請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77532完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡詩偉 | zh_TW |
| dc.contributor.author | 劉又甄 | zh_TW |
| dc.contributor.author | Yu-Chen Liu | en |
| dc.date.accessioned | 2021-07-10T22:07:19Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-09 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Allison L. Cashman and E.M. Warshaw, Parabens: A Review of Epidemiology, Structure, Allergenicity, and Hormonal Properties. Dermatitis, 2005. 16(2): p. 57-66.
2. Sasseville, D., Hypersensitivity to preservatives. Dermatologic Therapy, 2004. 17: p. 251-63. 3. S.C. Rastogi, et al., Content of methyl-, ethyl-, propyl-, butyl- and benzylparaben in cosmetics products. Contact Dermatitis, 1995. 32: p. 28-30. 4. Vandenberg, L.N., et al., Human exposure to bisphenol A (BPA). Reprod Toxicol, 2007. 24(2): p. 139-77. 5. Han, C., et al., Determination of four paraben-type preservatives and three benzophenone-type ultraviolet light filters in seafoods by LC-QqLIT-MS/MS. Food Chem, 2016. 194: p. 1199-207. 6. Laborie, S., et al., A new analytical protocol for the determination of 62 endocrine-disrupting compounds in indoor air. Talanta, 2016. 147: p. 132-41. 7. Lee, H.B., T.E. Peart, and M.L. Svoboda, Determination of endocrine-disrupting phenols, acidic pharmaceuticals, and personal-care products in sewage by solid-phase extraction and gas chromatography-mass spectrometry. J Chromatogr A, 2005. 1094(1-2): p. 122-9. 8. Ramaswamy, B.R., et al., Determination of preservative and antimicrobial compounds in fish from Manila Bay, Philippines using ultra high performance liquid chromatography tandem mass spectrometry, and assessment of human dietary exposure. J Hazard Mater, 2011. 192(3): p. 1739-45. 9. Azzouz, A., A.J. Rascon, and E. Ballesteros, Simultaneous determination of parabens, alkylphenols, phenylphenols, bisphenol A and triclosan in human urine, blood and breast milk by continuous solid-phase extraction and gas chromatography-mass spectrometry. J Pharm Biomed Anal, 2016. 119: p. 16-26. 10. Piao, C., L. Chen, and Y. Wang, A review of the extraction and chromatographic determination methods for the analysis of parabens. J Chromatogr B Analyt Technol Biomed Life Sci, 2014. 969: p. 139-48. 11. Cacho, J.I., et al., Stir bar sorptive extraction with EG-Silicone coating for bisphenols determination in personal care products by GC-MS. J Pharm Biomed Anal, 2013. 78-79: p. 255-60. 12. Shanmugam, G., et al., GC–MS method for the determination of paraben preservatives in the human breast cancerous tissue. Microchemical Journal, 2010. 96(2): p. 391-396. 13. Peck, A.M., Analytical methods for the determination of persistent ingredients of personal care products in environmental matrices. Anal Bioanal Chem, 2006. 386(4): p. 907-39. 14. Pietrogrande, M.C. and G. Basaglia, GC-MS analytical methods for the determination of personal-care products in water matrices. TrAC Trends in Analytical Chemistry, 2007. 26(11): p. 1086-1094. 15. Yang, T.J., et al., Determination of additives in cosmetics by supercritical fluid extraction on-line headspace solid-phase microextraction combined with gas chromatography-mass spectrometry. Anal Chim Acta, 2010. 668(2): p. 188-94. 16. Saraji, M. and S. Mirmahdieh, Single-drop microextraction followed by in-syringe derivatization and GC-MS detection for the determination of parabens in water and cosmetic products. J Sep Sci, 2009. 32(7): p. 988-95. 17. <FourthReport_UpdatedTables_Volume1_Jan2017.pdf>. 18. Soni, M.G., I.G. Carabin, and G.A. Burdock, Safety assessment of esters of p-hydroxybenzoic acid (parabens). Food Chem Toxicol, 2005. 43(7): p. 985-1015. 19. HEINZ SINGER, et al., Triclosan: Occurrence and Fate of a Widely Used Biocide in the Aquatic Environment: Field Measurements in Wastewater Treatment Plants, Surface Waters, and Lake Sediments. Environ. Sci. Technol, 2002. 36: p. 4998-5004. 20. Brede, C., et al., Increased migration levels of bisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing. Food Addit Contam, 2003. 20(7): p. 684-9. 21. Le, H.H., et al., Bisphenol A is released from polycarbonate drinking bottles and mimics the neurotoxic actions of estrogen in developing cerebellar neurons. Toxicol Lett, 2008. 176(2): p. 149-56. 22. Lian-Chun Hub, Akira Okua, and a.E. Yamadaa, Alkali-catalyzed methanolysis of polycarbonate. A study on recycling of bisphenol A and dimethyl carbonate. Polymer, 1998. 39(16): p. 3841-3845. 23. Dodson, R.E., et al., Endocrine disruptors and asthma-associated chemicals in consumer products. Environ Health Perspect, 2012. 120(7): p. 935-43. 24. Elder, R.L., Final report on the safety assessment of methylparaben, ethylparaben, propylparaben, and butylparaben. J. Am. Coll. Toxicol., 1984. 3: p. 147-209. 25. Piyush Mohapatra, Dr. Prashant Rajankar, and K.M. Alka Dubey, “Disrupting Triclosan” A potential Endocrine Disrupting Chemical found in toiletries. 2016. 26. M.G. Soni a, et al., Safety assessment of propyl paraben: a review of the published literature. Food and Chemical Toxicology, 2001. 39: p. 513-532. 27. Bledzka, D., J. Gromadzinska, and W. Wasowicz, Parabens. From environmental studies to human health. Environ Int, 2014. 67: p. 27-42. 28. Guadarrama, P., et al., Construction of simplified models to simulate estrogenic disruptions by esters of 4-hydroxy benzoic acid (parabens). Biophys Chem, 2008. 137(1): p. 1-6. 29. David C. Steinberg and S. Associates, Frequency of Preservative Use Update Through 2014. 2016. 30. 陳咨丰 and 詹錦豐, 市售化妝品中防腐劑及抗菌劑的調查分析. 2014. 31. Charles A. Staples, et al., A review of the environmental fate, effects, and exposures of bisphenol A. Chemosphere, 1998. 36(10): p. 2149-2173. 32. Tsai, W.-T., A review on environmental distributions and risk management of phenols pertaining to the endocrine disrupting chemicals in Taiwan. Toxicological & Environmental Chemistry, 2013. 95(5): p. 723-736. 33. Jonkers, N., et al., Mass flows of endocrine disruptors in the Glatt River during varying weather conditions. Environ Pollut, 2009. 157(3): p. 714-23. 34. Gonzalez-Marino, I., et al., Evaluation of the occurrence and biodegradation of parabens and halogenated by-products in wastewater by accurate-mass liquid chromatography-quadrupole-time-of-flight-mass spectrometry (LC-QTOF-MS). Water Res, 2011. 45(20): p. 6770-80. 35. Nation industrial chemicals notification and assessment, S., Australia, NICNAS, Triclosan, Priority Existing Chemical Assessment Report No. 30. 2009. 36. PETTIGROVE, G.A.L.A.M.E., Seasonal Variations in Concentrations of Pharmaceuticals and Personal Care Products in Drinking Water and Reclaimed Wastewater in Southern California. Environ. Sci. Technol, 2006. 40: p. 687-695. 37. Regueiro, J., et al., Trace analysis of parabens, triclosan and related chlorophenols in water by headspace solid-phase microextraction with in situ derivatization and gas chromatography-tandem mass spectrometry. J Chromatogr A, 2009. 1216(23): p. 4693-702. 