Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 工程科學及海洋工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77594
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor薛文証
dc.contributor.authorChih-hao Tsouen
dc.contributor.author鄒志豪zh_TW
dc.date.accessioned2021-07-10T22:10:38Z-
dc.date.available2021-07-10T22:10:38Z-
dc.date.copyright2018-08-03
dc.date.issued2018
dc.date.submitted2018-07-30
dc.identifier.citation[1] X. L. Qi, S. C. Zhang. “Topological insulators and superconductors,” Rev. Mod. Phys. 83, 1057–1110 (2011).
[2] M. Z. Hasan and C. L. Kane. “Colloquium: Topological insulators,” Rev. Mod. Phys. 82, 3045 (2010).
[3] F. D .M. Haldane. “Model for a quantum Hall effect without Landau levels: Condensed-matter realization of the 'parity anomaly',” Phys. Rev. Lett. 61, 2015 (1988).
[4] L. Lu, J. D. Joannopoulos, M. Soljačić. “Topological states in photonic systems,” Nat. Phys. 12, 626 (2016)
[5] F. D. M. Haldane and S. Raghu. “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[6] M. G. Silveirinha. “Bulk edge correspondence for topological photonic continua,” Phys. Rev. B 94, 205105 (2016).
[7] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic. “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461, 772 (2009).
[8] Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacic. “Reflection-free one-way edge modes in a gyromagnetic photonic crystal,” Phys. Rev. Lett. 100, 013905 (2008).
[9] M. Hafezi, E. A. Demler, M. D. Lukin and J. M. Taylor. “Robust optical delay lines with topological protection,” Nat.Phys. 7(11), 907 (2011).
[10] Z.-H. Zhu, C. N. Veenstra, S. Zhdanovich, M. P. Schneider, T. Okuda, K. Miyamoto, S.-Y. Zhu, H. Namatame, M. Taniguchi, M. W. Haverkort, I. S. Elfimov, and A. Damascelli. “Photoelectron spin-polarization control in the topological insulator Bi2Se3.,” Phys. Rev. Lett. 112(7), 076802 (2014).
[11] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit. “Photonic Floquet topological insulators,” Nature 496(7444), 196–200 (2013).
[12] A. B. Khanikaev, S. H. Mousavi, W. K. Tse, M. Kargarian, A. H. MacDonald, and G. Shvets. “Photonic topological insulators,” Nat. Mater. 12(3), 233–239 (2012).
[13] L. Lu, J. D. Joannopoulos, and M. Soljaclc. “Topological photonics.,” Nat. Photonics 8, 821–829 (2014).
[14] J. W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, and N. Gedik. “Control over topological insulator photocurrents with light polarization,” Nat. Nanotechnol. 7(2), 96–100 (2011).
[15] P. Hosur. “Circular photogalvanic effect on topological insulator surfaces: Berry-curvature-dependent response,” Phys. Rev. B 83(3), 035309 (2011).
[16] K. J. Fang, Z. F. Yu, S. H. Fan. “Realizing effective magnetic field for photons by controlling the phase of dynamic modulation,” Nat. Photon. 6, 782–787 (2012).
[17] S. Barik, H. Miyake, W. DeGottardi, E. Waks and M. Hafezi. “Two-dimensionally confined topological edge states inphotonic crystals,” New J. Phys. 18(11), 113013 (2016)
[18] S.Barik, A.Karasahin, C Flower, T Cai, H Miyake, W DeGottardi, M Hafezi. “A topological quantum optics interface,” Science 359 (6376), 666-668 (2018).
[19] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor. “Robust optical delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[20] Vittorio Peano, Martin Houde, Florian Marquardt, and Aashish A. Clerk. “Topological quantum fluctuations and travelling wave amplifiers,” Phys. Rev. X 6, 041026 (2016)
[21] L. Pilozzi and C. Conti. “Topological lasing in resonant photonic structures,”
Phys. Rev. B 93, 195317 (2016).
[22] D. Leykam and Y. D. Chong. “Edge solitons in nonlinear-photonic topological insulators,” Phys. Rev. Lett. 117, 143901 (2016).
[23] W. P. Su, J. R. Schrieffer, and A. J. Heeger. “Solitons in Polyacetylene,” Phys. Rev. Lett. 42, 1698
[24] B. A. Bernevig, T. L. Hughes, and S.-C. Zhang. “Quantum spin Hall effect and topological phase transition in HgTe quantum wells,” Science 314, 1757–1761 (2006).
[25] O. A. Pankratov, S. V. Pakhomov, and B. A. Volkov. “Supersymmetry in Heterojunctions: Band-inverting contact on the basis of Pb1_xSnxTe and Hg1_xCdxTe,” Solid State Commun. 61, 93 (1987).
[26] F. D. M. Haldane and S. Raghu. “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100, 013904 (2008).
[27] L. Fu, C. L. Kane, and E. J. Mele. “Topological insulators in three dimensions,” Phys. Rev. Lett. 98(10), 106803 (2007)
[28] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang. “ Quantum spin Hall insulator state in HgTe quantum wells,” Science 318, 766–770 (2007).
[29] S. Raghu and F. D. M. Haldane. “ Analogs of quantum-Hall effect edge states in Photonic Crystals, ” Phys. Rev. A 78,033834 (2008).
[30] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljacić. “ Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009).
[31] C. He, X. L. Chen, M. H. Lu, X. F. Li, W. W. Wan, X. S. Qian, R. C.Yin, and Y. F. Chena. “Tunable one-way cross-waveguide splitter based on gyromagnetic photonic crystal,” Appl. Phys. Lett. 96,111111 (2010)
[32] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor. “Robust optical
delay lines with topological protection,” Nat. Phys. 7, 907–912 (2011).
[33] N. Malkova and C. Ning. “Shockley and Tamm surface states in photonic crystals,” Phys. Rev. B 73, 113113 (2006).
[34] Aubry, S. & André, G. “Analyticity breaking and Anderson localization in incommensurate lattices,” Ann. Israel Phys. Soc. 3, 133–140 (1980).
[35] Y. E. Kraus, Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg. “Topological States and adiabatic pumping in quasicrystals,” Phys. Rev. Lett. 109(10), 106402 (2012).
[36] K. Liu, L. Shen, and S. He. “One‐way edge mode in a gyromagnetic photonic crystal slab,” Opt. Lett. 37, 4110 (2012)
[37] M. Verbin, O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg. “Observation of topological phase transitions in photonic quasicrystals,” Phys. Rev. Lett. 110(7), 076403 (2013).
[38] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch. “Direct measurement of the Zak phase in topological Bloch bands,” Nat. Phys. 9, 795-800 (2013)
[39] A. V. Poshakinskiy, A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko. “Radiative Topological States in Resonant Photonic Crystals,” Phys. Rev. Lett. 112(10), 107403 (2014).
[40] W.-J. Chen, S.-J. Jiang, X.-D. Chen, B. Zhu, L. Zhou, J.-W. Dong, and C. T. Chan. “ Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide,” Nat. Commun. 5, 5782 (2014).
[41] M. Xiao, G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan. “Geometric phase and band inversion in periodic acoustic systems,” Nat. Phys. 11, 240 (2015).
[42] X.-D. Chen, Zi-Lan Deng, W.-J. Chen, J.-R. Wang, and J.-W. Dong. “Manipulating pseudospin-polarized state of light in dispersion-immune photonic topological metacrystals, ” Phys. Rev. B 92, 014210 (2015)
[43] Q. Wang, M. Xiao, H. Liu, S. N. Zhu and C. T. Chan. “Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal,” Phys. Rev. B 93, 041415 (2016).
[44] X. Cheng, C. Jouvaud, X. Ni, S. Hossein Mousavi, A. Z. Genack, and A. B. Khanikaev. “Robust reconfigurable electromagnetic pathways within a photonic topological insulator,” Nat. Mater. 15, 542–548 (2016).
[45] C. Li, X. Y. Hu, W. Gao. “Thermo-optical tunable ultracompact chip-integrated 1D photonic topological insulator,” Adv. Opt. Mater. 6, 1701071 (2018).
[46] P. Yeh, Optical waves in layered media, Wiley, New York (1988).
[47] N. N. Rao, Elements of engineering electromagnetics, Pearson Prentice Hall, New Jersey (2004).
[48] M. G. Moharam and T. K. Gaylord. “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811-818 (1981)
[49] C. T. Chan, Q. L. Yu, and K. M. Ho, “Order-N spectral method for electromagnetic waves,” Phys. Rev. B 51, 16635 (1995).
[50] P. St. J. Russell, Photonic Bloch waves and photonic band gaps in confined electrons and photons, Plenum Press, New York (1995).
[51] B. C. Gupta, C.-H. Kuo, and Z. Ye. “Propagation inhibition and localization of electromagnetic waves in two-dimensional random dielectric systems,” Phys. Rev. E 69, 066615 (2004).
[52] K. Sakoda. “Optical transmittance of a two-dimensional triangular photonic lattice,” Phys. Rev. B 51, 4672-4675 (1995).
[53] W. P. Huang, S. T. Chu, A. Goss, and S. K. Chaudhuri. “A scalar finite-difference time-domain approach to guided-wave optics,” IEEE Photon. Technol. Lett. 3, 524-526 (1991).
[54] N. Liu. ”Defect modes of stratified dielectric media,” Phys. Rev. B 5, 4097-4100 (1997).
[55] M. V. Berry. ”Quantal phase factors accompanying adiabatic changes,” Proc. Roy. Soc. Lond. A 392.4557 (1984)
[56] J. Zak. ”Berry’s phase for energy bands in solids,” Phys.Rev. Lett. 62, 2747 (1989).
[57] M. Xiao, Z. Q. Zhang, and C. T. Chan. “Surface impedance and bulk band geometric phases in one-dimensional-systems,” Phys. Rev. X 4(2), 021017 (2014).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77594-
dc.description.abstract本論文研究一維中心對稱週期結構光子晶體的拓樸邊緣態,首先利用麥克斯韋 電磁波理論,以及傳輸矩陣法分析電磁波在中心對稱多層介電結構中的傳輸性 質。本論文模擬中心對稱型週期異質結構、反轉中心對稱型週期異質結構、分析 其能帶圖上反射相位與表面阻抗及特徵電場與拓樸相位之關係,並模擬其穿透率 與慢光效應,模擬結果顯示在中心對稱型週期異質結構下所形成之拓樸邊緣態其 穿透率及慢光效應會隨著厚度比率的改變明顯改變,而在反轉中心對稱型週期異 質結構之慢光效果優於中心對稱型週期異質結構且較不受厚度比率改變之影響。zh_TW
dc.description.abstractTopological edge state of one-dimensional photonic crystals with centro-symmetric periodic structure is investigated. Maxwell's electromagnetic wave theory is used to study the behavior of transmission characteristics. Relationship between the reflection phase and the surface impedance are analyzed in the considered structures. The study results show that the better slow light and transmission performance are obtained as the filling factor increases. The use of inverted symmetric periodic hetero-structure is superior to the centro-symmetric periodic hetero-structure in slow light.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:10:38Z (GMT). No. of bitstreams: 1
ntu-107-R05525116-1.pdf: 9406331 bytes, checksum: 0e8c05fcf7dd7fc65dd1d7aeb9dccf2d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
摘要 i
Abstract iii
圖目錄 vi
符號表 xi
第一章 導論 1
1.1 背景與研究動機 1
1.2 歷史文獻回顧 2
論文架構 4
第二章 電磁波理論 5
2.1 電磁波理論 5
2.2 麥克斯韋方程式 6
2.3 亥姆霍茲方程式 7
2.4 坡印亭定理 9
2.5 邊界條件 10
第三章 光在週期結構中傳播之理論 11
3.1 布洛赫定理 11
3.2 轉移矩陣法 12
3.3 色散方程式 17
3.4 反射率、穿透率及吸收 19
3.5 相移及群延遲 24
第四章 光子晶體之拓樸理論 25
4.1 扎克相位 25
4.2 通帶交叉條件 26
4.3 特徵電場 28
4.4 表面阻抗與與反射相位及確定性介面態 29
第五章 中心對稱週期結構之拓樸邊緣態 33
5.1 中心對稱型週期異質結構 33
5.2 反轉中心對稱型週期異質結構 51
第六章 結論與展望 62
6.1 結論 62
6.2 未來展望 63
dc.language.isozh-TW
dc.subject拓樸邊緣態、慢光、中心對稱週期、Zak phasezh_TW
dc.subjectZak phaseen
dc.subjectcentro-symmetricen
dc.subjectslow light effecten
dc.subjecttopological edge statesen
dc.title一維光子晶體之拓樸邊緣態zh_TW
dc.titleTopological Edge States in One-Dimensional Photonic Crystalsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃啟炎,鄭勝文,鄭宇翔,黃俊穎
dc.subject.keyword拓樸邊緣態、慢光、中心對稱週期、Zak phase,zh_TW
dc.subject.keywordtopological edge states, slow light effect, centro-symmetric, Zak phase,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201802163
dc.rights.note未授權
dc.date.accepted2018-07-30
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept工程科學及海洋工程學研究所zh_TW
Appears in Collections:工程科學及海洋工程學系

Files in This Item:
File SizeFormat 
ntu-107-R05525116-1.pdf
  Restricted Access
9.19 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved