Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 流行病學與預防醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77565
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor于明暉zh_TW
dc.contributor.advisorMing-Whei Yuen
dc.contributor.author吳宛融zh_TW
dc.contributor.authorWan-Jung Wuen
dc.date.accessioned2021-07-10T22:09:04Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. McGlynn KA, Petrick JL, London WT. Global epidemiology of hepatocellular carcinoma: an emphasis on demographic and regional variability. Clinics in liver disease 2015;19(2):223-238.
2. Torre LA, Bray F, Siegel RL, et al. Global cancer statistics, 2012. CA: a cancer journal for clinicians 2015;65(2):87-108.
3. El-Serag HB. Epidemiology of viral hepatitis and hepatocellular carcinoma. Gastroenterology 2012;142(6):1264-1273. e1.
4. Chisari FV, Isogawa M, Wieland SF. Pathogenesis of hepatitis B virus infection. Pathologie Biologie 2010;58(4):258-266.
5. Liaw YF, Chu CM. Hepatitis B virus infection. Lancet 2009;373(9663):582-92.
6. McMahon BJ. Natural history of chronic hepatitis B. Clinics in liver disease 2010;14(3):381-396.
7. Chan HL, Hui A, Wong M, et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut 2004;53(10):1494-1498.
8. Yu MW, Yeh SH, Chen PJ, et al. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men. J Natl Cancer Inst 2005;97(4):265-72.
9. Chou YC, Yu MW, Wu CF, et al. Temporal relationship between hepatitis B virus enhancer II/basal core promoter sequence variation and risk of hepatocellular carcinoma. Gut 2008;57(1):91-7.
10. Wong DK, Yuen MF, Poon RT, et al. Quantification of hepatitis B virus covalently closed circular DNA in patients with hepatocellular carcinoma. J Hepatol 2006;45(4):553-9.
11. Chen CJ, Yang HI, Su J, et al. Risk of hepatocellular carcinoma across a biological gradient of serum hepatitis B virus DNA level. Jama 2006;295(1):65-73.
12. Sung FY, Jung CM, Wu CF, et al. Hepatitis B virus core variants modify natural course of viral infection and hepatocellular carcinoma progression. Gastroenterology 2009;137(5):1687-1697.
13. Chen G, Lin W, Shen F, et al. Past HBV viral load as predictor of mortality and morbidity from HCC and chronic liver disease in a prospective study. The American journal of gastroenterology 2006;101(8):1797.
14. Wu CF, Yu MW, Lin CL, et al. Long-term tracking of hepatitis B viral load and the relationship with risk for hepatocellular carcinoma in men. Carcinogenesis 2008;29(1):106-12.
15. Liaw YF, Sung JJ, Chow WC, et al. Lamivudine for patients with chronic hepatitis B and advanced liver disease. N Engl J Med 2004;351(15):1521-31.
16. Chen CF, Lee WC, Yang HI, et al. Changes in serum levels of HBV DNA and alanine aminotransferase determine risk for hepatocellular carcinoma. Gastroenterology 2011;141(4):1240-1248. e2.
17. Janeway Jr CA, Medzhitov R. Innate immune recognition. Annual review of immunology 2002;20(1):197-216.
18. Dunn C, Brunetto M, Reynolds G, et al. Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell–mediated liver damage. Journal of Experimental Medicine 2007;204(3):667-680.
19. Fisicaro P, Valdatta C, Boni C, et al. Early kinetics of innate and adaptive immune responses during hepatitis B virus infection. Gut 2009;58(7):974-982.
20. Schoggins JW, Rice CM. Interferon-stimulated genes and their antiviral effector functions. Current opinion in virology 2011;1(6):519-525.
21. Visvanathan K, Skinner NA, Thompson AJ, et al. Regulation of Toll‐like receptor‐2 expression in chronic hepatitis B by the precore protein. Hepatology 2007;45(1):102-110.
22. Peppa D, Micco L, Javaid A, et al. Blockade of immunosuppressive cytokines restores NK cell antiviral function in chronic hepatitis B virus infection. PLoS pathogens 2010;6(12):e1001227.
23. Xia Y, Stadler D, Lucifora J, et al. Interferon-γ and tumor necrosis factor-α produced by T cells reduce the HBV persistence form, cccDNA, without cytolysis. Gastroenterology 2016;150(1):194-205.
24. Latchman YE, Liang SC, Wu Y, et al. PD-L1-deficient mice show that PD-L1 on T cells, antigen-presenting cells, and host tissues negatively regulates T cells. Proc Natl Acad Sci U S A 2004;101(29):10691-6.
