003-1035. doi: 10.1534/genetics.116.196493
Chaisson, M. J., R. K. Wilson, and E. E. Eichler. 2015. Genetic variation and the de novo assembly of human genomes. Nat. Rev. Genet. 16(11):627-640. doi: 10.1038/nrg3933
Comincini, S., M. Sironi, C. Bandi, C. Giunta, M. Rubini, and F. Fontana. 1996. RAPD analysis of systematic relationships among the Cervidae. Heredity. Mar;76 (Pt 3):215-221.
Deng, T., C. Pang, X. Lu, P. Zhu, A. Duan, Z. Tan, J. Huang, H. Li, M. Chen, and X. Liang. 2016. De novo transcriptome assembly of the chinese swamp buffalo by RNA sequencing and SSR marker discovery. PLoS One. 11(1):e0147132. doi: 10.1371/journal.pone.0147132
Dieringer, D. and C. Schlštterer. 2003. Microsatellite analyser (MSA): a platform independent analysis tool for large microsatellite data sets. Mol. Ecol. Notes. 3 (1), 167-169
El-Jaafari, H. A. A., J. M. Panandam, I. Idris, and S. S, Sriaj. 2008. RAPD analysis of three deer species in Malaysia. Asian-Australas. J. Anim. Sci. 21:1233-1237.
Evanno, G., S. Regnaut, and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14(8):2611-2620. doi: 10.1111/j.1365-294X.2005.02553.x
Frankham, R. 2003. Genetics and conservation biology. C. R. Biol. 326:22-29. doi: 10.1016/s1631-0691(03)00023-4
Goldstein, D. B. and C. Schlötterer. 1999. Microsatellite - evolution and application. Oxford University Press, Oxford.
Goodman, S. J., N. H. Barton, G. Swanson, K. Abernethy, J. M. Pemberton. 1999. Introgression through rare hybridization: A genetic study of a hybrid zone between red and sika deer (genus Cervus) in Argyll, Scotland. Genetics. May;152(1):355-71.
Groves, C. P. and P. Grubb. 1987. Relationships of living deer. In: C. M. Wemmer, editor, Biology and management of the Cervidae. Smithsonian Institution Press, Washington and London. p.21-59.
Grubb, P. 1993. Mammal species of the world: a taxonomic and geographic reference. In: D. E. Wilson and D. M. Reeder, editors, Smithsonian Institution Press, Washington and London. p.284-392.
Guha, S., and V. K. Kashyap. 2005. Development of novel heminested PCR assays based in mitochondrial 16s rRNA gene for idenetification of seven pecora species. BMC Genet. 6:42-49.
Guo, L. N., and X. F. Gao. 2017. Genetic diversity and population structure of Indigofera szechuensis complex (Fabaceae) based on EST-SSR markers. Gene. 624:26-33. doi: 10.1016/j.gene.2017.04.047
Hale, M. L., T. M. Burg, and T. E. Steeves. Sampling for microsatellite-based population genetic studies: 25 to 30 individuals per population is enough to accurately estimate allele frequencies. PLoS One. 7(9):e45170. doi: 10.1371/journal.pone.0045170. Epub 2012 Sep 12.
Harris, R.B. 2015. Cervus nippon. The IUCN Red List of Threatened Species 2015: e.T41788A22155877. http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T41788 A22155877.en.
He, Y., Z. H. Wang, and X. M. Wang. 2014. Genetic diversity and population structure of a Sichuan sika deer (Cervus sichuanicus) population in Tiebu Nature Reserve based on microsatellite variation. Dongwuxue Yanjiu 35(6):528-536. doi: 10.13918/j.issn.2095-8137.2014.6.528
Herrero-Medrano, J. M., H. J. Megens, R. P. Crooijmans, J. M. Abellaneda, and G. Ramis. 2013. Farm-by-farm analysis of microsatellite, mtDNA and SNP genotype data reveals inbreeding and crossbreeding as threats to the survival of a native Spanish pig breed. Anim. Genet. 44(3):259-266. doi: 10.1111/age.12001
Huang, J., Y. Z. Li, L. M. Du, B. Yang, F. J. Shen, H. M. Zhang, Z. H. Zhang, X. Y. Zhang, and B. S. Yue. 2015. Genome-wide survey and analysis of microsatellites in giant panda (Ailuropoda melanoleuca), with a focus on the applications of a novel microsatellite marker system. BMC Genomics. 16:61. doi: 10.1186/s12864-015-1268-z
Hyodo, T., S. Ito, H. Hasegawa, E. Asano, M. Maeda, T. Urano, M. Takahashi, M. Hamaguchi, and T. Senga. 2012. Misshapen-like kinase 1 (MINK1) is a novel component of striatin-interacting phosphatase and kinase (STRIPAK) and is required for the completion of cytokinesis. J. Biol. Chem. Jul 20;287(30):25019-29. doi: 10.1074/jbc.M112.372342. Epub 2012 Jun 4.
Kalinowski, S.T., M. L. Taper, and T. C. Marshall. 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16: 1099-1106.
Khimoun, A., A. Ollivier, B. Faivre, and S. Garnier. 2017. Level of genetic differentiation affects relative performances of expressed sequence tag and genomic SSRs. Mol. Ecol. Resour. 17(5):893-903. doi: 10.1111/1755-0998.12642
Klintschar, M., E. M. Dauber, U. Ricci, N. Cerri, U. D. Immel, M. Kleiber, and W. R. Mayr. 2004. Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats. Electrophoresis. 25(20):3344-3348. doi: 10.1002/elps.200406069
Koressaar, T. and M. Remm. 2007. Enhancements and modifications of primer design program Primer3. Bioinformatics. 23(10):1289-91
Krutzen, M., I. Beasley, C. Y. Ackermann, D. Lieckfeldt, A. Ludwig, G. E. Ryan, L. Bejder, G. J. Parra, R. Wolfensberger, and P. B. S. Spencer. 2018. Demographic collapse and low genetic diversity of the Irrawaddy dolphin population inhabiting the Mekong River. PLoS One. 13(1):e0189200. doi: 10.1371/journal.pone.0189200
Leslie Jr., D. M. 2011. Rusa unicolor (Artiodactyla: Cervidae). Mammalian Species. 43(1): 1-30.
Li, K., J. Geng, J. Qu, Y. Zhang, and S. Hu. 2010. Effectiveness of 10 polymorphic microsatellite markers for parentage and pedigree analysis in plateau pika (Ochotona curzoniae). BMC Genet. 11:101. doi: 10.1186/1471-2156-11-101
Li, Y. C., A. B. Korol, T. Fahima, and E. Nevo. 2004. Microsatellites within genes: structure, function, and evolution. Mol. Biol. Evol. 21(6):991-1007. doi: 10.1093/molbev/msh073
Li, Y. H., H. P. Chu, Y. N. Jiang, C. Y. Lin, S. H. Li, K. T. Li, G. J. Weng, C. C. Cheng, D. J. Lu, and Y. T. Ju. 2014. Empirical selection of informative microsatellite markers within co-ancestry pig populations is required for improving the individual assignment efficiency. Asian-Australas J. Anim. Sci. May; 27(5): 616–627. doi: 10.5713/ajas.2013.13365
Lu, T., Y. Sun, Q. Ma, M. Zhu, D. Liu, J. Ma, Y. Ma, H. Chen, and W. Guan. 2016. De novo transcriptomic analysis and development of EST-SSR markers in the Siberian tiger (Panthera tigris altaica). Mol. Genet. Genomics 291(6):2145-2157. doi: 10.1007/s00438-016-1246-4
Madesis, P., I. Ganopoulos, and A. Tsaftaris. 2013. Microsatellites: evolution and contribution. Methods. Mol. Biol. 1006:1-13. doi: 10.1007/978-1-62703-389-3_1.
Maqbool, N. J., M. L. Tate, K. G. Dodds, R. M. Anderson, K. M. McEwan, H. C. Mathias, J. C. McEwan, and R. J. Hall. 2007. A QTL study of growth and body shape in the inter-species hybrid of Pere David's deer (Elaphurus davidianus) and red deer (Cervus elaphus). Anim. Genet. 38(3):270-276. doi: 10.1111/j.1365-2052.2007.01597.x
McCullough, D. R. and L. L. Severinghaus. 1998. Recovery program for the endangered Taiwan sika deer. Z. Zomborsky, editor, Advances in deer biology. Proc. 4th International Deer Bio. Cong. Kaposvar, Hungary. p.177-184.
Metzgar, D., J. Bytof, and C. Wills. 2000. Selection Against Frameshift Mutations Limits Microsatellite Expansion in Coding DNA. Genome Res. Jan; 10(1): 72–80.