38. Hines, E.P., et al., Concentrations of environmental phenols and parabens in milk, urine and serum of lactating North Carolina women. Reprod Toxicol, 2015. 54: p. 120-8. 39. Limam, I., et al., Simultaneous determination of phenol, methylphenols, chlorophenols and bisphenol-A by headspace solid-phase microextraction-gas chromatography-mass spectrometry in water samples and industrial effluents. International Journal of Environmental Analytical Chemistry, 2010. 90(3-6): p. 230-244. 40. Darbre, P.D. and P.W. Harvey, Regulatory Considerations for Dermal Application of Endocrine Disrupters in Personal Care Products, in Endocrine Disruption and Human Health. 2015. p. 343-361. 41. Warshaw, E.M., et al., North American contact dermatitis group patch test results: 2011-2012. Dermatitis, 2015. 26(1): p. 49-59. 42. Tavares, R.S., et al., Parabens in male infertility-is there a mitochondrial connection? Reprod Toxicol, 2009. 27(1): p. 1-7. 43. Veldhoen, N., et al., The bactericidal agent triclosan modulates thyroid hormone-associated gene expression and disrupts postembryonic anuran development. Aquat Toxicol, 2006. 80(3): p. 217-27. 44. Allmyr, M., et al., The influence of age and gender on triclosan concentrations in Australian human blood serum. Sci Total Environ, 2008. 393(1): p. 162-7. 45. COMMISSION REGULATION (EU) No 358/2014 of 9 April 2014. 2014. 46. <修正「化粧品中防腐劑成分使用及限量規定基準表」(衛授食字第1051611716號).pdf>. 47. Welfare, M.o.H.a., Standards for Cosmetics. 2000. 48. Arthur, C.L. and J. Pawliszyn, Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Cham., 1990. 49. Pawliszyn, Z.Z.a.J., Headspace Solid-Phase Microextraction. Anal. Chem., 1993. 65: p. 1843-1852. 50. Polo, M., et al., Development of a solid-phase microextraction method for the analysis of phenolic flame retardants in water samples. J Chromatogr A, 2006. 1124(1-2): p. 11-21. 51. LarsRenberg and KristerLindström, C18 reversed-phase trace enrichment of chlorinated phenols, guaiacols and catechols in water. Journal of Chromatography A, 1981. 214(3): p. 327-334. 52. Lucia Sanchez-Prado, et al., Simultaneous In-Cell Derivatization Pressurized Liquid Extraction for the Determination of Multiclass Preservatives in Leave-On Cosmetics. Anal. Chem. , 2010. 82: p. 9384–9392. 53. Regueiro, J., et al., Ultrasound-assisted emulsification-microextraction of phenolic preservatives in water. Talanta, 2009. 79(5): p. 1387-97. 54. Hao, C., X. Zhao, and P. Yang, GC-MS and HPLC-MS analysis of bioactive pharmaceuticals and personal-care products in environmental matrices. TrAC Trends in Analytical Chemistry, 2007. 26(6): p. 569-580. 55. Antignac, J.-P., et al., The ion suppression phenomenon in liquid chromatography–mass spectrometry and its consequences in the field of residue analysis. Analytica Chimica Acta, 2005. 529(1-2): p. 129-136. 56. Wu, J., et al., Study on the matrix effect in the determination of selected pharmaceutical residues in seawater by solid-phase extraction and ultra-high-performance liquid chromatography-electrospray ionization low-energy collision-induced dissociation tandem mass spectrometry. J Chromatogr A, 2010. 1217(9): p. 1471-5. 57. Caban, M., et al., Matrix effects and recovery calculations in analyses of pharmaceuticals based on the determination of beta-blockers and beta-agonists in environmental samples. J Chromatogr A, 2012. 1258: p. 117-27. 58. Lee, H.B., K. Sarafin, and T.E. Peart, Determination of beta-blockers and beta2-agonists in sewage by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J Chromatogr A, 2007. 