25. Xu D, Fu J, Jin L, et al. Circulating and liver resident CD4+ CD25+ regulatory T cells actively influence the antiviral immune response and disease progression in patients with hepatitis B. The Journal of Immunology 2006;177(1):739-747.
26. Boni C, Fisicaro P, Valdatta C, et al. Characterization of hepatitis B virus (HBV)-specific T-cell dysfunction in chronic HBV infection. Journal of virology 2007;81(8):4215-4225.
27. Ali AK, Nandagopal N, Lee SH. IL-15-PI3K-AKT-mTOR: A Critical Pathway in the Life Journey of Natural Killer Cells. Front Immunol 2015;6:355.
28. Viel S, Besson L, Marotel M, et al. Regulation of mTOR, Metabolic Fitness, and Effector Functions by Cytokines in Natural Killer Cells. Cancers 2017;9(10):132.
29. Powell JD, Delgoffe GM. The mammalian target of rapamycin: linking T cell differentiation, function, and metabolism. Immunity 2010;33(3):301-311.
30. Waddington CH. The epigenotype. International journal of epidemiology 2011;41(1):10-13.
31. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Reviews Genetics 2012;13(7):484.
32. Wu H, Zhang Y. Reversing DNA methylation: mechanisms, genomics, and biological functions. Cell 2014;156(1-2):45-68.
33. Chen T, Ueda Y, Dodge JE, et al. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Molecular and cellular biology 2003;23(16):5594-5605.
34. Park IY, Sohn BH, Yu E, et al. Aberrant epigenetic modifications in hepatocarcinogenesis induced by hepatitis B virus X protein. Gastroenterology 2007;132(4):1476-1494.
35. Vivekanandan P, Daniel HD, Kannangai R, et al. Hepatitis B virus replication induces methylation of both host and viral DNA. J Virol 2010;84(9):4321-9.
36. Okamoto Y, Shinjo K, Shimizu Y, et al. Hepatitis virus infection affects DNA methylation in mice with humanized livers. Gastroenterology 2014;146(2):562-572.
37. Lim KH, Park ES, Kim DH, et al. Suppression of interferon-mediated anti-HBV response by single CpG methylation in the 5'-UTR of TRIM22. Gut 2018;67(1):166-178.
38. Shen J, Wang S, Zhang YJ, et al. Genome‐wide DNA methylation profiles in hepatocellular carcinoma. Hepatology 2012;55(6):1799-1808.
39. Kao WY, Yang SH, Liu WJ, et al. Genome‐wide identification of blood DNA methylation patterns associated with early‐onset hepatocellular carcinoma development in hepatitis B carriers. Molecular carcinogenesis 2017;56(2):425-435.
40. Hayes AF. Introduction to mediation, moderation, and conditional process analysis: A regression-based approach: Guilford Publications; 2017.
41. Tingley D, Yamamoto T, Hirose K, et al. Mediation: R package for causal mediation analysis. 2014.
42. Peng G, Li S, Wu W, et al. PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol 2008;45(4):963-70.
43. Abb J, Zachoval R, Eisenburg J, et al. Production of interferon alpha and interferon gamma by peripheral blood leukocytes from patients with chronic hepatitis B virus infection. J Med Virol 1985;16(2):171-6.
44. Jiang R, Feng X, Guo Y, et al. T helper cells in patients with chronic hepatitis B virus infection. Chin Med J (Engl) 2002;115(3):422-4.
45. Miroux C, Vausselin T, Delhem N. Regulatory T cells in HBV and HCV liver diseases: implication of regulatory T lymphocytes in the control of immune response. Expert Opin Biol Ther 2010;10(11):1563-72.
46. Schoggins JW, Wilson SJ, Panis M, et al. A diverse range of gene products are effectors of the type I interferon antiviral response. Nature 2011;472(7344):481-5.
47. Meng X, Yang D, Yu R, et al. EPSTI1 Is Involved in IL-28A-Mediated Inhibition of HCV Infection. Mediators Inflamm 2015;2015:716315.
48. Huang WC, Tung SL, Chen YL, et al. IFI44L is a novel tumor suppressor in human hepatocellular carcinoma affecting cancer stemness, metastasis, and drug resistance via regulating met/Src signaling pathway. BMC Cancer 2018;18(1):609.