Michener, C. D., J. O. Corliss, R. S. Cowan, P. H. Raven, C. W. Sabrosky, D. S. Squires, and G. W. Wharton. 1970. Systematics in support of biological research. Division of Biology and Agriculture National Research Council. Washington, DC.
Mu, X., G. Hou, H. Song, P. Xu, D. Luo, D. Gu, M. Xu, J. Luo, J. Zhang, and Y. Hu. 2015. Transcriptome analysis between invasive Pomacea canaliculata and indigenous Cipangopaludina cahayensis reveals genomic divergence and diagnostic microsatellite/SSR markers. BMC Genet. 16:12. doi: 10.1186/s12863-015-0175-2
Muir, P. D., G. Semiadi, G. W. Asher, T. E. Broad, M. L. Tate, and T. N. Barry. 1997. Sambar deer (Cervus unicolor) x red deer (C. elaphus) interspecies hybrid. J. Hered. Sep-Oct;88(5):366-372.
Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.
Nguyen, T. T., W. S. Park, B. O. Park, C. Y. Kim, Y. Oh, J. M. Kim, H. Choi, T. Kyung, C. H. Kim, G. Lee, K. M. Hahn, T. Meyer, and W. D. Heo. 2016. PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front. Proc. Natl. Acad. Sci. U.S.A. Sep 6;113(36):10091-6. doi: 10.1073/pnas.1604720113. Epub 2016 Aug 23.
Ndiaye, N. P., A. Sow, G. K. Dayo, S. Ndiaye, G. J. Sawadogo, and M. Sembene. 2015. Genetic diversity and phylogenetic relationships in local cattle breeds of Senegal based on autosomal microsatellite markers. Vet. World. 8(8):994-1005. doi: 10.14202/vetworld.2015.994-1005
O'Brien, S. J. 1994. A role for molecular genetics in biological conservation. Proc. Natl. Acad. Sci. Jun 21; 91(13): 5748–5755.
Oklander, L. I., C. I. Mino, G. Fernandez, M. Caputo, and D. Corach. 2017. Genetic structure in the southernmost populations of black-and-gold howler monkeys (Alouatta caraya) and its conservation implications. PLoS One. 12(10):e0185867. doi: 10.1371/journal.pone.0185867
Peakall, R. and P. E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 28, 2537-2539.
Pei, J.C. and Y. J. Liang. 2015. The Formosan sika deer: ots past and present status. Taiwan Natural Science. 34(1):42-49.
Pita-Thomas, W., G. Barroso-Garcia, V. Moral, A. R. Hackett, V. Cavalli, and M. Nieto-Diaz. 2017. Identification of axon growth promoters in the secretome of the deer antler velvet. Neuroscience. 340:333-344. doi: 10.1016/j.neuroscience.2016.10.063
Pitra, C., J. Fickel, E. Meijaard, and P. C. Groves. 2004. Evolution and phylogeny of old world deer. Mol. Phylogenet. Evol. 33(3):880-895. doi: 10.1016/j.ympev.2004.07.013
Pontius, J. U., L. Wagner, and G. D. Schuler. 2003. The NCBI Handbook. Chapter 21 UniGene: A Unified View of the Transcriptome. https://www.ncbi.nlm.nih.gov/books/NBK21083/#A858
Primmer, C.R., M. T. Koskinen, and J. Piironen. 2000. The one that did not get away: individual assignment using microsatellite data detects a case of fishing competition fraud. Proc. Biol. Sci. Aug 22; 267(1453): 1699–1704. doi: 10.1098/rspb.2000.1197
Randi, E., N. Mucci, F. Claro-Hergueta, A. Bonnet, and E. J. P. Douzery. 2001. A mitochondrial DNA control region phylogeny of the Cervinae: speciation in Cervus and implications for conservation. Anim. Conserv. 1-11. doi: 10.1017/S1367943001001019.
Rousset, F. 2008. genepop'007: a complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. Jan;8(1):103-6. doi: 10.1111/j.1471-8286.2007.01931.x.
Schlötterer, C. 2000. Evolutionary dynamics of microsatellite DNA. Chromosoma. 109(6):365-371. doi: 10.1007/s004120000089
Schlötterer, C. 2004. The evolution of molecular markers - just a matter of fashion? Nat. Rev. Genet. Jan;5(1):63-69.
Senn, H. V., and J. M. Pemberton. 2009. Variable extent of hybridization between invasive sika (Cervus nippon) and native red deer (C. elaphus) in a small geographical area. Mol. Ecol. 18(5):862-876. doi: 10.1111/j.1365-294X.2008.04051.x
Soulé, M. E. 1985. What is conservation Biology? Bioscience. 35:727-734.
Tsai, R. Y. and R. D. McKay. 2002. A nucleolar mechanism controlling cell proliferation in stem cells and cancer cells. Genes Dev. Dec 1;16(23):2991-3003.
Varshney, R. K., A. Graner, and M. E. Sorrells. 2005. Genic microsatellite markers in plants: features and applications. Trends Biotechnol. 23(1):48-55. doi: 10.1016/j.tibtech.2004.11.005
Vieira, M. L., L. Santini, A. L. Diniz, and F. Munhoz Cde. 2016. Microsatellite markers: what they mean and why they are so useful. Genet. Mol. Biol. 39(3):312-328. doi: 10.1590/1678-4685-GMB-2016-0027
Vislobokova, I. A., A. Y. Godina. 1993. Application of the structural analysis of frontal appendages for determining the systematic position of fossil higher ruminants. Paleontol. J. 108-123.
Waits, L. P., G. Luikart, and P. Taberlet. 2001. Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol. Ecol. Jan;10(1):249-56.
Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1):57-63. doi: 10.1038/nrg2484
Wilson, D. E., and D. M. Reeder. editors, Mammal Species of the World. 3rd ed. 2005. Johns Hopkins University Press, Baltimore, MD. p.652-71.
Yang, W., J. Zheng, B. Jia, H. Wei, G. Wang, and F. Yang. 2018. Isolation of novel microsatellite markers and their application for genetic diversity and parentage analyses in sika deer. Gene. 643:68-73. doi: 10.1016/j.gene.2017.12.007
Yao, B., Y. Zhao, Q. Wang, M. Zhang, M. Liu, H. Liu, and J. Li. 2011. De novo characterization of the antler tip of Chinese Sika deer transcriptome and analysis of gene expression related to rapid growth. Mol. Cell. Biochem. May;364(1-2):93-100. doi: 10.1007/s11010-011-1209-3. Epub 2011 Dec 25.
Yen, S. C., Y. Wang, and H. Y. Ou. 2013. Habitat of the Vulnerable Formosan sambar deer Rusa unicolor swinhoii in Taiwan. Oryx. 48(02):232-240. doi: 10.1017/s0030605312001378
Zhang, B., M. Li, Z. Zhang, B. Goossens, L. Zhu, S. Zhang, J. Hu, M. W. Bruford, and F. Wei. 2007. Genetic viability and population history of the giant panda, putting an end to the 'evolutionary dead end'? Mol. Biol. Evol. 24(8):1801-1810. doi: 10.1093/molbev/msm099
Zimin, A. V., A. L. Delcher, L. Florea, D. R. Kelley, M. C. Schatz, D. Puiu, F. Hanrahan, G. Pertea, C. P. Van Tassell, T. S. Sonstegard, G. Marcais, M. Roberts, P. Subramanian, J. A. Yorke, and S. L. Salzberg. 2009. A whole-genome assembly of the domestic cow, Bos taurus. Genome Biol. 10(4):R42. doi: 10.1186/gb-2009-10-4-r42
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77623-
dc.description.abstract臺灣水鹿(Rusa unicolor swinhoii)與臺灣梅花鹿(Cervus nippon taiouanus)皆為臺灣原生之鹿科動物。臺灣鹿茸產業中常使用上述兩種鹿生產鹿茸,其中以水鹿鹿茸為主。而早期業者因紅鹿鹿角碩大,常將紅鹿與梅花鹿雜交配種以提高梅花鹿茸產量。是否在畜養的過程中有紅鹿基因滲入到本土鹿族群中,過去還未有可進行相關遺傳檢測與監控DNA分子標記。
動物因環境變遷、人為等因素導致異種雜交的情形並不少見,檢測時常使用的分子標記為微衛星標記(microsatellite markers)。微衛星又稱為簡單重複序列(simple sequence repeats, SSRs),以1至6個核苷酸作為重複單元並連續出現數次,此類序列廣泛分佈於基因體中,包含表現序列(expressed sequence tag)與非表現序列之中。微衛星在基因體中的高豐富度、高多形性且為共顯性,使其成為最常被使用的分子標記之一。依微衛星標記的序列來源,可分為基因體微衛星(genomic SSR)與表現序列微衛星標記(EST-derived SSR, EST-SSR),其中基因體微衛星的序列在跨物種的基因型鑑定常因引子的低保守性導致增幅困難,相形之下表現序列微衛星因其源於表現序列,在演化上有較高的保守性,使在跨物種鑑定時有更高的基因型鑑定成功率。
本試驗主要的目的在獲得臺灣水鹿鹿茸轉錄體(transcriptome)mRNA序列、篩選具多形性之表現序列微衛星標記,並將這些微衛星標記用於臺灣水鹿、臺灣梅花鹿、商業鹿場家養紅鹿以及雜交個體的基因型檢定,以檢測EST-SSR跨物種轉移能力與上述三種鹿種間雜交的情形。以次世代定序所得之水鹿鹿茸cDNA庫設計出55組可增幅微衛星基因座的引子對,並驗證其在水鹿DNA可增幅出專一性且具有核苷酸重複單元的PCR產物。後以45隻臺灣水鹿、30隻臺灣梅花鹿與15隻臺灣家養紅鹿進行基因型鑑定,分別有21個、11個與17個基因座在這些鹿種具多形性,其中使用分別在三鹿種具多形性之25個微衛星標記進行後續統計分析。
結果顯示三鹿種間有顯著的分化指數(FST ≧ 0.3798),顯示此套微衛星標記組具顯著區分三種鹿種的效力。為測試此套微衛星組在檢測雜交的效力,另使用4隻從外表型判斷為紅鹿、依粒線體DNA控制區域判斷為紅鹿、Y染色體鋅指序列判斷為臺灣梅花鹿之個體進行基因型鑑定與分派檢定。使用主座標分析(principal coordinates analysis)發現在解釋能力為58.16%之下,三種鹿的個體皆被正確分配到同一物種的群中,而其中兩個雜交個體座落位置介於紅鹿群與梅花鹿群中。以Structure軟體進行分派檢定,進一步分析此兩個雜交個體的雜交程度,其祖先分別有0.43與0.30的比例被分配到梅花鹿,證明本次開發的微衛星標記組可檢測出雜交個體之雜交程度。分別以正確率(percentage of correctly assigned)與分化係數對單個標記進行排序分別挑選出10個標記進行分派檢定,亦具有檢驗雜交程度的能力,但依何種標準排序較佳仍須未來評估。
在基因的編碼序列中具多形性的EST-SSR,經轉譯後會產生不同長度、不同胺基酸序列的胜肽。本研究篩選出具多形性、且EST-SSR座落於編碼序列中之基因座,各個對偶基因經預測轉譯後之胺基酸序列,未發生閱讀框架移動,但胺基酸序列確實因微衛星序列的重複次數不同而產生蛋白質分子量多形性。是否這些EST-SSR多型性影響蛋白質功能,需要進一步的探討。
本研究開發的25個多形性微衛星標記,可用於研究水鹿、梅花鹿與紅鹿之間的物種鑑別、基因交流與雜交檢定,亦可作為家養鹿科動物的遺傳結構分析與育種管理。未來將可被用來探討EST-SSR多型性是否造成特定蛋白質功能性的差異,作為預測鹿茸產量的分子標記。另外,所開發的標記未來可被利用在臺灣本土鹿種的保育生物學研究。
zh_TW
dc.description.abstractFormosan sambar (Rusa unicolor swinhoii) and Formosan sika deer (Cervus nippon taiouanus), both deer are native to Taiwan. Formosan sambar is classified into the second category of protected species. While, Formosan sika deer was extinct in wild before 1969, and the captive sika deer in Yen-shan zoo were reintroduced into the wild in 1994 and grew a stable population in Kenting National Park. At the same time, since the antler velvet is a precious traditional Chinese medicine, the two deer species are also domesticated for antler velvet production and keep in deer farm.
The red deer (Cervus elaphus) were introduced and cross breed with sika deer for better antler velvet performance by Taiwan deer farmers. However, it leads to a concern that whether the gene flow of red deer had introgressed into native sika deer. Still now, absent of effective nuclear genetic markers with cross-species transferability had hampered the cross-breeding diagnosis between different deer species.
Simple sequence repeats (SSRs) are short sequence of nucleotides tandemly repeat in genome DNA, including coding sequence and non-coding sequence. SSRs are powerful molecular markers due to its high genomic abundance, high level of polymorphism and co-dominance inheritance. Genomic SSRs has been limited for the low reproducibility when performing cross-species genotyping by PCR amplification. Hence, the highly conserved transcriptome-derived SSR markers have been developed from expressed sequence tags (EST-SSRs) for its high transferability to related species and thereby serving as reliable markers and also for their functional study.
The aim of this study is to obtain polymorphic EST-SSRs from sambar antler velvet and develop a set of microsatellite marker system for identifying sambar, sika deer, red deer, and their crossbreeds. The cDNA sequences were obtained from antler velvet mRNA by reverse transcription and Next Generation Sequencing. A total of 65,074 unigenes was assembled. Primer pairs for amplifying EST-SSRs are designed from the sequence data. After validation of the PCR specific amplification, 55 loci were selected. The capillary electrophoresis was applied for individual genotyping by amplifying the loci with fluorescent labeled primer pairs.
After the genotype screening of three deer species, we found that 21 loci showed polymorphism among 45 sambars, 13 loci among 30 sika deer, and 17 loci among 15 red deer, respectively. The structure analysis, F-statistic (FST) analysis, and Principal Coordinates Analysis (PCoA) were applied to examine the ability of the selected loci to distinguish these 3 deer species. In addition, two of red deer and sika hybrid individuals were chosen as a cross-breeding control. The individuals among 3 species were clearly assigned to their own populations both in structure and PCoA. While the two cross-breed deer showed the porportion of 0.43 and 0.30 being assigned to sika population in structure analysis. Besides, these 2 individuals located at positions between sika deer group and red deer group in PCoA. These results indicated that the set of newly developed polymorphic EST-SSR marker system could diagnose the deer species and the hybridization.
With the polymorphism of DNA sequence, whether the functions of gene will be influence still need further studies. The unigenes, which the newly-developed microsatellite markers located, were annotated against NCBI nt database. The deduced amino acid sequences of different alleles at the CDS-derived locus were aligned with the annotated gene. Though the polymorphism of SSRs, there was no frameshift in the sequence but the different repeat of specific amino acid.
A set of EST-SSR marker system for genotyping sambar, sika deer, and red deer has been developed. In the present study, we proved the set of marker system can be applied for diagnosis the sambar, sika deer, red deer, and their hybrids.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:12:12Z (GMT). No. of bitstreams: 1
ntu-107-R05626010-1.pdf: 2641655 bytes, checksum: 06fb5eeadda56031b827d85914b93a82 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
謝誌……………………………………………………………………………………I
中文摘要……………………………………………………………………………..III
Abstract………………………………………………………………………………VI
壹、前言………………………………………………………………………………1
貳、文獻探討…………………………………………………………………………2
一、臺灣水鹿………………………………………………………………………2
(一)鹿亞科分類現況…………………………………………………………2
(二)水鹿分類現況……………………………………………………………2
(三)野生臺灣水鹿保育……………………………………………………....3
(四)野生臺灣水鹿的遺傳結構分析…………………………………………3
二、臺灣梅花鹿……………………………………………………………………3
(一)臺灣梅花鹿分類現況……………………………………………………3
(二)臺灣梅花鹿的復育………………………………………………………4
(三)臺灣梅花鹿族群現況.. ………………………………………………….4
三、臺灣養鹿產業…………………………………………………………………5
(一)家養水鹿管理法源依據…….…………………………………………...5
(二)鹿茸產業所面對之威脅…………………………………………………5
(三)臺灣本土鹿茸認同之利基.. …………………………………….………6
四、鹿亞科雜交研究………………………………………………………………6
(一)鹿亞科跨物種雜交案例…………………………………………………6
(二)臺灣鹿茸產業與外來鹿種的引入………………………………………7
五、分子標記在遺傳學分析之重要性……………………………………………7
(一)遺傳學分析之優勢………………………………………………………7
(二)分子標記應用於遺傳學之進程…………………………………………8
(三)分子標記的應用…………………………………………………………9
六、微衛星標記的原理與應用…………………………………………………..10
(一)造成微衛星多形性的突變與其演化……………………………….….10
(二)微衛星在動物的應用……………………………………………….….11
七、表現序列標籤與表現序列微衛星……………………………………….….11
(一)表現序列標籤……………………………………………………….….12
(二)表現序列微衛星與基因組微衛星之比較………………………….….12
(三)表現序列微衛星的應用…………………………………………….….13
參、材料與方法……………………………………………………………………..14
一、水鹿與梅花鹿之樣本採集與保存…………………………………………..14
(一)水鹿鹿茸組織收集與保存………………………………………….….14
(二)梅花鹿血樣收集與保存………………………………………….…….14
二、水鹿與梅花鹿之DNA萃取………………………………………………...14
(一)水鹿鹿茸組織樣本DNA萃取………………………………………...14
(二)水鹿、梅花鹿血液樣本DNA萃取…………………………………...15
三、水鹿mRNA序列取得:次世代從頭組裝RNA定序……………………..16
(一)水鹿鹿茸組織RNA萃取……………………………………………...16
(二)水鹿次世代定序單次定序片段組裝…………………………………..16
四、水鹿unigene功能性註解…………………………………………………...16
(一)NR………………………………………………………………………16
(二)COG…………………………………………………………………….17
(三)GO………………………………………………………………………17
五、利用水鹿RNA定序結果開發微衛星標記………………………………...17
(一)序列之微衛星點位搜尋與聚合酶連鎖反應引子設計………………..17
(二)引子序列與微衛星點位之篩選………………………………………..17
六、聚合酶連鎖反應增幅微衛星點位…………………………………………..18
(一)引子增幅專一性片段之能力測試……………………………………..18
(二)引子螢光染劑標記……………………………………………………..18
(三)螢光標記引子煉合溫度測試與水鹿族群之微衛星基因座增幅……..18
七、毛細管電泳送樣與結果分析………………………………………………..19
(一)毛細管電泳樣品配置…………………………………………………..19
(二)毛細管電泳結果分析…………………………………………………..19
八、水鹿族群微衛星基因座多形性資訊分析…………………………………..20
(一)微衛星基因座資訊含量………………………………………………..20
(二)微衛星基因座觀測雜合度、預期雜合度與哈地-溫伯格平衡檢定….20
(三)個體鑑別率……………………………………………………………..20
九、微衛星基因型鑑定與多形性分析-以梅花鹿為樣本……………………….21
(一)引子增幅專一性片段之能力測試……………………………………..21
(二)梅花鹿族群之微衛星基因座增幅……………………………………..21
(三)毛細管電泳送樣與結果分析…………………………………………..21
(四)梅花鹿族群微衛星基因座多形性資訊………………………………..22
十、微衛星基因型鑑定與多形性分析-以紅鹿與雜交個體為樣本…………….22
(一)紅鹿樣本之選擇與初步物種鑑別……………………………………..22
(二)紅鹿族群與雜交鹿之微衛星基因座增幅……………………………..22
(三)毛細管電泳送樣與結果分析…………………………………………..22
(四)紅鹿族群微衛星標記多形性資訊……………………………………..23
十一、多形性微衛星標記對偶基因選殖………………………………………..23
十二、跨物種微衛星基因座於不同物種間之遺傳距離與分化………………..24
(一)遺傳距離計算…………………………………………………………..24
(二)分化係數計算與顯著檢定……………………………………………..24
(三)主座標分析……………………………………………………………..25
(四)三鹿種族群遺傳分派檢定……………………………………………..25
十三、雜交檢測之微衛星標記挑選……………………………………………..26
(一)標記正確率計算………………………………………………………..26
(二)標記分化係數計算……………………………………………………..26
(三)標記排序與分派檢定…………………………………………………..26
十四、多形性表現序列微衛星之功能性註解與胺基酸序列多形性…………..27
(一)多形性表現序列微衛星功能註解……………………………..………27
(二)編碼區微衛星之多形性與胺基酸序列多形性………………………..27
肆、結果………………………………………..…………………………………....28
一、水鹿鹿茸mRNA定序………………………………………………………28
(一)RNA抽取品質檢定……………………………………………………28
(二)次世代定序與組裝……………………………………………………..28
二、水鹿unigene功能性註解…………………………………………………...29
(一)NR資料庫註解………………………………………………………...29
(二)COG資料庫註解………………………………………………………29
(三)GO資料庫註解………………………………………………………...29
三、水鹿表現序列微衛星搜尋與引子設計……………………………………..29
(一)表現序列微衛星搜尋…………………………………………………..29
(二)候選表現序列微衛星引子設計與專一性PCR產物測試……………30
(三)螢光引子最適煉合溫度測試…………………………………………..30
四、水鹿表現序列微衛星基因型鑑定與分析…………………………………..30
五、梅花鹿微衛星基因型鑑定與分析…………………………………………..30
(一)表現序列微衛星標記於梅花鹿之跨物種增幅能力評估……………..31
(二)梅花鹿微衛星標記多形性資訊分析…………………………………..31
六、紅鹿微衛星基因型鑑定與分析……………………………………………..32
(一)表現序列微衛星標記於紅鹿之跨物種增幅能力評估………………..32
(二)紅鹿微衛星標記多形性資訊分析……………………………………..32
七、跨物種微衛星基因座於物種間之遺傳距離與族群分化…………………..32
(一)跨物種遺傳應用之表現序列微衛星標記挑選………………………..32
(二)遺傳距離與分化係數檢定……………………………………………..33
(三)主座標分析……………………………………………………………..33
(四)分派檢定………………………………………………………………..34
八、雜交檢測之微衛星標記挑選與分派效力評估……………………………..34
九、多形性表現序列微衛星之功能性註解……………………………………..34
(一)於水鹿、梅花鹿與紅鹿具多形性之表現序列微衛星………….…….34
(二)編碼區微衛星之多形性與胺基酸多形性……………………………..35
伍、討論……………………………………………………………………………..37
一、水鹿鹿茸mRNA次世代定序與組裝………………………………………37
二、unigene功能性註解…………………………………………………………37
三、水鹿表現序列之微衛星開發………………………………………………..38
四、表現序列微衛星序列於水鹿、梅花鹿與紅鹿之多形性…………………..38
五、表現序列微衛星標記於水鹿、梅花鹿與紅鹿之間的物種鑑別與雜交檢定
…………………..……………………………………………………………39
六、多形性微衛星標記於雜交檢測應用之挑選與評估………………………..39
七、表現序列微衛星多形性對基因功能的可能影響…………………………..41
陸、結論……………………………………………………………………………..44
柒、參考文獻………………………………………………………………………..45

表次
表1、水鹿樣本資訊………………………………………………………………...55
表2、梅花鹿樣本資訊……………………………………………………………...56
表3、紅鹿樣本資訊………………………………………………………………...57
表4、本次次世代定序結果與品質檢定…………………………………………...58
表5、本次次世代定序組裝結果…………………………………………………...58
表6、螢光標記之所有引子對……………………………………………………...59
表7、水鹿微衛星多形性資訊分析………………………………………………...64
表8、梅花鹿微衛星多形性資訊分析……………………………………………...65
表9、紅鹿微衛星多形性資訊分析………………………………………………...66
表10、多形性微衛星標記於三鹿種中之所有對偶基因頻率…………………….67
表11、FST值、FST族群分化顯著檢定與Nei’s DA遺傳距離成對檢定………….71
表12、雜交個體之推論祖先比例………………………………………………….71
表13、25個多形性微衛星標記個別分化係數與正確率…………………………72
表14、多形性微衛星標記與註解基因…………………………………………….73

圖次
圖1、定序組裝結果長度…………………………………………………………...76
圖2、Unigene與NR資料庫比對結果…………………………………………….77
圖3、COG資料庫註解…………………………………………………………….78
圖4、GO資料庫註解………………………………………………………………78
圖5、不同微衛星重複單元數量分佈……………………………………………...79
圖6、主座標分析二維座標圖……………………………………………………...79
圖7、25個微衛星標記進行94隻個體分派為三群之檢定………………………80
圖8、25個微衛星標記進行94隻個體分派檢定之delta K值分佈圖…………..81
圖9、25個微衛星標記進行94隻個體分派為兩群之檢定………………………82
圖10、依正確率挑選之10個微衛星標記進行94隻個體分派之檢定………….83
圖11、依分化係數挑選之10個微衛星標記進行94隻個體分派之檢定……….84
圖12、編碼序列微衛星胺基酸序列多形性……………………………………….85
dc.language.isozh-TW
dc.title水鹿表現序列微衛星開發與跨物種基因型鑑定之遺傳研究應用zh_TW
dc.titleDevelopment of EST-SSR markers derived from sambar and their application on cross-species phylogenetic researchen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊瀅臻,黃秀琳,姜延年
dc.subject.keyword表現序列,表現序列微衛星,水鹿,梅花鹿,紅鹿,鹿茸,zh_TW
dc.subject.keywordexpressed sequence tag,EST-SSR,sambar deer,sika deer,red deer,deer velvet,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201801700
dc.rights.note未授權
dc.date.accepted2018-07-24
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05626010-1.pdf
  目前未授權公開取用
2.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved