Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77582
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳瑞華(Ruey-Hwa Chen)
dc.contributor.authorFei-Yun Chenen
dc.contributor.author陳飛澐zh_TW
dc.date.accessioned2021-07-10T22:09:58Z-
dc.date.available2021-07-10T22:09:58Z-
dc.date.copyright2018-08-23
dc.date.issued2018
dc.date.submitted2018-08-02
dc.identifier.citation1. Goldberg, A.L., Protein degradation and protection against misfolded or damaged proteins. Nature, 2003. 426(6968): p. 895-9.
2. Lecker, S.H., A.L. Goldberg, and W.E. Mitch, Protein degradation by the ubiquitin-proteasome pathway in normal and disease states. J Am Soc Nephrol, 2006. 17(7): p. 1807-19.
3. Paul, S., Dysfunction of the ubiquitin-proteasome system in multiple disease conditions: therapeutic approaches. Bioessays, 2008. 30(11-12): p. 1172-84.
4. Tanaka, K., The proteasome: overview of structure and functions. Proc Jpn Acad Ser B Phys Biol Sci, 2009. 85(1): p. 12-36.
5. Kleiger, G. and T. Mayor, Perilous journey: a tour of the ubiquitin-proteasome system. Trends Cell Biol, 2014. 24(6): p. 352-9.
6. Komander, D. and M. Rape, The ubiquitin code. Annu Rev Biochem, 2012. 81: p. 203-29.
7. Li, M., et al., Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science, 2003. 302(5652): p. 1972-5.
8. Yau, R. and M. Rape, The increasing complexity of the ubiquitin code. Nat Cell Biol, 2016. 18(6): p. 579-86.
9. Berndsen, C.E. and C. Wolberger, New insights into ubiquitin E3 ligase mechanism. Nat Struct Mol Biol, 2014. 21(4): p. 301-7.
10. Soucy, T.A., et al., An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature, 2009. 458(7239): p. 732-6.
11. Petroski, M.D. and R.J. Deshaies, Function and regulation of cullin-RING ubiquitin ligases. Nat Rev Mol Cell Biol, 2005. 6(1): p. 9-20.
12. Zhao, Y. and Y. Sun, Cullin-RING Ligases as attractive anti-cancer targets. Curr Pharm Des, 2013. 19(18): p. 3215-25.
13. Jin, J., et al., Systematic analysis and nomenclature of mammalian F-box proteins. Genes Dev, 2004. 18(21): p. 2573-80.
14. Linossi, E.M. and S.E. Nicholson, The SOCS box-adapting proteins for ubiquitination and proteasomal degradation. IUBMB Life, 2012. 64(4): p. 316-23.
15. Stogios, P.J., et al., Sequence and structural analysis of BTB domain proteins. Genome Biol, 2005. 6(10): p. R82.
16. He, Y.J., et al., DDB1 functions as a linker to recruit receptor WD40 proteins to CUL4-ROC1 ubiquitin ligases. Genes Dev, 2006. 20(21): p. 2949-54.
17. Wang, Z., et al., Roles of F-box proteins in cancer. Nat Rev Cancer, 2014. 14(4): p. 233-47.
18. Andresen, C.A., et al., Protein interaction screening for the ankyrin repeats and suppressor of cytokine signaling (SOCS) box (ASB) family identify Asb11 as a novel endoplasmic reticulum resident ubiquitin ligase. J Biol Chem, 2014. 289(4): p. 2043-54.
19. Kelleher, D.J., G. Kreibich, and R. Gilmore, Oligosaccharyltransferase activity is associated with a protein complex composed of ribophorins I and II and a 48 kd protein. Cell, 1992. 69(1): p. 55-65.
20. Diks, S.H., et al., The novel gene asb11: a regulator of the size of the neural progenitor compartment. J Cell Biol, 2006. 174(4): p. 581-92.
21. Diks, S.H., et al., d-Asb11 is an essential mediator of canonical Delta-Notch signalling. Nat Cell Biol, 2008. 10(10): p. 1190-8.
22. Sartori da Silva, M.A., et al., Essential role for the d-Asb11 cul5 Box domain for proper notch signaling and neural cell fate decisions in vivo. PLoS One, 2010. 5(11): p. e14023.
23. Suhaili, S.H., et al., Mitochondrial outer membrane permeabilization: a focus on the role of mitochondrial membrane structural organization. Biophys Rev, 2017. 9(4): p. 443-457.
24. Boyd, J.M., et al., Bik, a novel death-inducing protein shares a distinct sequence motif with Bcl-2 family proteins and interacts with viral and cellular survival-promoting proteins. Oncogene, 1995. 11(9): p. 1921-8.
25. Chinnadurai, G., S. Vijayalingam, and R. Rashmi, BIK, the founding member of the BH3-only family proteins: mechanisms of cell death and role in cancer and pathogenic processes. Oncogene, 2008. 27 Suppl 1: p. S20-9.