49. Zhao M, Zhou Y, Zhu B, et al. IFI44L promoter methylation as a blood biomarker for systemic lupus erythematosus. Ann Rheum Dis 2016;75(11):1998-2006.
50. Trapani JA, Smyth MJ. Functional significance of the perforin/granzyme cell death pathway. Nat Rev Immunol 2002;2(10):735-47.
51. Fletcher SP, Chin DJ, Cheng DT, et al. Identification of an intrahepatic transcriptional signature associated with self-limiting infection in the woodchuck model of hepatitis B. Hepatology 2013;57(1):13-22.
52. Gan X, Wang J, Wang C, et al. PRR5L degradation promotes mTORC2-mediated PKC-delta phosphorylation and cell migration downstream of Galpha12. Nat Cell Biol 2012;14(7):686-96.
53. Thedieck K, Polak P, Kim ML, et al. PRAS40 and PRR5-like protein are new mTOR interactors that regulate apoptosis. PLoS One 2007;2(11):e1217.
54. Passtoors WM, Beekman M, Deelen J, et al. Gene expression analysis of mTOR pathway: association with human longevity. Aging Cell 2013;12(1):24-31.
55. Chan HL, Hui AY, Wong ML, et al. Genotype C hepatitis B virus infection is associated with an increased risk of hepatocellular carcinoma. Gut 2004;53(10):1494-8.
56. Chu CJ, Hussain M, Lok AS. Hepatitis B virus genotype B is associated with earlier HBeAg seroconversion compared with hepatitis B virus genotype C. Gastroenterology 2002;122(7):1756-62.
57. Zhang W, Chen J, Wu M, et al. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation. Hepatology 2017;66(2):398-415.
58. Ren JH, Hu JL, Cheng ST, et al. SIRT3 restricts HBV transcription and replication via epigenetic regulation of cccDNA involving SUV39H1 and SETD1A histone methyltransferases. Hepatology 2018; 10.1002/hep.29912.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77565-
dc.description.abstract背景與目的
B型肝炎帶原者發展成肝細胞癌的原因相當複雜,目前對病毒因子作用的了解已有迅速發展,但病毒因子與宿主免疫反應之間的交互作用仍然未知。因病毒感染及發炎反應均會影響甲基化的程度,因此DNA甲基化標記可反映病毒與宿主之交互作用,並具有調節功能改變和臨床結果的效能。我們使用晶片及焦磷酸定序來評估與病毒因子和肝細胞癌相關的甲基化位點,並試圖確定與B型肝炎帶原者中肝細胞癌進程相關的病毒與宿主之交互作用。
材料與方法
從4,841個B型肝炎表面抗原陽性男性的世代研究獲得周邊血液白血球的DNA。 首先,我們在巢式病例對照研究(n = 96)中使用Infinium HumanMethylation450晶片進行了表遺傳全基因組的分析,檢驗甲基化程度與血液中B型肝炎病毒DNA及肝細胞癌的關聯。其次,我們進行了基因功能與富集分析並鑑定表遺傳變化與基因表達的關聯,藉以確認功能的相關性。第三,在較大的巢式病例對照研究中,利用焦磷酸定序驗證選出之甲基化位點(n = 476)。最後,使用DNA甲基化標記進行中介分析,以檢驗B型肝炎帶原者肝細胞癌發展過程中病毒與宿主交相作用的潛在重要性。
結果
通過表遺傳全基因組分析,挑選出在B型肝炎病毒相關免疫途徑中四個不同基因上的五支探針,其中四支探針特定位點的甲基化程度與基因表達強度的變化顯著相關。利用較大的巢式病例對照研究驗證了三支探針(位於IFI44L基因的cg05696877及cg06872964和位於PRF1基因的cg22900360)與病毒量存在顯著相關。中介分析顯示,病毒量解釋了IFI44L和PRF1甲基化對肝細胞癌的部分影響,且IFI44L基因的甲基化也是病毒量與肝細胞癌、B型肝炎病毒基因型與病毒量/e抗原之間關係的中介,結果還顯示PRR5L甲基化會因透過對IFNG/PRF1甲基化和病毒量的影響而與肝細胞癌相關。
結論
我們的結果表明,重要的B型肝炎病毒相關免疫途徑中的免疫基因甲基化可能是慢性B型肝炎病毒感染和肝細胞癌之間的起始或中介。然而,未來需要進行更複雜的功能研究以闡明潛在的機制。
zh_TW
dc.description.abstractBackground and Aims
In hepatitis B virus (HBV)-related hepatocellular carcinoma(HCC), understanding of viral factors have been progressed rapidly, but the interaction between viral factors and host immune response remains largely unknown. Both viral infection and inflammation can affect the extent of methylation, and thus DNA methylation markers could reflect the virus-host interaction, which can mediate functional changes and clinical outcomes. We used microarray and pyrosequencing to assess methylation sites related to viral factors and HCC, and attempted to determine the virus-host interaction associated with the development of HCC in HBV carriers.