1148(2): p. 158-67. 59. Alvarez-Rivera, G., et al., Development of a multi-preservative method based on solid-phase microextraction-gas chromatography-tandem mass spectrometry for cosmetic analysis. J Chromatogr A, 2014. 1339: p. 13-25. 60. U.S. EPA. Exposure Factors Handbook 2011 Edition (Final Report). 61. Biesterbos, J.W., et al., Usage patterns of personal care products: important factors for exposure assessment. Food Chem Toxicol, 2013. 55: p. 8-17. 62. Wormuth, M., et al., What are the sources of exposure to eight frequently used phthalic acid esters in Europeans? Risk Anal, 2006. 26(3): p. 803-24. 63. Matthias Wormuth, M.S., and Konrad Hungerb¨uhler, Linking the Use of Scented Consumer Products to Consumer Exposure to Polycyclic Musk Fragrances. Research and analysis, 2005. Volume 9. 64. Herud, M.M., Dermal absorption of triclosan following short-, and long-term exposure in an ex vivo human skin model- implications for safe use in personal care products. 2017. 65. Demierre, A.L., et al., Dermal penetration of bisphenol A in human skin contributes marginally to total exposure. Toxicol Lett, 2012. 213(3): p. 305-8. 66. Sanchez-Prado, L., et al., Content of suspected allergens and preservatives in marketed baby and child care products. Anal. Methods, 2013. 5(2): p. 416-427. 67. Shu-Ping Wang, C.-L.C., Determination of parabens in cosmetic products by supercritical ¯uid extraction and capillary zone electrophoresis. Analytica Chimica Acta, 1998. 377: p. 85-93. 68. Zotou, A., I. Sakla, and P.D. Tzanavaras, LC-determination of five paraben preservatives in saliva and toothpaste samples using UV detection and a short monolithic column. J Pharm Biomed Anal, 2010. 53(3): p. 785-9. 69. Jain, R., et al., Simultaneous derivatisation and preconcentration of parabens in food and other matrices by isobutyl chloroformate and dispersive liquid-liquid microextraction followed by gas chromatographic analysis. Food Chem, 2013. 141(1): p. 436-43. 70. Shen, H.-Y., et al., Simultaneous determination of seven phthalates and four parabens in cosmetic products using HPLC-DAD and GC-MS methods. Journal of Separation Science, 2007. 30(1): p. 48-54. 71. Liao, C. and K. Kannan, A survey of alkylphenols, bisphenols, and triclosan in personal care products from China and the United States. Arch Environ Contam Toxicol, 2014. 67(1): p. 50-9. 72. Lewis, R.C., et al., Predictors of urinary bisphenol A and phthalate metabolite concentrations in Mexican children. Chemosphere, 2013. 93(10): p. 2390-8. 73. Guo, Y., L. Wang, and K. Kannan, Phthalates and parabens in personal care products from China: concentrations and human exposure. Arch Environ Contam Toxicol, 2014. 66(1): p. 113-9. 74. Guo, Y. and K. Kannan, A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ Sci Technol, 2013. 47(24): p. 14442-9. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77532 | - |
| dc.description.abstract | 在日常生活中,人們每天皆會使用各種不同個人保健用品,例如:洗面乳、洗髮精與乳液等;這類產品通常含水量高,且具有醣類、蛋白質或脂質等成份,而若使用或儲存不當,可能會造成微生物孳生。因此,避免污染及延長保存期限,於個人保健用品添加抗菌防腐劑是個常見的方法 (例如:對羥基苯甲酸酯 (parabens)及三氯沙 (triclosan)等)。另一方面,由於塑膠製品常做為個人保健用品之容器,因此使用相關產品時亦可能因為釋出雙酚A (bisphenol A)而造成暴露。
為了保障消費者權益及健康,台灣及歐盟等國家規範了抗菌防腐劑之濃度,而雙酚A亦雖規定不能在奶瓶中添加,但在其他容器並無要求;儘管如此,市面上還是有很多具有對羥基苯甲酸酯或三氯沙等物質。由於臺灣個人保健用品含有抗菌防腐劑以及容器可能釋出的雙酚A的資訊非常有限,因此為了瞭解民眾暴露到這些物質的健康風險,建立一個具敏感及簡易的方法同時分析待測物是必要的。 本研究利用頂空固相微萃取(HS-SPME)前處理步驟搭配氣相層析串聯質譜儀(Triple Quadrupole GC/MS/MS)同步偵測4種對羥基苯甲酸酯、三氯沙及雙酚A。為了增加敏感度,本研究以乙酸酐 (Acetic anhydride)作為衍生試劑進行衍生反應,同時添加氯化鈉 (sodium chloride)產生鹽析反應。樣本分析前,先用超純水稀釋,而萃取步驟使用 65μm PDMS / DVB 萃取纖維搭配頂空萃取模式,以100℃與搖晃 250 rpm萃取 20 分鐘,在達平衡後直接將萃取纖維插入氣相層析儀之進樣口進行 1 分鐘之熱脫附。 6種分析物因物化特性其定量範圍不同,檢量線呈現良好的線性關係 (R > 0.99),因此此方法足夠敏感可以分析各種個人保健用品的濃度,考量到產品中複雜基質,樣本稀釋以及添加擬標為常見降低其受基質效應影響的方法。 收集155項樣本,共分為12種品項分類進行定量分析,結果顯示對羥基苯甲酸酯較常當作防腐劑出現在產品中,其中對羥基苯甲酸甲酯與對羥基苯甲酸丙酯頻率較高,可能是因為一同添加在產品中增加其抗菌防腐能力。對羥基苯甲酸酯較常檢測於停留性的個人保健用品,例如:身體乳液與臉部乳液等,在研究中,各個物質檢測出最高濃度分別為:對羥基苯甲酸甲酯3704.64 μg/g、對羥基苯甲酸乙酯645.59 μg/g、對羥基苯甲酸丙酯1733.29 μg/g與對羥基苯甲酸丁酯299.91 μg/g,三氯沙只有在牙膏中測得,最高濃度為2905.47 μg/g,產品中雙酚A的檢出率低以及測得濃度也相當低6.02 μg/g,除了一項臉部乳液產品中對羥基苯甲酸丙酯,大多產品中防腐劑濃度皆在規範濃度內,嬰兒及敏感性肌膚專用之產品在本實驗中尚未偵測到濃度,此外,本研究利用所測得的產品中待測物濃度,進行估算皮膚吸收暴露,分為三個族群:成人女性、小孩與嬰兒評估其劑量,對於成人女性暴露的結果顯示0.00001-0.78208 μg/kg-bw/day,另外,對羥基苯甲酸酯於不同類型產品的貢獻量,身體乳液與臉部乳液占較大比例,其中最高暴露量分別為8.54618和3.49533 μg/kg-bw/day。 本研究利用固相微萃取與衍生方法搭配氣相層析串聯質譜儀之檢測方法,提供個人保健用品的抗菌防腐劑與潛在釋出雙酚A濃度,在未來研究中,可以再進一步調查在不同環境介質中分布與濃度,與評估對於民眾暴露到抗菌防腐劑的健康風險。 | zh_TW |
| dc.description.abstract | Preservatives are commonly added to consumer products to ensure the safety during use and storage. Among the preservatives, parabens (methylparaben(MP), ethylparaben(EP), propylparaben(PP), butylparaben(BP)) and triclosan (TCS) are widely used in personal care products (PCPs). In addition, most of the containers for PCPs are made of plastic materials, which might cause the release of bisphenol A (BPA) into the products. Various health concerns related to the exposures of parabens, triclosan, and BPA, including contact allergy, endocrine system disruption, and reproductive system effects, have been reported. Preservatives in the cosmetics have been regulated by the European Union (EU). However, there are still lots of parabens or triclosan-containd products on the market. Hence, there is a need to develop a simple and sensitive analytical method in order to determine the distributions of parabens, triclosan, and BPA in PCPs.
In this study, analytes and surrogate standards were prepared in methanol as the stock solution. Further dilutions and mixtures of PCPs were prepared in the same solvent. To enhance sensitivities, acetic anhydride and potassium carbonate were added for the in situ derivatization. Analytes were extracted at 90℃ for 20 minutes with 250 rpm. Headspace solid-phase microextraction (SPME) procedure using 65μm PDMS/DVB was performed. After extraction, the fiber was inserted into the GC injector port coupled with triple quadruple gas chromatography with tandem mass spectrometry (GC/MS/MS). The SPME procedure coupled with GC/MS/MS analysis for the determinations of the above metioned compounds in PCPs was established in this study. Parameters which might have the effects on the SPME extractions were evaluated, including extraction time, extraction temperature, agitator speed, volume of acetic anhydride and concentration of sodium chloride. By adding 100μl of the derivative reagents and 20% (w/v) sodium chloride, the method established was sensitive enough to determine the target compounds. 155 PCPs samples were analyzed in this study. The linear range was 0.02-2 ng/ml for MP and PP, 0.05-1 ng/ml for EP, 0.02-1 ng/ml for BP, 0.02-5 ng/ml for TCS and BPA. The method detection limits (MDLs) of analytes were 0.007-0.017 ng/ml and RSDs showed 1.15-17.63% at low concentration and 0.39-4.94% at high concentration. Good linearity and precision were presented and the recoveries ranged from 65% to 150%. This study provided a survey regarding the concentration of parabens, triclosan and BPA in personal care products in Taiwan, including national or foreign brands. The results revealed methylparaben and propylparaben have the higher frequencies in PCPs. The high concentrations of parabens were mainly found in leave-on products, like body lotion and facial lotion. There is methylparaben for 3704.64 μg/g, ethylparaben for 645.59 μg/g, propylparaben for 1733.29 μg/g and butylparaben for 299.91 μg/g. Triclosan was detected only in toothpaste (2905.47 μg/g) and BPA had the low level (6.02 μg/g) and detection rate in PCPs. In addition, daily dermal exposure was estimated, based on the mean and maximum concentration of analytes in this study. The target group was divided into three types, adult females, toddlers and infants. The results indicated that body lotion and facial lotion were major sources of human exposure. With the findings of this study, the possible health risks due to the exposures can be assessed. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:07:19Z (GMT). No. of bitstreams: 1 ntu-107-R05844005-1.pdf: 1814109 bytes, checksum: 7c501203ebe12dc61b3223af62d3164b (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 I
中文摘要 II ABSTRACT IV CONTENTS VI LIST OF TABLES VIII LIST OF FIGURES IX Chapter 1 Introduction 1 1.1 Study background 1 1.2 Objective 2 1.3 Preservatives (parabens and triclosan) and bisphenol-A 2 1.3.1 Property 2 1.3.2 Application 3 1.3.3 Environmental fate 4 1.3.4 Health effects 4 1.3.5 Regulation 5 1.4 SPME technique 5 1.4.1 SPME principle 6 1.4.2 Parameters 7 1.5 Determinination of parabens, triclosan and BPA with SPME 8 1.5.1 Extraction mode 8 1.5.2 Derivatization 9 1.5.3 Matrix effect 9 Chapter 2 Materials and Methods 11 2.1 Study flow chart 11 2.2 Reagents and standards 12 2.3 Sample collection and preparation 12 2.4 SPME extraction 13 2.5 Instrument analysis 13 2.6 Method validation 14 2.7 Dermal exposure 16 Chapter 3 Results and Discussions 18 3.1 GC-MS/MS analysis 18 3.2 Optimization of SPME parameters for parabens, triclosan and BPA 18 3.2.1 Extraction time 19 3.2.2 Extraction temperature 19 3.2.3 Desorption efficiency 20 3.2.4 Agitator speed 20 3.2.5 Derivatization 21 3.2.6 Concentration of sodium chloride 22 3.3 Method validation 22 3.4 Application to real samples 24 3.5 Exposure assessment 27 3.6 Limitation 28 Chapter 4 Conclusion 29 Reference 31 | - |
| dc.language.iso | en | - |
| dc.subject | 衍生 | zh_TW |
| dc.subject | 固相微萃取 | zh_TW |
| dc.subject | 氣相層析串聯質譜儀 | zh_TW |
| dc.subject | 個人保健用品 | zh_TW |
| dc.subject | 抗菌防腐劑 | zh_TW |
| dc.subject | Preservatives | en |
| dc.subject | Solid phase microextraction | en |
| dc.subject | Derivatization | en |
| dc.subject | Personal care products | en |
| dc.subject | GC-MS/MS | en |
| dc.title | 以固相微萃取技術與衍生方法搭配氣相層析串聯質譜儀分析個人保健用品中的抗菌防腐成分 | zh_TW |
| dc.title | Determine parabens, triclosan and bisphenol A in personal care products by solid-phase microextraction using in situ derivatization with GC-MS/MS | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林嘉明;陳美蓮;李婉甄 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 抗菌防腐劑,固相微萃取,衍生,個人保健用品,氣相層析串聯質譜儀, | zh_TW |
| dc.subject.keyword | Preservatives,Solid phase microextraction,Derivatization,Personal care products,GC-MS/MS, | en |
| dc.relation.page | 58 | - |
| dc.identifier.doi | 10.6342/NTU201802823 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-13 | - |
| dc.contributor.author-college | 公共衛生學院 | - |
| dc.contributor.author-dept | 環境衛生研究所 | - |
| 顯示於系所單位: | 環境衛生研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 1.77 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