26. Germain, M., et al., Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J, 2005. 24(8): p. 1546-56.
27. Certo, M., et al., Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell, 2006. 9(5): p. 351-65.
28. Verma, S., L.J. Zhao, and G. Chinnadurai, Phosphorylation of the pro-apoptotic protein BIK: mapping of phosphorylation sites and effect on apoptosis. J Biol Chem, 2001. 276(7): p. 4671-6.
29. Mathai, J.P., et al., Induction and endoplasmic reticulum location of BIK/NBK in response to apoptotic signaling by E1A and p53. Oncogene, 2002. 21(16): p. 2534-44.
30. Mathai, J.P., M. Germain, and G.C. Shore, BH3-only BIK regulates BAX,BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J Biol Chem, 2005. 280(25): p. 23829-36.
31. Mebratu, Y.A., et al., Bik reduces hyperplastic cells by increasing Bak and activating DAPk1 to juxtapose ER and mitochondria. Nat Commun, 2017. 8(1): p. 803.
32. Prudent, J. and H.M. McBride, The mitochondria-endoplasmic reticulum contact sites: a signalling platform for cell death. Curr Opin Cell Biol, 2017. 47: p. 52-63.
33. Sturm, I., et al., Loss of the tissue-specific proapoptotic BH3-only protein Nbk/Bik is a unifying feature of renal cell carcinoma. Cell Death Differ, 2006. 13(4): p. 619-27.
34. Castells, A., et al., Mapping of a target region of allelic loss to a 0.5-cM interval on chromosome 22q13 in human colorectal cancer. Gastroenterology, 1999. 117(4): p. 831-7.
35. Bredel, M., et al., High-resolution genome-wide mapping of genetic alterations in human glial brain tumors. Cancer Res, 2005. 65(10): p. 4088-96.
36. Arena, V., et al., Mutations of the BIK gene in human peripheral B-cell lymphomas. Genes Chromosomes Cancer, 2003. 38(1): p. 91-6.
37. Marshansky, V., et al., Proteasomes modulate balance among proapoptotic and antiapoptotic Bcl-2 family members and compromise functioning of the electron transport chain in leukemic cells. J Immunol, 2001. 166(5): p. 3130-42.
38. Zhu, H., et al., Bik/NBK accumulation correlates with apoptosis-induction by bortezomib (PS-341, Velcade) and other proteasome inhibitors. Oncogene, 2005. 24(31): p. 4993-9.
39. Li, C., et al., Bortezomib induces apoptosis via Bim and Bik up-regulation and synergizes with cisplatin in the killing of head and neck squamous cell carcinoma cells. Mol Cancer Ther, 2008. 7(6): p. 1647-55.
40. Schroder, M. and R.J. Kaufman, ER stress and the unfolded protein response. Mutat Res, 2005. 569(1-2): p. 29-63.
41. Clarke, H.J., et al., Endoplasmic reticulum stress in malignancy. Cancer Cell, 2014. 25(5): p. 563-73.
42. Marzec, M., D. Eletto, and Y. Argon, GRP94: An HSP90-like protein specialized for protein folding and quality control in the endoplasmic reticulum. Biochim Biophys Acta, 2012. 1823(3): p. 774-87.
43. Hetz, C., The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol, 2012. 13(2): p. 89-102.
44. Maurel, M., et al., Controlling the unfolded protein response-mediated life and death decisions in cancer. Semin Cancer Biol, 2015. 33: p. 57-66.
45. Harding, H.P., Y. Zhang, and D. Ron, Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature, 1999. 397(6716): p. 271-4.
46. Woehlbier, U. and C. Hetz, Modulating stress responses by the UPRosome: a matter of life and death. Trends Biochem Sci, 2011. 36(6): p. 329-37.
47. Ameri, K. and A.L. Harris, Activating transcription factor 4. Int J Biochem Cell Biol, 2008. 40(1): p. 14-21.
48. Harding, H.P., et al., An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell, 2003. 11(3): p. 619-33.
49. Lange, P.S., et al., ATF4 is an oxidative stress-inducible, prodeath transcription factor in neurons in vitro and in vivo. J Exp Med, 2008. 205(5): p. 1227-42.
50. Mori, K., Signalling pathways in the unfolded protein response: development from yeast to mammals. J Biochem, 2009. 146(6): p. 743-50.
51. Ron, D. and P. Walter, Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol, 2007. 8(7): p. 519-29.
52. Shen, J., et al., Stable binding of ATF6 to BiP in the endoplasmic reticulum stress response. Mol Cell Biol, 2005. 25(3): p. 921-32.
53. Higa, A., et al., Endoplasmic reticulum stress-activated transcription factor ATF6alpha requires the disulfide isomerase PDIA5 to modulate chemoresistance. Mol Cell Biol, 2014. 34(10): p. 1839-49.
54. Nadanaka, S., et al., Analysis of ATF6 activation in Site-2 protease-deficient Chinese hamster ovary cells. Cell Struct Funct, 2006. 31(2): p. 109-16.
55. Haze, K., et al., Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell, 1999. 10(11): p. 3787-99.
56. Harding, H.P., et al., Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell, 2000. 6(5): p. 1099-108.
57. Puthalakath, H., et al., ER stress triggers apoptosis by activating BH3-only protein Bim. Cell, 2007. 129(7): p. 1337-49.