Materials and Methods
Peripheral leukocyte DNA were obtained from a longitudinal cohort of 4,841 hepatitis B surface antigen-positive men. First, we conducted an epigenome-wide analysis with the Infinium HumanMethylation450 array in a nested case-control study(n=96). Methylation levels were examined for associations with circulating HBV DNA and HCC. Second, we conducted gene sets enrichment analysis and correlated identified epigenetic changes with gene expression to investigate functional relevance of the findings. Third, candidate methylation sites were taken forward for replication with pyrosequencing in a larger nested case-control study (n=476). Finally, statistical mediation analysis with DNA methylation markers was used to examine potential importance of virus-host interaction during the development of HBV-related HCC.
Results
Through epigenome-wide analysis, five probes across 4 different genes in HBV-related immune pathways. Methylation levels in four of these five probes targeted sites were significantly associated with concurrent changes in gene expression levels. The associations with viral load were confirmed for three probes (cg05696877 and cg06872964 at IFI44L gene and cg22900360 at PRF1 gene) in the replication study. Mediation analysis showed that viral load explained part of the effect of IFI44L and PRF1 methylation on HCC, and methylation in the IFI44L gene was also a mediator of the relation between both viral load and HCC, genotype and viral load/ HBeAg. Our results also showed that the PRR5L methylation was associated with HCC through its effect on IFNG/ PRF1 methylation and viral load.
Conclusion
Our results suggest that methylation of immune genes in important HBV-related immune pathways may be an initiator or an intermediary between chronic HBV infection and HCC. However, more complex functional studies are warranted in the future to elucidate the underlying mechanisms.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:09:04Z (GMT). No. of bitstreams: 1
ntu-107-R05849003-1.pdf: 5105737 bytes, checksum: c4936b608a7d920513add058cb1b9bcc (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 i
中文摘要 ii
Abstract iv
第一章 研究背景 1
第二章 研究目的 7
第三章 材料與方法 8
研究設計 8
資料庫 8
標記選擇 10
焦磷酸定序 11
基因功能與訊息路徑富集分析 12
統計分析 12
第四章 研究結果 13
基因功能與訊息路徑富集分析 13
晶片資料與焦磷酸定序之相關 13
DNA甲基化標記與基因表達的關係 14
研究族群之基線特徵 14
DNA甲基化與肝細胞癌及病毒量的關係 15
基線DNA甲基化標記與後續病毒量變化的關係 16
中介影響模式及分析結果 16
第五章 討論 19
參考文獻 25
-
dc.language.isozh_TW-
dc.subject肝細胞癌zh_TW
dc.subject中介分析zh_TW
dc.subject病毒-宿主交互作用zh_TW
dc.subjectB型肝炎zh_TW
dc.subjectDNA甲基化zh_TW
dc.subjectmediation analysisen
dc.subjectDNA methylationen
dc.subjectvirus-host interactionen
dc.subjecthepatocellular carcinomaen
dc.subjecthepatitis Ben
dc.title找尋B型肝炎帶原者發展成肝細胞癌相關之病毒與宿主免疫交互作用的表遺傳標記zh_TW
dc.titleIdentifying Epigenetic Markers for Characterization of Virus-Host Interaction Associated with the Development of Hepatocellular Carcinoma in HBV Carriersen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee李文宗;鄭尊仁;劉貞佑;林志陵zh_TW
dc.contributor.oralexamcommittee;;;en
dc.subject.keywordB型肝炎,肝細胞癌,DNA甲基化,病毒-宿主交互作用,中介分析,zh_TW
dc.subject.keywordhepatitis B,hepatocellular carcinoma,DNA methylation,virus-host interaction,mediation analysis,en
dc.relation.page40-
dc.identifier.doi10.6342/NTU201802617-
dc.rights.note未授權-
dc.date.accepted2018-08-07-
dc.contributor.author-college公共衛生學院-
dc.contributor.author-dept流行病學與預防醫學研究所-
顯示於系所單位:流行病學與預防醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  未授權公開取用
4.99 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved