請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77560
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張淑惠(Shu-Hui, Chang) | |
dc.contributor.author | Chen-Wei Hung | en |
dc.contributor.author | 洪晨瑋 | zh_TW |
dc.date.accessioned | 2021-07-10T22:08:47Z | - |
dc.date.available | 2021-07-10T22:08:47Z | - |
dc.date.copyright | 2018-08-14 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-07 | |
dc.identifier.citation | Crowley, L., and Hu, M. (1977) Covariance analysis of heart transplant survival data. Journal of the American Statistical Association, 72:357, 27-36.
Clayton, D. G. (1978). A Model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika 65, 141-151. Cook, R. J., and Lawless, J. F. (2007) The Statistical Analysis of Recurrent Events. New York: Springer. Chang, S. H., Shih, Y. C., and Su, D. H. (2017). Semiparametric analysis of time-dependent associations for alternating bivariate gap time data. Technique Report. College of Public Health, National Taiwan University. Chang, S. H., and Su, D. H. (2018) Association analysis for alternating bivariate gap times with event-history dependent censoring. Technique report, College of Public Health, National Taiwan University. Fu, T. C., Su, D. H., and Chang, S. H. (2016). Serial association analyses of recurrent gap time data via Kendall's tau. Biostatistics 17, 188-202. Lakhal-Chaieb, L., Cook, R. J., and Lin, X. (2010). Inverse probability of censoring weighted estimated of Kendall’s tau for gap time analyses. Biometrics 66, 1145–1152. Lin, D. Y., Sun, W., and Ying, Z. (1999). Nonparametric estimation of the gap time distributions for serial events with censored data. Biometrika 86, 59–70. Oakes, D. (1986). Semiparametric inference in a model for association in bivariate survival data. Biometrika 73, 353–61. Oakes, D. (1989). Bivariate survival models induced by frailties. Journal of the American Statistical Association 84, 487–493. Xue, X., and Brookmeyer, R. (1996) Bivariate frailty model for the analysis of multivariate survival time. Lifetime Data Anal., 2, 277–289. Xu, C., Chinchilli, V. M., and Wang, M. (2018) Joint modeling of recurrent events and a terminal event adjusted for zero inflation and a matched design. Statistic in Medicine, 37, 2771-2786 張淑惠 (2016). 重複性交替發生雙間隔時間資料之相關性分析。期末報告,中華民國科技部專題研究計畫。 張淑惠 (2017). 重複交替雙間隔時間之相依結構分析。期中報告,中華民國科技部專題研究計畫。 施雅芝 (2017). 序列二元間隔時間之時間區塊交叉比的半參數估計方法。國立台灣大學公共衛生學院流行病學研究所生物醫學統計組碩士論文。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77560 | - |
dc.description.abstract | 在長期追蹤的醫學研究中,個體可能經歷反覆發生有序的二元事件,像是慢性病患者反覆發生入院與出院兩種情況。本研究感興趣的是反覆發生兩種事件的二元間隔時間,例如,病人在醫院治療的時間以及離開醫院後再次進去醫院治療的時間,此資料型態為序列二元間隔時間資料。二元復發事件會因設限而不再發生事件,例如,研究終止時。一般常見假設設限時間與序列二元間隔時間獨立,然而,實際上設限時間可能會與過去序列復發事件的歷史有關。交叉比為常用於二元間隔時間相關性的一種測度,本文目的估計在不同相依右設限情境下的全域以及時間區塊之交叉比。當分析第二間隔時間與後續的間隔時間時,會有誘導性相依設限的問題,可使用設限機率倒數權重(inverse probability of censoring weigh,簡稱IPCW)解決此問題,本文考慮三種設限情境下,利用三種設限機率倒數權重來估計交叉比。最後,針對兩種不同序列二元間隔時間的聯立分布並考慮在不同相依設限情境下,以蒙地卡羅模擬分析比較不同交叉比估計方法的表現。 | zh_TW |
dc.description.abstract | In a follow-up medical study, subjects may experience ordered bivariate events alternately over time, for example, repeated discharges and readmissions for chronic disease patients. In the study, the time variables of interest are the bivariate gap times between bivariate events, such as the length of stay in a hospital and the time interval between the discharge from the hospital and readmission. This data set is called the serial bivariate gap time data. In general, the censoring, for example, end of study, may stop the bivariate recurrent event process. Typically, the censoring time is assumed to be independent of serial bivariate gap times. However, in reality, the censoring time may depend on the history of serial recurrent gap times. The purpose of our study is to estimate the global and time-segment cross ratios, which are used to measure the global and local associations between bivariate gap times, under certain dependent censoring situations. The problem of the influence of the induced dependent censoring for analyzing the second or later gap times can be solved by using the inverse probability of censoring weight (IPCW). We consider three IPCWs to estimate cross ratio subject to three censoring situations. Our Monte Carlo simulation studies are conducted under various dependent censoring scenarios with two different joint distribution of serial bivariate gap times to evaluate the performance of the proposed estimates of the cross ratios. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:08:47Z (GMT). No. of bitstreams: 1 ntu-107-R05H41006-1.pdf: 4721833 bytes, checksum: e40deba32380db430e71191d2d2c83f3 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II Abstract III 表目錄 IV 第一章 序論 1 1.1前言 1 1.2研究動機與目的 2 第二章 文獻回顧 3 2.1交叉比 3 2.2設限機率倒數權重 5 2.3小結 6 第三章 方法 7 3.1 符號定義與假設 7 3.2 估計方法 12 第四章 模擬 16 4.1 設限情境與假設 16 4.2 序列二元間隔時間的資料生成 22 4.2.1 Clayton 的二元指數分布 22 4.2.2 Clayton二元指數分布的交叉比之模擬結果 23 4.2.3 Bivariate lognormal分布 25 4.2.4 Bivariate lognormal分布的交叉比之模擬結果 26 第五章 結果與討論 29 參考文獻 31 附錄 33 | |
dc.language.iso | zh-TW | |
dc.title | 不同相依設限情境下序列二元間隔時間的
時間區塊交叉比估計 | zh_TW |
dc.title | Estimating Time-Segment Cross Ratios of
Serial Bivariate Gap Times under Various Dependent Censoring Scenarios | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 戴政,蔡政安,丘政民 | |
dc.subject.keyword | 序列二元間隔時間資料,設限相依,交叉比,倒數機率設限權重, | zh_TW |
dc.subject.keyword | Serial bivariate events data,Dependent censoring,Cross ratio,Inverse probability of censoring weight, | en |
dc.relation.page | 74 | |
dc.identifier.doi | 10.6342/NTU201802678 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-08-08 | |
dc.contributor.author-college | 共同教育中心 | zh_TW |
dc.contributor.author-dept | 統計碩士學位學程 | zh_TW |
顯示於系所單位: | 統計碩士學位學程 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05H41006-1.pdf 目前未授權公開取用 | 4.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。