58. Reimertz, C., et al., Gene expression during ER stress-induced apoptosis in neurons: induction of the BH3-only protein Bbc3/PUMA and activation of the mitochondrial apoptosis pathway. J Cell Biol, 2003. 162(4): p. 587-97.
59. Novoa, I., et al., Feedback inhibition of the unfolded protein response by GADD34-mediated dephosphorylation of eIF2alpha. J Cell Biol, 2001. 153(5): p. 1011-22.
60. Han, J., et al., ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol, 2013. 15(5): p. 481-90.
61. McCullough, K.D., et al., Gadd153 sensitizes cells to endoplasmic reticulum stress by down-regulating Bcl2 and perturbing the cellular redox state. Mol Cell Biol, 2001. 21(4): p. 1249-59.
62. Kojima, E., et al., The function of GADD34 is a recovery from a shutoff of protein synthesis induced by ER stress: elucidation by GADD34-deficient mice. FASEB J, 2003. 17(11): p. 1573-5.
63. Lin, J.H., et al., Divergent effects of PERK and IRE1 signaling on cell viability. PLoS One, 2009. 4(1): p. e4170.
64. Han, D., et al., IRE1alpha kinase activation modes control alternate endoribonuclease outputs to determine divergent cell fates. Cell, 2009. 138(3): p. 562-75.
65. Hollien, J. and J.S. Weissman, Decay of endoplasmic reticulum-localized mRNAs during the unfolded protein response. Science, 2006. 313(5783): p. 104-7.
66. Lerner, A.G., et al., IRE1alpha induces thioredoxin-interacting protein to activate the NLRP3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metab, 2012. 16(2): p. 250-64.
67. Upton, J.P., et al., IRE1alpha cleaves select microRNAs during ER stress to derepress translation of proapoptotic Caspase-2. Science, 2012. 338(6108): p. 818-22.
68. Nishitoh, H., et al., ASK1 is essential for endoplasmic reticulum stress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev, 2002. 16(11): p. 1345-55.
69. Urano, F., et al., Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 2000. 287(5453): p. 664-6.
70. Ogata, M., et al., Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol, 2006. 26(24): p. 9220-31.
71. Castillo, K., et al., BAX inhibitor-1 regulates autophagy by controlling the IRE1alpha branch of the unfolded protein response. EMBO J, 2011. 30(21): p. 4465-78.
72. Hu, P., et al., Autocrine tumor necrosis factor alpha links endoplasmic reticulum stress to the membrane death receptor pathway through IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. Mol Cell Biol, 2006. 26(8): p. 3071-84.
73. Lin, J.H., et al., IRE1 signaling affects cell fate during the unfolded protein response. Science, 2007. 318(5852): p. 944-9.
74. Cubillos-Ruiz, J.R., S.E. Bettigole, and L.H. Glimcher, Tumorigenic and Immunosuppressive Effects of Endoplasmic Reticulum Stress in Cancer. Cell, 2017. 168(4): p. 692-706.
75. Ruggero, D., Translational control in cancer etiology. Cold Spring Harb Perspect Biol, 2013. 5(2).
76. Ma, Y. and L.M. Hendershot, The role of the unfolded protein response in tumour development: friend or foe? Nat Rev Cancer, 2004. 4(12): p. 966-77.
77. Chevet, E., C. Hetz, and A. Samali, Endoplasmic reticulum stress-activated cell reprogramming in oncogenesis. Cancer Discov, 2015. 5(6): p. 586-97.
78. Ghosh, R., et al., Allosteric inhibition of the IRE1alpha RNase preserves cell viability and function during endoplasmic reticulum stress. Cell, 2014. 158(3): p. 534-48.
79. Chen, X., et al., XBP1 promotes triple-negative breast cancer by controlling the HIF1alpha pathway. Nature, 2014. 508(7494): p. 103-107.
80. Kharabi Masouleh, B., et al., Mechanistic rationale for targeting the unfolded protein response in pre-B acute lymphoblastic leukemia. Proc Natl Acad Sci U S A, 2014. 111(21): p. E2219-28.
81. Pluquet, O., et al., Posttranscriptional regulation of PER1 underlies the oncogenic function of IREalpha. Cancer Res, 2013. 73(15): p. 4732-43.
82. Semenza, G.L., Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 2003. 3(10): p. 721-32.
83. Denko, N.C., Hypoxia, HIF1 and glucose metabolism in the solid tumour. Nat Rev Cancer, 2008. 8(9): p. 705-13.
84. Wong, C.C., et al., Hypoxia-inducible factor 1 is a master regulator of breast cancer metastatic niche formation. Proc Natl Acad Sci U S A, 2011. 108(39): p. 16369-74.
85. Tomasio, S.M., et al., Selective inhibition of the unfolded protein response: targeting catalytic sites for Schiff base modification. Mol Biosyst, 2013. 9(10): p. 2408-16.
86. Carrasco, D.R., et al., The differentiation and stress response factor XBP-1 drives multiple myeloma pathogenesis. Cancer Cell, 2007. 11(4): p. 349-60.
87. Papandreou, I., et al., Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity against human multiple myeloma. Blood, 2011. 117(4): p. 1311-4.
88. Mimura, N., et al., Blockade of XBP1 splicing by inhibition of IRE1alpha is a promising therapeutic option in multiple myeloma. Blood, 2012. 119(24): p. 5772-81.
89. Sun, H., et al., Inhibition of IRE1alpha-driven pro-survival pathways is a promising therapeutic application in acute myeloid leukemia. Oncotarget, 2016. 7(14): p. 18736-49.
90. Kriss, C.L., et al., Overexpression of TCL1 activates the endoplasmic reticulum stress response: a novel mechanism of leukemic progression in mice. Blood, 2012. 120(5): p. 1027-38.
91. Cross, B.C., et al., The molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding small molecule. Proc Natl Acad Sci U S A, 2012. 109(15): p. E869-78.
92. Ramaswamy, S., et al., Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci U S A, 2001. 98(26): p. 15149-54.
93. Schewe, D.M. and J.A. Aguirre-Ghiso, ATF6alpha-Rheb-mTOR signaling promotes survival of dormant tumor cells in vivo. Proc Natl Acad Sci U S A, 2008. 105(30): p. 10519-24.
94. Ginos, M.A., et al., Identification of a gene expression signature associated with recurrent disease in squamous cell carcinoma of the head and neck. Cancer Res, 2004. 64(1): p. 55-63.
95. Arai, M., et al., Transformation-associated gene regulation by ATF6alpha during hepatocarcinogenesis. FEBS Lett, 2006. 580(1): p. 184-90.
96. Bi, M., et al., ER stress-regulated translation increases tolerance to extreme hypoxia and promotes tumor growth. EMBO J, 2005. 24(19): p. 3470-81.
97. Blais, J.D., et al., Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol, 2006. 26(24): p. 9517-32.
98. Wang, Y., et al., The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. Cancer Res, 2012. 72(20): p. 5396-406.
99. Mujcic, H., et al., Hypoxic activation of the PERK/eIF2alpha arm of the unfolded protein response promotes metastasis through induction of LAMP3. Clin Cancer Res, 2013. 19(22): p. 6126-37.
100. Mujcic, H., et al., Hypoxic activation of the unfolded protein response (UPR) induces expression of the metastasis-associated gene LAMP3. Radiother Oncol, 2009. 92(3): p. 450-9.
101. Bobrovnikova-Marjon, E., et al., PERK promotes cancer cell proliferation and tumor growth by limiting oxidative DNA damage. Oncogene, 2010. 29(27): p. 3881-95.
102. Brewer, J.W. and J.A. Diehl, PERK mediates cell-cycle exit during the mammalian unfolded protein response. Proc Natl Acad Sci U S A, 2000. 97(23): p. 12625-30.
103. Ranganathan, A.C., et al., Functional coupling of p38-induced up-regulation of BiP and activation of RNA-dependent protein kinase-like endoplasmic reticulum kinase to drug resistance of dormant carcinoma cells. Cancer Res, 2006. 66(3): p. 1702-11.
104. Lindahl, T., Instability and decay of the primary structure of DNA. Nature, 1993. 362(6422): p. 709-15.
105. Yonekura, S., et al., Generation, biological consequences and repair mechanisms of cytosine deamination in DNA. J Radiat Res, 2009. 50(1): p. 19-26.
106. Cadet, J., et al., Oxidative damage to DNA: formation, measurement, and biological significance. Rev Physiol Biochem Pharmacol, 1997. 131: p. 1-87.
107. Major, G.N. and J.D. Collier, Repair of DNA lesion O6-methylguanine in hepatocellular carcinogenesis. J Hepatobiliary Pancreat Surg, 1998. 5(4): p. 355-66.
108. McCulloch, S.D. and T.A. Kunkel, The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res, 2008. 18(1): p. 148-61.
109. Bridges, B.A., Error-prone DNA repair and translesion synthesis: focus on the replication fork. DNA Repair (Amst), 2005. 4(5): p. 618-9, 634.
110. Ravanat, J.L., T. Douki, and J. Cadet, Direct and indirect effects of UV radiation on DNA and its components. J Photochem Photobiol B, 2001. 63(1-3): p. 88-102.
111. Ward, J.F., DNA damage produced by ionizing radiation in mammalian cells: identities, mechanisms of formation, and reparability. Prog Nucleic Acid Res Mol Biol, 1988. 35: p. 95-125.
112. Wogan, G.N., et al., Environmental and chemical carcinogenesis. Semin Cancer Biol, 2004. 14(6): p. 473-86.
113. Irigaray, P. and D. Belpomme, Basic properties and molecular mechanisms of exogenous chemical carcinogens. Carcinogenesis, 2010. 31(2): p. 135-48.
114. Bedard, L.L. and T.E. Massey, Aflatoxin B1-induced DNA damage and its repair. Cancer Lett, 2006. 241(2): p. 174-83.
115. Jackson, S.P. and J. Bartek, The DNA-damage response in human biology and disease. Nature, 2009. 461(7267): p. 1071-8.
116. Roos, W.P. and B. Kaina, DNA damage-induced cell death by apoptosis. Trends Mol Med, 2006. 12(9): p. 440-50.
117. Guo, Z., et al., Requirement for Atr in phosphorylation of Chk1 and cell cycle regulation in response to DNA replication blocks and UV-damaged DNA in Xenopus egg extracts. Genes Dev, 2000. 14(21): p. 2745-56.
118. Shieh, S.Y., et al., The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev, 2000. 14(3): p. 289-300.
119. Canman, C.E., et al., Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science, 1998. 281(5383): p. 1677-9.
120. Gutekunst, M., et al., p53 hypersensitivity is the predominant mechanism of the unique responsiveness of testicular germ cell tumor (TGCT) cells to cisplatin. PLoS One, 2011. 6(4): p. e19198.
121. Deng, C., et al., Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell, 1995. 82(4): p. 675-84.
122. Campisi, J. and F. d'Adda di Fagagna, Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol, 2007. 8(9): p. 729-40.
123. Shibue, T., et al., Integral role of Noxa in p53-mediated apoptotic response. Genes Dev, 2003. 17(18): p. 2233-8.
124. Villunger, A., et al., p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science, 2003. 302(5647): p. 1036-8.
125. Jeffers, J.R., et al., Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell, 2003. 4(4): p. 321-8.
126. Naik, E., et al., Ultraviolet radiation triggers apoptosis of fibroblasts and skin keratinocytes mainly via the BH3-only protein Noxa. J Cell Biol, 2007. 176(4): p. 415-24.
127. Kuwana, T., et al., BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell, 2005. 17(4): p. 525-35.
128. Dai, H., et al., Evaluation of the BH3-only protein Puma as a direct Bak activator. J Biol Chem, 2014. 289(1): p. 89-99.
129. Nakajima, W., et al., Noxa determines localization and stability of MCL-1 and consequently ABT-737 sensitivity in small cell lung cancer. Cell Death Dis, 2014. 5: p. e1052.
130. Chen, L., et al., Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell, 2005. 17(3): p. 393-403.
131. Happo, L., et al., Maximal killing of lymphoma cells by DNA damage-inducing therapy requires not only the p53 targets Puma and Noxa, but also Bim. Blood, 2010. 116(24): p. 5256-67.
132. Jegga, A.G., et al., Functional evolution of the p53 regulatory network through its target response elements. Proc Natl Acad Sci U S A, 2008. 105(3): p. 944-9.
133. Marchenko, N.D., et al., Stress-mediated nuclear stabilization of p53 is regulated by ubiquitination and importin-alpha3 binding. Cell Death Differ, 2010. 17(2): p. 255-67.
134. Marchenko, N.D., et al., Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J, 2007. 26(4): p. 923-34.
135. Mancini, F., et al., MDM4 (MDMX) localizes at the mitochondria and facilitates the p53-mediated intrinsic-apoptotic pathway. EMBO J, 2009. 28(13): p. 1926-39.
136. Sykes, S.M., et al., Acetylation of the p53 DNA-binding domain regulates apoptosis induction. Mol Cell, 2006. 24(6): p. 841-51.
137. Letai, A., et al., Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell, 2002. 2(3): p. 183-92.
138. Willis, S.N., et al., Apoptosis initiated when BH3 ligands engage multiple Bcl-2 homologs, not Bax or Bak. Science, 2007. 315(5813): p. 856-9.
139. Nakano, K. and K.H. Vousden, PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell, 2001. 7(3): p. 683-94.
140. Oda, E., et al., Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science, 2000. 288(5468): p. 1053-8.
141. del Peso, L., et al., Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science, 1997. 278(5338): p. 687-9.
142. Ewings, K.E., et al., ERK1/2-dependent phosphorylation of BimEL promotes its rapid dissociation from Mcl-1 and Bcl-xL. EMBO J, 2007. 26(12): p. 2856-67.
143. Dehan, E., et al., betaTrCP- and Rsk1/2-mediated degradation of BimEL inhibits apoptosis. Mol Cell, 2009. 33(1): p. 109-16.
144. Wan, L., et al., APC(Cdc20) suppresses apoptosis through targeting Bim for ubiquitination and destruction. Dev Cell, 2014. 29(4): p. 377-91.
145. Real, P.J., et al., Transcriptional activation of the proapoptotic bik gene by E2F proteins in cancer cells. FEBS Lett, 2006. 580(25): p. 5905-9.
146. Hetz, C., et al., The unfolded protein response: integrating stress signals through the stress sensor IRE1alpha. Physiol Rev, 2011. 91(4): p. 1219-43.
147. Rodriguez, D., D. Rojas-Rivera, and C. Hetz, Integrating stress signals at the endoplasmic reticulum: The BCL-2 protein family rheostat. Biochim Biophys Acta, 2011. 1813(4): p. 564-74.
148. Yuan, W.C., et al., A Cullin3-KLHL20 Ubiquitin ligase-dependent pathway targets PML to potentiate HIF-1 signaling and prostate cancer progression. Cancer Cell, 2011. 20(2): p. 214-28.
149. Liu, C.C., et al., Cul3-KLHL20 Ubiquitin Ligase Governs the Turnover of ULK1 and VPS34 Complexes to Control Autophagy Termination. Mol Cell, 2016. 61(1): p. 84-97.
150. Wu, H.C., et al., USP11 regulates PML stability to control Notch-induced malignancy in brain tumours. Nat Commun, 2014. 5: p. 3214.
151. Lydeard, J.R., B.A. Schulman, and J.W. Harper, Building and remodelling Cullin-RING E3 ubiquitin ligases. EMBO Rep, 2013. 14(12): p. 1050-61.
152. Acosta-Alvear, D., et al., XBP1 controls diverse cell type- and condition-specific transcriptional regulatory networks. Mol Cell, 2007. 27(1): p. 53-66.
153. Avci, D. and M.K. Lemberg, Clipping or Extracting: Two Ways to Membrane Protein Degradation. Trends Cell Biol, 2015. 25(10): p. 611-22.
154. Meyer, H. and C.C. Weihl, The VCP/p97 system at a glance: connecting cellular function to disease pathogenesis. J Cell Sci, 2014. 127(Pt 18): p. 3877-83.
155. Ye, Y., et al., A Mighty 'Protein Extractor' of the Cell: Structure and Function of the p97/CDC48 ATPase. Front Mol Biosci, 2017. 4: p. 39.
156. Ye, Y., H.H. Meyer, and T.A. Rapoport, Function of the p97-Ufd1-Npl4 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol, 2003. 162(1): p. 71-84.
157. Fischer, M., L. Steiner, and K. Engeland, The transcription factor p53: not a repressor, solely an activator. Cell Cycle, 2014. 13(19): p. 3037-58.
158. Namba, T., et al., Loss of p53 enhances the function of the endoplasmic reticulum through activation of the IRE1alpha/XBP1 pathway. Oncotarget, 2015. 6(24): p. 19990-20001.
159. Li, Y.M., et al., Enhancement of Bik antitumor effect by Bik mutants. Cancer Res, 2003. 63(22): p. 7630-3.
160. Lang, J.Y., et al., BikDD eliminates breast cancer initiating cells and synergizes with lapatinib for breast cancer treatment. Cancer Cell, 2011. 20(3): p. 341-56.
161. Li, L.Y., et al., Targeted hepatocellular carcinoma proapoptotic BikDD gene therapy. Oncogene, 2011. 30(15): p. 1773-83.
162. Sher, Y.P., et al., Cancer-targeted BikDD gene therapy elicits protective antitumor immunity against lung cancer. Mol Cancer Ther, 2011. 10(4): p. 637-47.
163. Sher, Y.P., et al., Cancer targeted gene therapy of BikDD inhibits orthotopic lung cancer growth and improves long-term survival. Oncogene, 2009. 28(37): p. 3286-95.
164. Xie, X., et al., Targeted BikDD expression kills androgen-dependent and castration-resistant prostate cancer cells. Mol Cancer Ther, 2014. 13(7): p. 1813-25.
165. Wang, Y., et al., Targeting protein neddylation with an NEDD8-activating enzyme inhibitor MLN4924 induced apoptosis or senescence in human lymphoma cells. Cancer Biol Ther, 2015. 16(3): p. 420-9.
166. Cazanave, S.C., et al., CHOP and AP-1 cooperatively mediate PUMA expression during lipoapoptosis. Am J Physiol Gastrointest Liver Physiol, 2010. 299(1): p. G236-43.
167. Li, H., et al., Mammalian endoplasmic reticulum stress sensor IRE1 signals by dynamic clustering. Proc Natl Acad Sci U S A, 2010. 107(37): p. 16113-8.
168. Lopez, I., et al., p53-mediated suppression of BiP triggers BIK-induced apoptosis during prolonged endoplasmic reticulum stress. Cell Death Differ, 2017. 24(10): p. 1717-1729.
169. Ruggiano, A., O. Foresti, and P. Carvalho, Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol, 2014. 204(6): p. 869-79.
170. Hur, J., et al., Regulation of expression of BIK proapoptotic protein in human breast cancer cells: p53-dependent induction of BIK mRNA by fulvestrant and proteasomal degradation of BIK protein. Cancer Res, 2006. 66(20): p. 10153-61.
171. Gao, B., et al., Synoviolin promotes IRE1 ubiquitination and degradation in synovial fibroblasts from mice with collagen-induced arthritis. EMBO Rep, 2008. 9(5): p. 480-5.
172. Levy, N., et al., Complementation by wild-type p53 of interleukin-6 effects on M1 cells: induction of cell cycle exit and cooperativity with c-myc suppression. Mol Cell Biol, 1993. 13(12): p. 7942-52.
173. Sachdeva, M., et al., p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci U S A, 2009. 106(9): p. 3207-12.
174. Zhao, N., et al., Pharmacological targeting of MYC-regulated IRE1/XBP1 pathway suppresses MYC-driven breast cancer. J Clin Invest, 2018. 128(4): p. 1283-1299.
