請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77586完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳忠幟(Chung-Chih Wu) | |
| dc.contributor.author | Hsin-Yu Lai | en |
| dc.contributor.author | 賴昕鈺 | zh_TW |
| dc.date.accessioned | 2021-07-10T22:10:11Z | - |
| dc.date.available | 2021-07-10T22:10:11Z | - |
| dc.date.copyright | 2018-08-03 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-02 | |
| dc.identifier.citation | 參考資料
[1] Pope M., Kallmann H. P., and Magnante P. (1963). Electroluminescence in organic crystals. The Journal of Chemical Physics, 38, 2042. [2] Helfrich W., and Schneider W. G. (1965). Recombination radiation in anthracene crystals. Physical Review Letters, 14, 229. [3] Vincett P. S., Barlow W. A., Hann R. A., and Roberts G. G. (1982). Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films. Thin Solid Films, 94(2), 171-183. [4] Tang C. W., and VanSlyke S. A. (1987). Organic electroluminescent diodes. Applied physics letters, 51, 913. [5] Shi J., and Tang C. W. (1997). Doped organic electroluminescent devices with improved stability. Applied physics letters, 70, 1665. [6] Baldo M. A., O’Brien D. F., You Y., Shoustikov A., Sibley S., Thompson M. E., and Forrest S. R. (1998). Highly efficient phosphorescent emission from electroluminescent devices. Nature, 395, 151. [7] Adachi C., Baldo M. A., Thompson M. E., and Forrest S. R. (2001). Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. Journal of Applied Physics, 90, 5048. [8] Partee J., Frankevich E. L., Uhlhorn B., Shinar J., Ding Y., and Barton T. J. (1999). Delayed fluorescence and triplet-triplet annihilation in π-conjugated polymers. Physical Review Letters, 82, 3673. [9] Uoyama H., Goushi K., Shizu K., Nomura H., and Adachi C. (2012). Highly efficient organic light-emitting diodes from delayed fluorescence. Nature. 492, 234. [10] Parker C., and Hatchard C. (1961). Triplet-singlet emission in fluid solutions. Phosphorescence of eosin. Transactions of the Faraday Society, 57, 1894. [11] Blasse G., and McMillin D. (1980). On the luminescence of bis (triphenylphosphine) phenanthroline copper (I). Chemical Physics Letters, 70, 1. [12] Endo A., Ogasawara M., Takahashi A., Yokoyama D., Kato Y., and Adachi C. (2009). Thermally activated delayed fluorescence from Sn^(4+)–porphyrin complexes and their application to organic light-emitting diodes — A novel mechanism for electroluminescence. Advanced Materials, 21, 4802. [13] Zhen C. G., Dai Y. F., Zeng W. J., Ma Z., Chen Z. K., and Kieffer J. (2011). Achieving highly efficient fluorescent blue organic light emitting diodes through optimizing molecular structures and device configuration. Advanced Functional Materials, 21, 699. [14] Tang S., Li W., Shen F., Liu D., Yang B., and Ma Y. (2012). Highly efficient deep-blue electroluminescence based on the triphenylaminecored and peripheral blue emitters with segregative HOMO–LUMO characteristics. Journal of Materials Chemistry, 22, 4401. [15] Lin T. -A., Chatterjee T., Tsai W. -L., Lee W. -K., Wu M. -J., Jiao M., Pan K. -C., Yi C. -L., Chung C. -L., Wong K. -T., and Wu C. -C. (2016). Sky‐blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine‐triazine hybrid. Advanced Materials, 28, 6976. [16] Lee D. R., Kim B. S., Lee C. W., Im Y., Yook K. S., Hwang S.-H., and Lee J. Y. (2015). Above 30% external quantum efficiency in green delayed fluorescent organic light-emitting diodes. ACS Applied Materials & Interfaces, 7, 9625. [17] Lee D. R., Kim M., Jeon S. K., Hwang S.-H., Lee C. W., and Lee J. Y. (2015). Design strategy for 25% external quantum efficiency in green and blue thermally activated delayed fluorescent devices. Advanced Materials, 27, 5861. [18] Komatsu R., Ohsawa T., Sasabe H., Nakao K., Hayasaka Y., and Kido J. (2017). Manipulating the electronic excited state energies of pyrimidine-based thermally activated delayed fluorescence emitters to realize efficient deep-blue emission. ACS Applied Materials & Interfaces, 9, 4742. [19] Rajamalli P., Senthilkumar N., Gandeepan P., Huang P. -Y., Huang M. -J., Ren-Wu C. -Z., Yang C. -Y., Chiu M. -J., Chu L. -K., Lin H. -W., and Cheng C. -H. (2016). A new molecular design based on thermally activated delayed fluorescence for highly efficient organic light emitting diodes. Journal of the American Chemical Society, 138, 628. [20] Kawasumi K., Wu T., Zhu T., Chae H. S., Van Voorhis T., Baldo M. A., and Swager T. M. (2015). Thermally activated delayed fluorescence materials based on homoconjugation effect of donor-acceptor triptycenes. Journal of the American Chemical Society, 137, 11908. [21] Tsujimoto H., Ha D. -G., Markopoulos G., Chae H. S., Baldo M. A., and Swager T. M. (2018). Thermally activated delayed fluorescence and aggregation induced emission with through-space charge transfer. Journal of the American Chemical Society, 139, 4894. [22] Okazaki M., Takeda Y., Data P., Pander P., Higginbotham H., Monkman A. P., and Minakata S. (2017). Thermally activated delayed fluorescent phenothiazine–dibenzo[a,j]phenazine–phenothiazine triads exhibiting tricolor-changing mechanochromic luminescence. Chemical Science, 8, 2677. [23] Li J., Nakagawa T., MacDonald J., Zhang Q., Nomura H., Miyazaki H., and Adachi C. (2013). Highly efficient organic light-emitting diode based on a hidden thermally activated delayed fluorescence channel in a heptazine derivative. Advanced Materials, 25, 3319. [24] Data P., Pander P., Okazaki M., Takeda Y., Minakata S., and Monkman A. P. (2016). Dibenzo[a,j]phenazine-cored donor-acceptor-donor compounds as green-to-red/NIR thermally activated delayed fluorescence organic light emitters. Angewandte Chemie International Edition, 55, 5739. [25] Yu L., Wu Z., Xie G., Zhong C., Zhu Z., Cong H., Ma D., and Yang C. (2016). Achieving a balance between small singlet-triplet energy splitting and high fluorescence radiative rate in a quinoxaline-based orange-red thermally activated delayed fluorescence emitter. Chemical Communications, 52, 11012. [26] Cai, X., Li, X., Xie, G., He, Z., Gao, K., Liu, K., Chen, D., Cao, Y., and Su, S. -J. (2016). Rate-limited effect of reverse intersystem crossing process: the key for tuning thermally activated delayed fluorescence lifetime and efficiency roll-off of organic light emitting diodes. Chemical Science, 7, 4264. [27] Li C., Duan R., Liang B., Han G., Wang S., Ye K., Liu Y., Yi Y., and Wang Y. (2017). Deep-red to near-infrared thermally activated delayed fluorescence in organic solid films and electroluminescent devices. Angewandte Chemie International Edition, 56, 11525. [28] Yang Z., Mao Z., Xie Z., ZhangY., Liu S., Zhao J., Xu J., Chi Z., and Aldred M. P. (2017). Recent advances in organic thermally activated delayed fluorescence materials. Chemical Society Reviews, 46, 915. [29] Tao Y., Yuan K., Chen T., Xu P., Li H., Chen R., Zheng C., Zhang L., and Huang W. (2014). Thermally activated delayed fluorescence materials towards the breakthrough of organoelectronics. Advanced Materials, 26, 7931. [30] Wong M. Y., and Zysman-Colman E. (2017). Purely organic thermally activated delayed fluorescence materials for organic light‐emitting diodes. Advanced Materials, 29, 160544. [31] Hirata S., Sakai Y., Masui K., Tanaka H., Lee S. Y., Nomura H., Nakamura N., Yasumatsu M., Nakanotani H., Zhang Q., Shizu K., Miyazaki H., and Adachi C. (2015). Highly efficient blue electroluminescence based on thermally activated delayed fluorescence. Nature Materials, 14, 330. [32] Li Y., Li X. -L., Chen D., Cai X., Xie G., He Z., Wu Y. -C., Lien A., Cao Y., and Su S. -J. (2016). Design strategy of blue and yellow thermally activated delayed fluorescence emitters and their all‐fluorescence white OLEDs with external quantum efficiency beyond 20%. Advanced Functional Materials, 26, 6904. [33] Demeter A., Bérces T., Biczók L., Wintgens V., Valat P., and Kossanyi J. (1996). Comprehensive model of the photophysics of N-phenylnaphthalimides: the role of solvent and rotational relaxation. The Journal of Physical Chemistry, 100, 2001. [34] Baldo M. A., Lamansky S., Burrows P. E., Thompson M. E., and Forrest S. R. (1999). Very high-efficiency green organic light-emitting devices based on electrophosphorescence. Applied Physics Letters, 75, 4. [35] Gong S., He X., Chen Y., Jiang Z., Zhong C., Ma D., Qin J., and Yang C. (2012). Simple CBP isomers with high triplet energies for highly efficient blue electrophosphorescence. Journal of Materials Chemistry, 22, 2894. [36] Zhang Q., Li B., Huang S., Nomura H., Tanaka H., and Adachi C. (2014). Efficient blue organic light-emitting diodes employing thermally activated delayed fluorescence. Nature Photonics, 8, 326. [37] Kane-Maguire L. A. P., Officer D. L., Tu G., Zhou Q., Cheng Y., Geng Y., Wang L., Ma D., Jing X., and Wang F. (2015). Synthesis and properties of polyfluorenes containing 1,8-naphthalimide moieties for white electroluminescence. Synthetic Metals, 152, 233. [38] Sun H., Zhong C., and Brédas J. -L. (2015). Reliable prediction with tuned range-separated functionals of the singlet–triplet gap in organic emitters for thermally activated delayed fluorescence. Journal of Chemical Theory and Computation, 11, 3851. [39] Kolosov D., Adamovich V., Djurovich P., Thompson M. E., and Adachi C. (2002). 1,8-Naphthalimides in phosphorescent organic LEDs: the interplay between dopant, exciplex, and host emission. Journal of the American Chemical Society, 124, 9945. [40] Lin M. -S., Yang S. -J., Chang H. -W., Huang Y. -H., Tsai Y. -T., Wu C. -C., Chou S. –H, Mondal H., E., and Wong K. -T. (2012). Incorporation of a CN group into mCP: A new bipolar host material for highly efficient blue and white electrophosphorescent devices. Journal of Materials Chemistry, 22, 16114. [41] Lee J., Aizawa N., Numata M., Adachi C., and Yasuda T. (2017). Versatile molecular functionalization for inhibiting concentration quenching of thermally activated delayed fluorescence. Advanced Materials, 29, 1604856. [42] Mayr C., Lee S. Y., Schmidt T. D., Yasuda T., Adachi C., and Brütting W. (2014). Efficiency enhancement of organic light‐emitting diodes incorporating a highly oriented thermally activated delayed fluorescence emitter. Advanced Functional Materials, 24, 5232. [43] Jurow M. J., Mayr C., Schmidt T. D., Lampe T., Djurovich P. I., Brutting W., Thompson M. E. (2016). Understanding and predicting the orientation of heteroleptic phosphors in organic light-emitting materials. Nature Materials, 15, 85. [44] Kim K. -H., Liao J. -L., Lee S. W., Sim B., Moon C. -K., Lee G. -H., Kim H. J., Chi Y., and Kim J. -J. (2016). Crystal organic light-emitting diodes with perfectly oriented non-doped Pt-based emitting layer. Advanced Materials, 28, 2526. [45] Sun J. W., Lee J. -H., Moon C. -K., Kim K. -H., Shin H., and Kim J. -J. (2014). A fluorescent organic light-emitting diode with 30% external quantum efficiency. Advanced Materials, 26, 5684. [46] Kim K. -H., Lee S., Moon C. -K., Kim S. -Y., Park Y. -S., Lee J. -H., Woo Lee J., Huh J., You Y., and Kim J. -J. (2014). Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nature Communications, 5, 4769. [47] Tanaka D., Takeda T., Chiba T., Watanabe S., and Kido J. (2007). Novel electron-transport material containing boron atom with a high triplet excited energy level. Chemistry Letters, 36, 262. [48] Xiang Y. P., Gong S. L., Zhao Y. B., Yin X. J., Luo J. J., Wu K. L., Lu Z. -H. and Yang C. L. (2016). Asymmetric-triazine-cored triads as thermally activated delayed fluorescence emitters for high-efficiency yellow OLEDs with slow efficiency roll-off. Journal of Materials Chemistry C, 4, 9998. [49] Dalal S. S., Walters D. M., Lyubimov I., de Pablo J. J., and Ediger M. D. (2015). Tunable molecular orientation and elevated thermal stability of vapor-deposited organic semiconductors. Proceedings of the National Academy of Sciences of the United States of America, 112, 4227. [50] Moon C. -K., Kim K. -H., Lee J. W., and Kim J. -J. (2015). Influence of host molecules on emitting dipole orientation of phosphorescent iridium complexes. Chemistry of Materials, 27, 2767. [51] Xiang Y. P., Gong S. L., Zhao Y. B., Yin X. J., Luo J. J., Wu K. L., Lu Z. -H. and Yang C. L. (2016). Asymmetric-triazine-cored triads as thermally activated delayed fluorescence emitters for high-efficiency yellow OLEDs with slow efficiency roll-off. Journal of Materials Chemistry C, 4, 9998. [52] Huang Q., Reineke S., Walzer K., Pfeiffer M., and Leo K. (2006). Quantum efficiency enhancement in top-emitting organic light-emitting diodes as a result of enhanced intrinsic quantum yield. Applied Physics Letters, 89, 263512. [53] Wang S., Cheng Z., Song X., Yan X., Ye K., Liu Y., Yang G., and Wang Y. (2017). Highly efficient long-wavelength thermally activated delayed fluorescence OLEDs based on dicyanopyrazino phenanthrene derivatives. ACS Applied Materials & Interfaces, 9, 9892. [54] Park I. S., Lee S. Y., Adachi C., and Yasuda T. (2016). Full‐color delayed fluorescence materials based on wedge‐shaped phthalonitriles and dicyanopyrazines: systematic design, tunable photophysical properties, and OLED performance. Advanced Functional Materials, 26, 1813. [55] Zhang Q., Kuwabara H., Potscavage W. J., Huang S., Hatae Y., Shibata T., and Adachi C. (2014). Anthraquinone-based intramolecular charge-transfer compounds: computational molecular design, thermally activated delayed fluorescence, and highly efficient red electroluminescence. Journal of the American Chemical Society, 136, 18070. [56] Lin H. -W., Lin C. -L., Chang H. -H., Lin Y. -T., Wu C .-C., Chen Y. -M., Chen R. -T., Chien Y. -Y., and Wong K. -T. (2004). Anisotropic optical properties and molecular orientation in vacuum-deposited ter(9,9- diarylfluorene)s thin films using spectroscopic ellipsometry. Journal of Applied Physics, 95, 881. [57] Yokoyama D. (2011). Molecular orientation in small-molecule organic light-emitting diodes. Journal of Materials Chemistry, 21, 19187. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77586 | - |
| dc.description.abstract | 有機發光元件已快速發展成具重要的顯示技術,近年來,由於熱激活化延遲螢光(TADF)材料具有成本低、高內部量子效率、改變分子結構可發出各式色光,以及其發光元件的外部量子效率可與磷光元件匹敵的特點,因此引起廣泛討論與研究。其中TADF OLEDs在綠光與天藍光已有超過30%及37%的外部量子效率,而在先前發表過的橘紅光TADF OLEDs最高外部量子效率僅有17.5%,明顯低於綠光與天藍光。因此在本篇論文中,針對新穎的TADF橘紅光材料做光物理與電性上的分析,並進一步製作高效率橘紅光有機發光元件。
在本篇論文的第一部分,我們探討兩種新穎的TADF橘紅光材料NAI-DMAC與NAI-DPAC的光物理特性及元件特性,兩種材料皆有水平化方向發光偶極比Θ_(//)及高內部量子效率Φ_PL;NAI-DMAC與NAI-DPAC製成的橘紅光元件其外部量子效率最高可達23.4%與29.2%,其中29.2%為目前發表過橘紅光TADF OLEDs最高的外部量子效率。並進一步探討光學微共振腔與Purcell effect在薄膜與元件結構中的增益影響。 論文的第二部分,探討新的主體材料CBPCN以及由NAI-DMAC及NAI-DPAC為基礎所延伸而出的四種新的橘紅光TADF材料:tBuFAc、2PNDMAC、2PNDPAC、2PNFAc;TADF發光材料設計理念為在分子上加上苯環,增加分子結構之線性長度,提高水平發光偶極比Θ_(//)。四種延伸而出的TADF材料其摻雜薄膜的內部量子效率Φ_PL與水平方向偶極比Θ_(//)皆有增加;在元件特性上也獲得更高外部量子效率,最高外部量子效率可達31.4%。同時研究新主體材料CBPCN的特性,其為在CBP的一側接上一氰基,使CBPCN具有較強的非等向性,有利於增加客體發光材料之水平發光偶極比Θ_(//),以CBPCN為主體材料製作出的元件,最高外部量子效率亦可達31.1%,使得CBPCN為一具有潛力的主體材料。 | zh_TW |
| dc.description.abstract | Organic light-emitting diodes (OLEDs) have been rapidly developed as an important display technology. In recent years, thermally activated delayed fluorescence (TADF) materials have been studied extensively due to their lower cost, high internal quantum efficiency, the ability to emit various light by changing molecule structures, and their outstanding OLEDs performance comparable to those of phosphorescent emitters. EQEs of TADF OLEDs have been rapidly advancing in recent years, with over 30% for green and nearly 37% for sky blue. However, the highest EQEs of orange to red TADF OLEDs reported so far is only 17.5% obviously lower than those of green and blue TADF OLEDs. Therefore, in this thesis, we focused on the investigation of high performance orange-red TADF materials and device characteristics.
In the first part, we investigated detailed photophysical properties and device characteristics of two novel orange-red TADF materials, NAI-DMAC and NAI-DPAC. Both NAI-DMAC and NAI-DPAC possess preferentially horizontal dipole ratio Θ_(//) and relatively high internal quantum efficiency Φ_PLs. The maximum EQEs of NAI-DMAC and NAI-DPAC OLEDs can reach 23.4% and 29.2%, respectively. 29.2% EQE represents the state-of-the-art device performance for orange-red TADF OLEDs. We also discussed the influence of optical microcavity and Purcell effect on the thin film structure and device structure. In the second part, we investigated a new host material CBPCN and four novel orange-red TADF materials derived from NAI-DMAC and NAI-DPAC, called tBuFAc, 2PNDMAC, 2PNDPAC and 2PNFAc. The design concept of those TADF materials is to add a benzene to the molecule in order to elongate the molecular structure to increase the horizontal dipole ratio Θ_(//). The internal quantum efficiency Φ_PLs and horizontal dipole ratios Θ_(//) of those four novel TADF materials are both increased. Higher EQEs of OLEDs using these TADF materials have been obtained. The maximum EQEs can reach 31.4%. Simultaneously, we studied the characteristics of the new host CBPCN. Incorporation of a CN group onto conventional CBP makes CBPCN more anisotropic in optical properties, which is beneficial for increasing emitting dopants horizontal dipole ratios. By employing CBPCN as host material, the highest device EQE achieved is up to 31.1%, making CBPCN a promising host material. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:10:11Z (GMT). No. of bitstreams: 1 ntu-107-R05943068-1.pdf: 8348801 bytes, checksum: 18b9d223c2369e28f08afb094bcabee8 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 I
摘要 III ABSTRACT IV 目錄 VII 圖目錄 VIII 表目錄 XII 第一章 緒論 1 1.1 有機發光二極體簡介 1 1.2 客體材料發展 2 1.3 客體材料放光原理 3 1.3.1 螢光材料 3 1.3.2 磷光材料 4 1.3.3 TADF材料 4 1.4 研究動機與論文架構 5 第一章圖表 7 第二章 高效率橘紅光熱激活化延遲螢光有機發光材料及元件 9 2.1 前言 9 2.2 研究方法 10 2.2.1 主體材料mCPCN與CBP 10 2.2.2 客體材料 10 2.2.3 光物理特性 12 2.2.4 水平發光偶極比 13 2.2.5 元件製作與量測 13 2.3 結果與討論 14 2.3.1 光物理特性 14 2.3.2 水平發光偶極比 15 2.3.3 元件特性 16 2.3.4 光學模擬與討論 18 2.4 總結 20 第二章圖表 21 第三章 高水平發光偶極比之橘紅光熱激活化延遲螢光發光材料及元件 38 3.1 前言 38 3.2 研究方法 39 3.2.1 主體材料CBPCN 39 3.2.2 客體材料 39 3.2.3 光物理特性 40 3.2.4 水平發光偶極比 41 3.2.5 元件製作與量測 41 3.3 結果與討論 42 3.3.1 光物理特性 42 3.3.2 水平發光偶極比 45 3.3.3 元件特性 46 3.4 總結 48 第三章圖表 49 第四章 總結與未來展望 70 4.1 總結 70 4.2 未來展望 71 參考資料 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 熱激活化延遲螢光 | zh_TW |
| dc.subject | 有機發光元件 | zh_TW |
| dc.subject | 水平發光偶極比 | zh_TW |
| dc.subject | 光學微共振腔效應 | zh_TW |
| dc.subject | organic light-emitting diodes | en |
| dc.subject | thermally activated delayed fluorescence | en |
| dc.subject | horizontal dipole ratio | en |
| dc.subject | optical microcavity | en |
| dc.title | 高效率橘紅光熱激活化延遲螢光有機發光元件之研究 | zh_TW |
| dc.title | Investigation on High-Efficiency Orange-Red Thermally Activated Delayed Fluorescence Organic Light Emitting Devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俐吟(Li-Yin Chen),蔡志宏(Chih-Hung Tsai),盧英瑞(Yin-Jui Lu),黃奕翔(Yi-Hsiang Huang) | |
| dc.subject.keyword | 熱激活化延遲螢光,水平發光偶極比,光學微共振腔效應,有機發光元件, | zh_TW |
| dc.subject.keyword | thermally activated delayed fluorescence,horizontal dipole ratio,optical microcavity,organic light-emitting diodes, | en |
| dc.relation.page | 79 | |
| dc.identifier.doi | 10.6342/NTU201802376 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2018-08-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-R05943068-1.pdf 未授權公開取用 | 8.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
