請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77601完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 薛文証(Wen-Jeng Hsueh) | |
| dc.contributor.author | Li-Yang Chen | en |
| dc.contributor.author | 陳立揚 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:11:00Z | - |
| dc.date.available | 2021-07-10T22:11:00Z | - |
| dc.date.copyright | 2018-08-02 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-27 | |
| dc.identifier.citation | [1]Y. Yu and M. Cardona, Fundamentals of semiconductors physics and material properties, Springer, Heidelberg(1996).
[2]U. Rossler and J. Kainz, “Microscopic interface asymmetry and spin splitting of electron subbands in semiconductor quantum structures,” Solid State Commun 121,313(2002). [3]D.J. Bottomley, J. Baribeau, and H. M. van Driel, “Limitations to the realization of noncentrosymmetric Si_m Ge_n superlattices,” Phys. Rev. B 50, 8564 (1994). [4]G. Erley, R. Butz, and W. Daum. “Second-harmonic spectroscopy of interband excitations at the interfaces of strained Si(100)-Si_0.85 Ge_0.15-SiO_2 heterostructures,” Phys Rev. B 59, 2915 (1999). [5]S. Datta and B. Das, “Electronic analog of the electrooptic modulator,” Appl. Phys. Lett. 56,665(1990). [6]Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in quantum theory,” Phys. Rev. 115, 485 (1959). [7]Y. Aharonov and A. Casher, “Topological quantum effects for neutral particles,” Phys. Rev. Lett. 53, 319 (1984). [8]T. Ihn, Semiconductor nanostructures, Oxford, Zurich (2010). [9]D. Frustaglia, M. Henschel, and K. Richter,“Quantum transport in nonuniform magnetic fields: Aharonov-Bohm ring as a spin switch,” Phys. Rev. Lett. 87, 256602 (2001). [10]D. D. Awschalom, M. E. Flatté, and N. Samarth, “Spintronics-microelectronic devices that compute with the spin of the electron may lead to quantum microchips,” Sci. Am. 286,66 (2002). [11]P. Földi, B. Molnár, M. G. Benedict, and F. M. Peeters, “Spintronic single-qubit gate based on a quantum ring with spin-orbit interaction,” Phys. Rev. B 71, 033309 (2005). [12]M. A. Nielsen and I. L. Chuang, Quantum computation and quantum information,Cambridge University Press, Cambridge (2000) [13]A. G. Aronov and Y. B. Lyanda-Geller, “Spin-orbit Berry phase in conducting rings,”Phys. Rev. Lett. 70, 343 (1993). [14]S. Viefers, P. Koskinen, P. S. Deo, and M. Manninen, “Quantum rings for beginners: energy spectra and persistent currents,” Physica 21,1 (2004). [15]E. I. Rashba, “Properties of semiconductors with an extremum loop. 1. cyclotron and combinational resonance in a magnetic field perpendicular to the plane of the loop,” Sov. Phys. Solid State 2, 1109 (1960). [16]J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki,“Gate control of spin-orbit interaction in an inverted In_0.53 Ga_0.47 As/In_0.52 Al_0.48 As heterostructure, ” Phys. Rev. Lett. 78, 1335 (1997). [17]J. Nitta, F. E. Meijer, and H. Takayanagi, “Spin-interference device,” Appl. Phys. Lett. 75,695 (1999). [18]B. Molnár, F. M. Peeters, and P. Vasilopoulos, “Spin-dependent magnetotransport through a ring due to spin-orbit interaction,” Phys. Rev. B 69,155335 (2004). [19]D. Frustaglia and K. Richter, “Spin interference effects in ring conductors subject to Rashba coupling,” Phys. Rev. B 69, 235310 (2004). [20]M. Johnson, B. R. Bennett, M. J. Yang, M. M. Miller, and B. V. Shanabrook, “Hybrid Hall effect device,”Appl. Phys. Lett. 71, 974 (1997). [21]I. Žutić, J. Fabian, and S. D. Sarma, “Spintronics: fundamentals and applications,” Rev. Mod. Phys. 76, 323 (2004). [22]F. G. Monzon, M. Johnson, and M. L. Roukes, “Strong Hall voltage modulation in hybrid ferromagnet/semiconductor microstructures,” Appl. Phys. Lett. 71, 3087(1997). [23]J. Levy, “Universal quantum computation with spin-1/2 pairs and heisenberg exchange,” Phys. Rev. Lett. 89, 147902 (2002). [24]R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems, Springer,New York (2003). [25]B. Molnar, P. Vasilopoulos, and F. M. Peeters, “Magnetoconductance through a chain of rings with or without periodically modulated spin-orbit interaction strength and magnetic field,” Phys. Rev. B 72, 075330 (2005). [26]O. Kalman, P. Foldi, M. G. Benedict, and F. M. Peeters, “Magnetoconductance of rectangular arrays of quantum rings,” Phys. Rev. B 78, 125306 (2008). [27]P. Foldi, O. Kalman, M. G. Benedict and F. M. Peeters, “Networks of quantum nanorings: programmable spintronic devices,” Nano Lett. 8, 2556 (2008). [28]P. Foldi, O. Kalman, F.M. Peeters, “Stability of spintronic devices based on quantum ring networks,” Phys. Rev. B 80, 125324(2009). [29]E. Faizabadi and A. Najafi, “Energy dependent spin filtering by using fano effect in open quantum rings,” Solid State Commun. 150, 1404 (2010). [30]V. Moldoveanu and B. Tanatar, “Spin splitter regime of a mesoscopic rashba ring,” Phys. Lett. A 375, 187 (2010). [31]X. Wang and A. Manchon, “Rashba diamond in an Aharonov-Casher ring,” Appl. Phys. Lett. 99, 142507 (2011). [32]F. Nagasawa, J. Takagi, Y. Kunihashi, M. Kohda, and J. Nitta, “Experimental demonstration of spin geometric phase: Radius dependence of time-reversal Aharonov-Ccasher oscillations,” Phys. Rev. Lett. 108, 086801 (2012). [33]H. Z. Tang, L. X. Zhai, and J. J. Liu, “Spin transport properties of polygonal quantum ring with rashba spin-orbit coupling,” J. Appl. Phys. 114, 023702 (2013). [34]A. Naeimi and M. Esmaeilzadeh, “Spin transport properties in a double quantum ring with Rashba spin-orbit interaction,” J. Appl. Phys. 113, 014303 (2013). [35]L. X. Zhai, Y. Wang, and J. J. Liu, “Zero-conductance resonances and spin polarizations in three-terminal rings in the presence of spin-orbit coupling,” J. Appl. Phys. 116, 203703 (2014). [36]R. Z. Qiu, C. H. Chen, Y. H. Cheng, and W. J. Hsueh, “Localized persistent spin currents in defect-free quasiperiodic rings with Aharonov–Casher effect,” Phys. Lett. A 379, 1283 (2015). [37]S. Saeedi and E. Faizabadi, “Quantum rings as a perfect spin-splitter and spin-filter by using the rashba effect,” Eur. Phys. J. B 89, 118 (2016). [38]D. J. Griffiths, Introduction to Quantum Mechanics, Prentice Hall, Prentice Hall (2004). [39]F. Bloch, “Nuclear induction,” Phys. Rev. 70, 460 (1946) [40]J. M. Kikkawa and D. D. Awschalom, “Resonant spin amplification in n-type GaAs,” Phys. Rev. Lett. 80, 4313 (1998). [41]Y. Sato, S. G. T. Kita, and S. Yamada, “Large spontaneous spin splitting in gate-controlled two-dimensional electron gases at normal In_0.75 Ga_0.25 As/In_0.75 Al_0.25 As heterojunctions,”J. Appl. Phys. 89, 8017 (2001). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77601 | - |
| dc.description.abstract | 本論文主旨是在探討介觀環在自旋軌道交互作用影響下對於自旋傳輸的影響,當電子自旋入射進兩端導線連接的介觀環時,在環中可以透過調整自旋軌道作用的強度來改變電子得到的AC相位進而影響其自旋傳輸結果,因此可以藉由改變參數來對入射電子的自旋產生不同方向的翻轉,也就是量子閘的作用。在本文中將會推導出介觀環之散射矩陣,透過分析介觀環之反射率挑選適當的參數便可以得到無損耗的量子閘。 | zh_TW |
| dc.description.abstract | The spin transport of mesoscopic rings with spin orbit interation under electric fields are studied. When an electron goes through a mesoscopic ring connected with two external leads, AC phase gained by the electron can be changed by varying the strength of spin orbit interaction via an external electric field, hence the influence on spin-dependent electron transport. For this reason, the incoming spin can be rotated to different position on Bloch sphere by varing the parameters in this system, which corresponds to the function of a quantum gate. After deriving the scattering matrix of a mesocopic ring, the reflection coefficient of the ring can be obtained. A lossless quantum gate can be built by choosing appropriate parameters. It is shown that all the important single qubit quantum gates which are loseless can be built by coupling loseless rings together. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:11:00Z (GMT). No. of bitstreams: 1 ntu-107-R05525086-1.pdf: 5975991 bytes, checksum: 97b6130cbad7608b84fd38df295f644c (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 i
Abstract ii 目錄 iii 圖目錄 iv 符號表 vi 第一章 導論 1 1.1 背景與研究動機 1 1.2 歷史文獻回顧 3 1.3 論文架構 6 第二章 介觀環的量子波導 7 2.1 無外加電場雙端介觀環模型 7 2.2 介觀環與自旋軌道交互作用 12 第三章 AC環自旋耦合散射矩陣之推導 20 3.1 兩端AC環結構與邊界條件 20 3.2 兩端AC環散射矩陣之推導 24 第四章 AC環之自旋傳輸特性分析與應用 29 4.1 兩端AC環導線夾角為π之情況分析 29 4.2 兩端AC環導線夾角為任意角之情況分析 38 第五章 結論與未來展望 53 5.1 結論 53 5.2 未來展望 54 參考文獻 55 | |
| dc.language.iso | zh-TW | |
| dc.subject | 自旋電子學 | zh_TW |
| dc.subject | 介觀環 | zh_TW |
| dc.subject | 量子閘 | zh_TW |
| dc.subject | 自旋軌道交互作用 | zh_TW |
| dc.subject | 量子干涉 | zh_TW |
| dc.subject | spintronics | en |
| dc.subject | mesocospic ring | en |
| dc.subject | quantum gate | en |
| dc.subject | spin orbit interaction | en |
| dc.subject | quantum interference | en |
| dc.title | 具自旋軌道交互作用雙端量子環之自旋傳輸特性 | zh_TW |
| dc.title | Spin Transport in Two-Terminal Quantum Ring with Spin-Orbit Interaction | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭勝文(Sheng-Wun Jheng),黃智賢(Jhih-Sian Huang),邱仁政(Ren-Zheng Qiu) | |
| dc.subject.keyword | 介觀環,量子閘,自旋軌道交互作用,量子干涉,自旋電子學, | zh_TW |
| dc.subject.keyword | mesocospic ring,quantum gate,spin orbit interaction,quantum interference,spintronics, | en |
| dc.relation.page | 58 | |
| dc.identifier.doi | 10.6342/NTU201802099 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-07-30 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05525086-1.pdf 未授權公開取用 | 5.84 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
