請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77602完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛文証 | |
| dc.contributor.author | Chiao-Hui Chou | en |
| dc.contributor.author | 周巧慧 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:11:03Z | - |
| dc.date.available | 2021-07-10T22:11:03Z | - |
| dc.date.copyright | 2018-08-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-27 | |
| dc.identifier.citation | 參考文獻
[1] P. G. Hewitt, Conceptual physics, 11th edition, Addison-Wesley (2010). [2] M. N. Baibich, J. Broto, A. Fert, F. N. Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, and J. Chazelas, 'Giant magnetoresistance of (001) Fe/(001) Cr magnetic superlattices', Phys. Rev. Lett., 61, 2472 (1988). [3] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, 'Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange', Phys. Rev. B, 39, 4828-4830 (1989). [4] Ikhtiar, H. Sukegawa, X. Xu, M. Belmoubarik, H. Lee, S. Kasai, and K. Hono,' Giant tunnel magnetoresistance in polycrystalline magnetic tunnel junctions with highly textured MgAl2O4(001) based barriers', Appl. Phys. Lett., 112, 022408 (2018). [5] M. JulliIre, ' Tunneling between ferromagnetic films', Phys. Lett. A, 54, 225(1975). [6] A. Hirohata, H. Sukegawa, H. Yanagihara, I. Žuti´c, T. Seki, S. Mizukami, and R. Swaminathan,'Roadmap for emerging materials for spintronic device applications',IEEE Trans. Magn., 0018-9464c (2015). [7] A. D. Kent and D. C. Worledge, 'A new spin on magnetic memories ',Nature,Nano., 10 ,187-191,(2015). [8] D. Jiles, Introduction to magnetism and magnetic materials, second edition, Taylor & Francis (2016). [9] A. Fert, 'Nobel lecture: origin, development, and future of spintronics', Rev. Mod. Phys., 80, 1517 (2008). [10] G. Tatara, H. Kohno, 'Theory of current-driven domain wall motion: spin transfer versus momentum transfer', Phys. Rev. Lett., 92, 086601 ,(2004). [11] W. K. Chen, The electrical engineering handbook, Elsevier Academic Press, (2005). [12] G. Cavalleri, G. Spavieri, G. Spinelli, 'The ampere and biot-savart force laws', Eur. J. Phys., 17, 205,(1996). [13] S. T. Thornton, and A. Rex, Modern physics for scientists and engineers, 4th edition, Cengage Learning, New York (2013). [14] B. Thaller, The Dirac equation, Springer, New York (1993). [15] J. C. Slonczewski, 'Current-driven excitation of magnetic multilayers', J. Magn. Magn. Mater., 159, L1-L7 (1996). [16] L. Berger, 'Emission of spin waves by a magnetic multilayer traversed by a current', Phys. Rev. B, 54, 9353 (1996). [17] J. A. Katine, F. J. Albert, and R. A. Buhrman, 'Current-driven magnetization reversal and spin-wave excitations in Co/Cu/Co pillars' Phys. Rev. Lett., 84, 3149 (2000). [18] T. Ishikawa, T. Marukame, H. Kijima, K.I. Matsuda, T. Uemura, M. Arita, and M. Yamamoto, 'Spin-dependent tunneling characteristics of fully epitaxial magnetic tunneling junctions with a full-Heusler alloy Co2MnSi thin film and a MgO tunnel barrier', Appl. Phys. Lett., 89, 192505 (2006). [19] I. Theodonis, N. Kioussis, A. Kalitsov, M. Chshiev, and W. H. Butler, 'Anomalous bias dependence ofspin torque in magnetic tunnel junctions', Phys. Rev. Lett., 97, 237205 (2006). [20] M. Wilczyński, J. Barnaś, and R. Świrkowicz, 'Free-electron model of current-induced spin-transfer torque in magnetic tunnel junctions', Phys. Rev. B, 77, 054434 (2008). [21] J. Zhang, T. Phung, A. Pushp, Y. Ferrante, J. Jeong, C. Rettner, B. P. Hughes, S. H. Yang, Y. Jiang, and S. S. P. Parkin, 'Bias dependence of spin transfer torque in Co2MnSi Heusler alloy based magnetic tunnel junctions',Appl. Phys. Lett., 110, 172403 (2017). [22] I .Zˇutic, J. Fabian, S. D. Sarma, 'Spintronics: fundamentals and applications', Rev. Mod. Phys., 76, 323 (2004). [23] A. S. Arrott, 'Generalized Curie-Weiss law',Phys. Rev. B, 31, 2851,(1985). [24] C. Yasuda, S. Todo, K. Hukushima, F. Alet, M. Keller, M. Troyer, and H. Takayama, 'Néel temperature of quasi-low-dimensional Heisenberg antiferromagnets',Phys. Rev. Lett., 94, 217201,(2005). [25] J. Reinert, A. Brockmeyer, R. W. A. A. De Doncker, 'Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation',IEEE Trans. Indus. Appl., 37, No. 4 (2001). [26] X. Zhang, Y. Sun, L. Ma, X. Zhao and X. Yao, 'Modulating the electronic and magnetic properties of bilayer borophene via transition metal atoms intercalation: from metal to half metal and semiconductor',Nanotechnology ,29 ,305706 (2018). [27] Y. Sakuraba, J. Nakata, M. Oogane, H. Kubota, Y. Ando, A. Sakuma, and T. Miyazaki, 'Huge spin-polarization of L21-ordered Co2MnSi epitaxial Heusler alloy film',Jpn. J. Appl. Phys., 44, L1100 (2005). [28] T. Marukame and M. Yamamotoa, 'Tunnel magnetoresistance in fully epitaxial magnetic tunnel junctions with a full-Heusler alloy thin film of Co2Cr0.6Fe0.4Al and a MgO tunnel barrier', J. Appl. Phys., 101, 083906 (2007). [29] I. Galanakis, P. Mavropoulos and P. H. Dederichs, 'Electronic structure and Slater–Pauling behaviour in half-metallic Heusler alloys calculated from first principles',J. Phys. D: Appl. Phys., 39,765–775 (2006). [30] J. Barth, G. H. Fecher, B. Balke, S. Ouardi, T. Graf, and C. Felser, 'Itinerant half-metallic ferromagnets Co2TiZ (Z=Si, Ge, Sn): ab initio calculations and measurement of the electronic structure and transport properties', Phys. Rev. B, 81, 064404 (2010). [31] V. Barwal, S. Husain ,N. Behera, E. Goyat, and S. Chaudhary, 'Growth dependent magnetization reversal in Co2MnAl full Heusler alloy thin films', J. Appl. Phys.,123, 053901 (2018). [32] G. H. Fecher,B. Balke, A. Gloskowskii, S. Ouardi, C. Felser,T. Ishikawa, M. Yamamoto,Y. Yamashita,H. Yoshikawa,S. Ueda,and K. Kobayashi, 'Detection of the valence band in buried Co2MnSi–MgO tunnel junctions by means of photoemission spectroscopy', Appl. Phys. Lett., 92, 193513 (2008). [33] S. Ouardi, G. H. Fecher, B. Balke, A. Beleanu, X. Kozina, G. Stryganyuk, C. Felser, W. Kloß, H. Schrader, F. Bernardi, J. Morais , E. Ikenaga, Y. Yamashita, S. Ueda, and K. Kobayashi, 'Electronic and crystallographic structure, hard x-ray photoemission, and mechanical and transport properties of the half-metallic Heusler compound Co2MnGe', Phys. Rev. B, 84, 155122 (2011). [34] C. Felser, and G. H. Fecher, Spintronics,from materials to devices,Springer (2013). [35] C. J. Palmstrøm, ' Heusler compounds and spintronics', Prog. Cryst. Growth Ch., 62,371–397 (2016). [36] D. Datta, B. B. Aein, S. Salahuddin and S. Datta, 'Quantitative model for TMR and spin-transfer torque in MTJ devices ',IEEE, IEDM,10,548 (2010). [37] K.I. Kobayashi, T. Kimura, Y. Tomioka, H. Sawada, K. Terakura, and Y. Tokura, 'Intergrain tunneling magnetoresistance in polycrystals of the ordered double perovskite Sr2FeReO6 ', Phys. Rev. B , 59, 11159 (1999). [38] Y. Zhang, L. Duan,V. Ji,and K. W. Xu, 'First-principles study of the structural, electronic, and magnetic properties of double perovskite Sr2FeReO6 containing various imperfections',Chin. Phys. B , 25 ,058102 (2016). [39] L. Wang, T. Y. Chen and C. Leighton, 'Spin-dependent band structure effects and measurement of the spin polarization in the candidate half-metal CoS2', Phys. Rev. B, 69, 094412 (2004). [40] X. Ou, F. Fan, Z. Li, H. Wang, and H. Wu, 'Spin-state transition induced half metallicity in a cobaltate from first principles',Appl. Phys. Lett., 108, 092402 (2016). [41] I. Galanakis and P. Mavropoulos, 'Zinc-blende compounds of transition elements with N, P, As, Sb, S, Se, and Te as half-metallic systems,' Phys. Rev. B , 67, 104417 (2003). [42] M. Shirai, 'Possible half-metallic ferromagnetism in zinc blende CrSb and CrAs ', J. Appl. Phys. , 93, 6844 (2003). [43] J. C. Zheng and J. W. Davenport, 'Ferromagnetism and stability of half-metallic MnSb and MnBi in the strained zinc-blende structure: predictions from full potential and pseudopotential calculations', Phys. Rev. B, 69, 144415 (2004). [44] C. Felser, L. Wollmann, S. Chadov, G. H. Fecher, and S. S. P. Parkin, 'Basics and prospective of magnetic Heusler compounds',APL Materials ,3, 041518 (2015). [45] C. Hordequin, J.P. Nozieres and J. Pierre, 'Half metallic NiMnSb-based spin-valve structures',J. Magn. Magn. Mater., 183, 225—231 (1998). [46] G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, 'Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange ' Phys. Rev. B,39, 4828(1989). [47] M. N. Baibich, J. M. Broto, A. Fert, F. N. V. Dau,and F. Petroff, ' Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices',Phys. Rev. Lett., 61, 2472 – 2475 (1988). [48] A. Schuhl ,and D. Lacour, 'Spin dependent transport: GMR & TMR',C. R. Physique, 6,945–955 ,(2005). [49] Ando, 'Spintronics technology and device development ',Jpn. J. .Appl. Phys., 54, 070101 (2015). [50] Y. Sakuraba, M. Ueda, Y. Miura, K. Sato, S. Bosu, K. Saito, M. Shirai, T. J.Konno, and K. Takanashi, 'Extensive study of giant magnetoresistance properties in half-metallic Co2(Fe,Mn)Si-based devices ',Appl. Phys. Lett., 101, 252408 (2012). [51] S. Li, Y. K. Takahashi, T. Furubayashi, and K. Hono, 'Enhancement of giant magnetoresistance by L21 ordering in Co2Fe(Ge0.5Ga0.5) Heusler alloy current-perpendicular-to-plane pseudo spin valves ',Appl. Phys. Lett., 103, 042405 (2013). [52] T. Kimura, Y. Otani, and J. Hamrle, 'Switching magnetization of a nanoscale ferromagnetic particle using nonlocal spin injection', Phys. Rev. Lett., 96, 037201 (2006). [53] S. I. Kiselev, J. C. Sankey, I.N. Krivorotov, N.C. Emley, R.J. Schoelkopf, R.A. Buhrman, and D. C. Ralph, 'Microwave oscillations of a nanomagnet driven by a spin-polarized current', Nature ,425, 380-383 (2003). [54] A. Manchon, N. Ryzhanova, N. Strelkov, A. Vedyayev, and B. Dieny, 'Modelling spin transfer torque and magnetoresistance in magnetic multilayers', J. Phys.: Condens. Matter, 19, 165212 (2007). [55] J. Xiao, G. E. W. Bauer, and A. Brataas, 'Spin-transfer torque in magnetic tunnel junctions: scattering theory', Phys. Rev. B, 77, 224419 (2008). [56] Y. H. Tang, N. Kioussis, A. Kalitsov, W. H. Butler, and R. Car, 'Controlling the nonequilibrium interlayer exchange coupling in asymmetric magnetic tunnel junctions', Phys. Rev. Lett., 103, 057206 (2009). [57] Y. H. Tang, N. Kioussis, A. Kalitsov, W. H. Butler, and R. Car, 'Influence of asymmetry on bias behavior of spin torque', Phys. Rev. B, 81, 054437 (2010). [58] C. B. Duke, Tunneling in solids, Academic Press, INC., New York and London(1969). [59] S. Bhatti, R. Sbiaa, A. Hirohata, H. Ohno,S. Fukami , and S.N. Piramanayagam, 'Spintronics based random access memory: a review',Materials Today, 20, No. 9, (2017). [60] T. L. Gilbert, 'A phenomenological theory of damping in ferromagnetic materials', IEEE Trans. Magn., 40, 3443-3449 (2004). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77602 | - |
| dc.description.abstract | 本文主要研究具半金屬電極之單層勢壘磁性穿隧接面結構(半金屬/絕緣層/鐵磁層)與雙層勢壘磁性穿隧接面結構(半金屬/絕緣層/非磁性層/絕緣層/鐵磁層)中自旋轉移力矩之特性,並與兩端皆為一般鐵磁電極之磁性穿隧接面做比較。透過改變磁矩角度的差異、外加電壓的大小、單層勢壘的絕緣層厚度以及雙層勢壘中間非磁性層厚度,探討不同結構、不同材料,以及其他不同外在條件的情況下,對電子注入磁性穿隧接面結構中之穿隧電流以及自旋轉移力矩,分別有甚麼不同的現象與影響。可以藉由分析不同條件,得到最低效耗、高性能的元件性質。自旋轉移力矩是一種利用自旋流產生能夠將磁矩翻轉的力量。本文使用自由電子模型搭配轉移矩陣法,來描述電子行為,並推導出計算自旋轉移力矩的方法。最後,討論半金屬電極以及雙層勢壘結構的共振效應帶來的效益,可提升自旋轉移力矩之值,有助於增進自旋電子元件之效能。 | zh_TW |
| dc.description.abstract | This thesis focuses on the properties of the spin transfer torque with half-metallic electrodes in single barrier magnetic tunnel junctions (half metal/insulating layer/ferromagnetic layer) and double barrier magnetic tunneling junctions (half metal/insulating layer/non-magnetic layer/ insulating layer/ferromagnetic layer)which is compared to the magnetic tunneling junctions with ferromagnetic electrodes at both ends.By changing the angle difference between two magnetic moments, the magnitude of the applied voltage, the thickness of the insulating layer of the single barrier magnetic tunneling junction, and the thickness of the non-magnetic layer of the double barrier magnetic tunneling junction, the different phenomena and effects of tunneling current and spin transfer torques in electron-injected magnetic tunnel junction under different structures, materials, and other different external conditions are explored. The conditions to get the lowest consumption and high performance properties of the device are analyzed. Spin transfer torque which generated by spin current is the strength that can be used to reverse magnetic moments. In this thesis, free electron model and transfer matrix method are used to describe the electronic behavior and calculate the spin transfer torque. Finally, discuss the benefits bring by the half-metallic electrode and the resonance effect of the double-barrier magnetic tunnel junction which contributes to the enhancement of the performance of spintronic devices. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:11:03Z (GMT). No. of bitstreams: 1 ntu-107-R05525046-1.pdf: 1614042 bytes, checksum: d9986f760c5b2b6e18b25e4fa4de3bc5 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 目錄
摘要 i Abstract ii 目錄 iii 圖目錄 v 符號表 vii 第一章 導論 1 1.1 背景與研究動機 1 1.2 歷史文獻回顧 2 1.3 論文架構 5 第二章 磁性材料與磁性穿隧接面 6 2.1 磁矩與磁化率 6 2.2 磁性材料 9 2.3 半金屬材料 13 2.4 磁阻 18 2.5 磁性穿隧接面之應用 21 第三章 磁性穿隧接面中的電子與自旋傳輸 26 3.1 自旋流與自旋注入現象 26 3.2 自由電子模型 27 3.3 轉移矩陣法 37 3.4 自旋轉移力矩 40 第四章 半金屬單層壘勢磁性穿隧接面中自旋轉移力矩之特性 42 4.1 單層壘勢磁性穿隧接面之結構 42 4.2 磁矩角度與自旋轉移力矩 45 4.3 壘勢層厚度與自旋轉移力矩 47 4.4 外加電壓與自旋轉移力矩 49 第五章 雙層壘勢磁性穿隧接面中自旋轉移力矩 51 5.1 雙層壘勢磁性穿隧接面之結構 51 5.2 共振效應下之自旋轉移力矩 53 5.3 磁矩角度與自旋轉移力矩 55 5.4 外加偏壓與自旋轉移力矩 58 第六章 結論與未來展望 61 6.1 結論 61 6.2 未來展望 62 參考文獻 63 | |
| dc.language.iso | zh-TW | |
| dc.subject | 半金屬 | zh_TW |
| dc.subject | 自旋轉移力矩 | zh_TW |
| dc.subject | 磁性穿隧接面 | zh_TW |
| dc.subject | 轉移矩陣法 | zh_TW |
| dc.subject | 自由電子模型 | zh_TW |
| dc.subject | spin transfer torque | en |
| dc.subject | transfer matrix method | en |
| dc.subject | free electron model | en |
| dc.subject | half metal | en |
| dc.subject | magnetic tunneling junction | en |
| dc.title | 具半金屬電極磁性穿隧接面之自旋轉移力矩 | zh_TW |
| dc.title | Spin Transfer Torque in Magnetic Tunnel Junctions with Half-Metallic Electrodes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張慶瑞,吳德和,鄭勝文,邱仁政 | |
| dc.subject.keyword | 磁性穿隧接面,自旋轉移力矩,半金屬,自由電子模型,轉移矩陣法, | zh_TW |
| dc.subject.keyword | magnetic tunneling junction,spin transfer torque,half metal,free electron model,transfer matrix method, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU201802066 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-07-27 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05525046-1.pdf 未授權公開取用 | 1.58 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