175. Yamamoto, K., et al., Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J Biochem, 2004. 136(3): p. 343-50.
176. Donati, G., C. Imbriano, and R. Mantovani, Dynamic recruitment of transcription factors and epigenetic changes on the ER stress response gene promoters. Nucleic Acids Res, 2006. 34(10): p. 3116-27.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77582-
dc.description.abstract屬於BH3-only的促進細胞凋亡蛋白BIK會受到泛素-蛋白酶體系統調控。然而,這種調控的根本機制及其生理功能仍然不清楚。在此,我們發現了一個泛素連接酶CRL5ASB11介導BIK泛素化/降解的機制。在內質網壓力下,ASB11被XBP1轉錄激活,從而促進BIK的泛素化,與p97的相互作用以及蛋白降解。相反地,基因損害藥物通過上調p53來下調IRE1/XBP1,導致BIK穩定。這樣相反的ASB11介導BIK泛素化調控,部分參與了內質網壓力下的適應性反應以及DNA損傷下的凋亡反應。透過IRE1抑制劑阻斷泛素化途徑可穩定活性突變體的BIK並增加它對三陰性乳腺癌的抗腫瘤功效。我們的研究發現一個BIK的泛素連接酶,通過內質網壓力和DNA損傷揭示了正反向BIK泛素化的調控機制,並且涉及一個抗癌策略,透過共同施用標靶BIK的泛素化途徑以及活性BIK。zh_TW
dc.description.abstractThe BH3-only pro-apoptotic protein BIK is regulated by ubiquitin-proteasome system. However, the underlying mechanism of this regulation and its physiological functions remain elusive. Here, we identify a BIK ubiquitination/degradation mechanism mediated by ubiquitin ligase CRL5ASB11. Under ER stress, ASB11 is transcriptionally activated by XBP1, thereby stimulating BIK ubiquitination, interaction with p97, and proteolysis. Conversely, genotoxic agents act through p53 to downregulate IRE1/XBP1 axis, leading to BIK stabilization. These opposite regulations of ASB11-medaited BIK ubiquitination participate in part to the adaptive response to ER stress and apoptotic response to DNA damage. Blockage of this ubiquitination pathway by IRE1 inhibitors stabilizes BIK active mutant and increases its anti-tumor efficacy in triple negative breast cancers. Our study identifies a BIK ubiquitin ligase, uncovers the opposite regulations of this BIK ubiquitination by ER stress and DNA damage, and implicate an anti-cancer strategy by targeting BIK ubiquitination pathway in combined with administration of active BIK.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:09:58Z (GMT). No. of bitstreams: 1
ntu-107-D01b46002-1.pdf: 7017517 bytes, checksum: a968ee3faed498c6dfcfdf797f665d31 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents論文口試委員審定書
誌謝 II
摘要 IV
Abstract V
Contents VI
Literature Review 1
1. The ubiquitin-proteasome system 1
1.1 The ubiquitin E3 ligases 2
1.2 The Cullin-RING E3 ligases 3
1.3 Ankyrin repeat and SOCS box 11 4
2. BCL-2 family 5
2.1 BCL-2 interacting killer 6
3. Endoplasmic reticulum stress 7
3.1 The activation and stress sensors of UPR 9
3.2 The mechanism of UPR in controlling the cell fate 11
3.3 The IRE1 signaling in cancer diseases and therapy 14
4. DNA damage-induced apoptosis 18
Introduction 22
Materials and Methods 26
Antibodies and reagents 26
Cell Culture and Transfection 26
Plasmids 27
RNA interference 27
Immunoprecipitation and Western blot 28
Ubiquitination assays 28
Apoptosis assay 30
mRNA extraction and RT-qPCR 30
Luciferase reporter assay 30
ChIP assay 31
MTT assay 31
Animal experiments 32
Statistical analysis 32
Results 33
Identification of CRL5ASB11 as a BIK ubiquitin ligase 33
ASB11 promotes BIK proteasomal degradation 34
ASB11 is a transcriptional target of XBP1s 35
ER stress promotes BIK degradation through the actions of ASB11 and p97 37
DNA damage induces p53-dependent BIK stabilization by suppressing XBP1/ASB11 axis 38
Opposite regulations of ASB11-dependent BIK ubiquitination by ER stress and DNA damage govern the life-death cell fate 40
Targeting ASB11-dependent BIK degradation pathway enhances the anti-tumor effect of BIKDD 42
Discussion 45
Reference 51
Figures 75
Figure 1. Both Cul2 and Cul5 dominant negative (DN) mutants increase the protein level but not mRNA level of BIK. 75
Figure 2. Exogenous ANKRD9, ASB11 and ASB17 interact with endogenous BIK. 77
Figure 3. ASB11, but not ASB17 and ANKRD9 can promote BIK ubiquitination. 78
Figure 4. ASB11 recruits BIK to Cul5 for ubiquitination. 79
Figure 5. Cul5ASB11 complex is responsible for BIK ubiquitination in vitro. 81
Figure 6. ASB11 promotes BIK degradation. 82
Figure 7. Overexpression and knockdown of ASB11 increases and decreases BIK protein turnover, respectively. 83
Figure 8. ER stress inducers upregulate the mRNA level of ASB11. 84
Figure 9. ER stress increases ASB11 mRNA expression through XBP1. 85
Figure 10. XBP1s increases ASB11 mRNA. 87
Figure 11. ASB11 is a transcriptional target of XBP1s. 89
Figure 12. NFY-A/B/C complex binds XBP1s. 90
Figure 13. ER stress increases BIK protein turnover. 91
Figure 14. ASB11 knockdown blocks tunicamycin-induced BIK downregulation. 92
Figure 15. Tunicamycin elevates the ubiquitination levels of exogenous and endogenous BIK and promotes BIK proteasomal degradation. 93
Figure 16. XBP1 knockdown blocks tunicamycin-induced BIK downregulation and BIK ubiquitination. 95
Figure 17. p97 and its adaptors UFD1L/NPL4 participate in the ER stress-induced BIK degradation. 97
Figure 18. p97-NPL4-UFD1L complex interacts with ubiquitinated BIK under ER stress. 99
Figure 19. Genotoxic agents reduce mRNA and protein levels of ASB11 and increase BIK in a p53-dependent manner. 100
Figure 20. Doxorubicin downregulates ASB11 mRNA in p53-transfected H1299 cells but not in p53-deficient H1299 cells. 101
Figure 21. 5-FU stabilizes BIK in control cells and cannot further stabilize BIK in ASB11 knockdown cells. 102
Figure 22. Overexpression of p53 in H1299 cells decreases ASB11 promoter activity. 103
Figure 23. Doxorubicin and 5-FU reduce IRE1 level and XBP1 splicing through a p53-dependent manner. 104
Figure 24. Overexpression of XBP1s restores ASB11 mRNA and BIK ubiquitination in doxorubicin-treated cells. 105
Figure 25. Overexpression of ASB11 but not its mutant decreases DNA damage-induced apoptosis. 106
Figure 26. Overexpression of ASB11 reduces DNA damage-induced apoptosis, which is reversed by BIK overexpression. 108
Figure 27. ASB11 knockdown increases apoptosis under ER stress, which is reversed by BIK knockdown. 110
Figure 28. ER stress induces a higher level of apoptosis in BIK2KR expressing cells than BIK WT cells. 112
Figure 29. ASB11 and tunicamycin promote BIKDD ubiquitination. 114
Figure 30. IRE1 inhibitors enhance the killing effect of CMV-BIKDD in three TNBC cells. 116
Figure 31. IRE1 inhibitor enhances the killing effect of VISA-BIKDD in Hs578T cells. 117
Figure 32. Combined treatment of IRE1 inhibitor and BIKDD enhances the killing effect of BIKDD in TNBC bearing nude mice. 118
Figure 33. Combined treatment of IRE1 inhibitor and VISA-BIKDD enhances the killing effect of VISA-BIKDD in TNBC bearing nude mice. 120
Appendixes 121
Appendix 1. Knockdown of Cul5 but not Cul2 increases the protein level of BIK. 121
Appendix 2. ASB11 directly interacts with BIK. 122
Appendix 3. Overexpression of ASB11 but not ASB11 mutant promotes BIK ubiquitination. 123
Appendix 4. ASB11 promotes BIK proteasomal degradation. 124
Appendix 5. Knockdown of ASB11 increases the protein level of BIK in H1299 cells. 125
Appendix 6. ER stress inducers upregulate the mRNA level of ASB11 in two TNBC cells. 126
Appendix 7. ER stress inducers elevate ASB11 protein expression and reduce BIK protein level in multiple cell lines. 127
Appendix 8. ER stress downregulates BIK through ASB11. 128
Appendix 9. ER stress promotes BIK proteasomal degradation. 129
Appendix 10. p53 represses ASB11 mRNA expression. 130
Appendix 11. BIK(2KR) mutant is resistant to ASB11-medaited ubiquitination and degradation. 131
Appendix 12. ASB11 and tunicamycin promote BIKDD degradation. 133
Appendix 13. IRE1 inhibitor stabilizes BIKDD in three TNBC cell lines. 134
Appendix 14. IRE1 inhibitor increases the cleavage PARP in three TNBC cell lines. 135
Table 1: Information for antibodies used in this study 136
Table 2: Primers for (quantitative) PCR and cloning 137
Table 3: Targeting sequences for shRNAs 141
dc.language.isoen
dc.titleBIK泛素化的調控決定細胞壓力反應下生與死的命運以及抗腫瘤的活性zh_TW
dc.titleRegulation of BIK ubiquitination determines life-death fate of cellular stress responses and anti-tumor activityen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee施修明,謝小燕,陳光超,顏雪琪
dc.subject.keywordBIK,ASB11,泛素化,內質網壓力,IRE1α,XBP1s,DNA損傷,p53,zh_TW
dc.subject.keywordBIK,ASB11,ubiquitination,ER stress,IRE1,XBP1s,DNA damage,p53,en
dc.relation.page141
dc.identifier.doi10.6342/NTU201701408
dc.rights.note未授權
dc.date.accepted2018-08-02
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-D01b46002-1.pdf
  目前未授權公開取用
6.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved