請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77530完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊鎧鍵 | zh_TW |
| dc.contributor.advisor | Kai-Chien Yang | en |
| dc.contributor.author | 程凱琳 | zh_TW |
| dc.contributor.author | Kai-Lin Cheng | en |
| dc.date.accessioned | 2021-07-10T22:07:13Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-09 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1 Rebecca, S., Jiemin, M., Zhaohui, Z. & Ahmedin, J. Cancer statistics, 2014. CA: A Cancer Journal for Clinicians 64, 9-29, doi:doi:10.3322/caac.21208 (2014).
2 Taiwan Cancer Registry. Incidence and mortality rates for the top 10 cancer in Taiwan, 2014 ( ranked by age-adjusted rate), 2014). 3 Holmes, D. A disease of growth. Nature 521, S2, doi:10.1038/521S2a (2015). 4 Kuipers, E. J. et al. Colorectal cancer. Nature Reviews Disease Primers 1, 15065, doi:10.1038/nrdp.2015.65 (2015). 5 Brenner, H., Kloor, M. & Pox, C. P. Colorectal cancer. Lancet (London, England) 383, 1490-1502, doi:10.1016/s0140-6736(13)61649-9 (2014). 6 American Cancer Society. Colorectal Cancer Facts & Figures 2017-2019, 2017). 7 Dienstmann, R. et al. Consensus molecular subtypes and the evolution of precision medicine in colorectal cancer. Nature Reviews Cancer 17, 79, doi:10.1038/nrc.2016.126 (2017). 8 Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346, doi:10.1038/nature12626 (2013). 9 Kalluri, R. The biology and function of fibroblasts in cancer. Nature Reviews Cancer 16, 582, doi:10.1038/nrc.2016.73 (2016). 10 Kalluri, R. & Zeisberg, M. Fibroblasts in cancer. Nature Reviews Cancer 6, 392, doi:10.1038/nrc1877 (2006). 11 Valkenburg, K. C., de Groot, A. E. & Pienta, K. J. Targeting the tumour stroma to improve cancer therapy. Nature reviews. Clinical oncology 15, 366-381, doi:10.1038/s41571-018-0007-1 (2018). 12 Shih, Y. C. et al. Endoplasmic Reticulum Protein TXNDC5 Augments Myocardial Fibrosis by Facilitating Extracellular Matrix Protein Folding and Redox-Sensitive Cardiac Fibroblast Activation. Circ Res 122, 1052-1068, doi:10.1161/circresaha.117.312130 (2018). 13 Oka, O. B., Yeoh, H. Y. & Bulleid, N. J. Thiol-disulfide exchange between the PDI family of oxidoreductases negates the requirement for an oxidase or reductase for each enzyme. The Biochemical journal 469, 279-288, doi:10.1042/bj20141423 (2015). 14 Horna-Terrón, E., Pradilla-Dieste, A., Sánchez-de-Diego, C. & Osada, J. TXNDC5, a Newly Discovered Disulfide Isomerase with a Key Role in Cell Physiology and Pathology. International Journal of Molecular Sciences 15, 23501-23518, doi:10.3390/ijms151223501 (2014). 15 Ma, Y. & Hendershot, L. M. The role of the unfolded protein response in tumour development: friend or foe? Nature reviews. Cancer 4, 966-977, doi:10.1038/nrc1505 (2004). 16 Bulleid, N. J. & Ellgaard, L. Multiple ways to make disulfides. Trends in biochemical sciences 36, 485-492, doi:10.1016/j.tibs.2011.05.004 (2011). 17 Xu, S., Sankar, S. & Neamati, N. Protein disulfide isomerase: a promising target for cancer therapy. Drug discovery today 19, 222-240, doi:10.1016/j.drudis.2013.10.017 (2014). 18 Ramos, F. S. et al. PDIA3 and PDIA6 gene expression as an aggressiveness marker in primary ductal breast cancer. Genetics and molecular research : GMR 14, 6960-6967, doi:10.4238/2015.June.26.4 (2015). 19 Zong, J., Guo, C., Liu, S., Sun, M. Z. & Tang, J. Proteomic research progress in lymphatic metastases of cancers. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 14, 21-30, doi:10.1007/s12094-012-0757-7 (2012). 20 Edman, J. C., Ellis, L., Blacher, R. W., Roth, R. A. & Rutter, W. J. Sequence of protein disulphide isomerase and implications of its relationship to thioredoxin. Nature 317, 267-270 (1985). 21 Chang, X. et al. Investigating a pathogenic role for TXNDC5 in tumors. International journal of oncology 43, 1871-1884, doi:10.3892/ijo.2013.2123 (2013). 22 Wang, Y. et al. Differential expression of mimecan and thioredoxin domain-containing protein 5 in colorectal adenoma and cancer: a proteomic study. Experimental biology and medicine (Maywood, N.J.) 232, 1152-1159, doi:10.3181/0701-rm-8 (2007). 23 Tsukamoto, S. et al. Clinical significance of osteoprotegerin expression in human colorectal cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 17, 2444-2450, doi:10.1158/1078-0432.ccr-10-2884 (2011). 24 van den Broek, E. et al. High Prevalence and Clinical Relevance of Genes Affected by Chromosomal Breaks in Colorectal Cancer. PloS one 10, e0138141, doi:10.1371/journal.pone.0138141 (2015). 25 Cancer Genome Atlas Networks. Comprehensive molecular characterization of human colon and rectal cancer. Nature 487, 330-337, doi:10.1038/nature11252 (2012). 26 Nishida, N. et al. Microarray analysis of colorectal cancer stromal tissue reveals upregulation of two oncogenic miRNA clusters. Clinical cancer research : an official journal of the American Association for Cancer Research 18, 3054-3070, doi:10.1158/1078-0432.ccr-11-1078 (2012). 27 Calon, A. et al. Dependency of colorectal cancer on a TGF-beta-driven program in stromal cells for metastasis initiation. Cancer cell 22, 571-584, doi:10.1016/j.ccr.2012.08.013 (2012). 28 Koukourakis, M. I., Giatromanolaki, A., Harris, A. L. & Sivridis, E. Comparison of Metabolic Pathways between Cancer Cells and Stromal Cells in Colorectal Carcinomas: a Metabolic Survival Role for Tumor-Associated Stroma. Cancer Research 66, 632-637, doi:10.1158/0008-5472.can-05-3260 (2006). 29 Yata, Y. et al. DNase I-hypersensitive sites enhance alpha1(I) collagen gene expression in hepatic stellate cells. Hepatology (Baltimore, Md.) 37, 267-276, doi:10.1053/jhep.2003.50067 (2003). 30 Tomasek, J. J., Gabbiani, G., Hinz, B., Chaponnier, C. & Brown, R. A. Myofibroblasts and mechano-regulation of connective tissue remodelling. Nature Reviews Molecular Cell Biology 3, 349, doi:10.1038/nrm809 (2002). 31 Pickup, M., Novitskiy, S. & Moses, H. L. The roles of TGFβ in the tumour microenvironment. Nature Reviews Cancer 13, 788, doi:10.1038/nrc3603 (2013). 32 De Robertis, M. et al. The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. Journal of carcinogenesis 10, 9, doi:10.4103/1477-3163.78279 (2011). 33 Beaugerie, L. & Itzkowitz, S. H. Cancers complicating inflammatory bowel disease. The New England journal of medicine 372, 1441-1452, doi:10.1056/NEJMra1403718 (2015). 34 Boelens, M. C. et al. Exosome transfer from stromal to breast cancer cells regulates therapy resistance pathways. Cell 159, 499-513, doi:10.1016/j.cell.2014.09.051 (2014). 35 Luga, V. et al. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151, 1542-1556, doi:10.1016/j.cell.2012.11.024 (2012). 36 Essandoh, K. et al. Blockade of exosome generation with GW4869 dampens the sepsis-induced inflammation and cardiac dysfunction. Biochimica et biophysica acta 1852, 2362-2371, doi:10.1016/j.bbadis.2015.08.010 (2015). 37 Akhurst, R. J. & Derynck, R. TGF-beta signaling in cancer--a double-edged sword. Trends in cell biology 11, S44-51 (2001). 38 Akhurst, R. J. & Hata, A. Targeting the TGFβ signalling pathway in disease. Nature Reviews Drug Discovery 11, 790, doi:10.1038/nrd3810 (2012). 39 Saleh, M. & Trinchieri, G. Innate immune mechanisms of colitis and colitis-associated colorectal cancer. Nature reviews. Immunology 11, 9-20, doi:10.1038/nri2891 (2011). 40 Sands, B. E. From symptom to diagnosis: clinical distinctions among various forms of intestinal inflammation. Gastroenterology 126, 1518-1532 (2004). 41 Egger, B. et al. Characterisation of acute murine dextran sodium sulphate colitis: cytokine profile and dose dependency. Digestion 62, 240-248, doi:10.1159/000007822 (2000). 42 Chassaing, B., Aitken, J. D., Malleshappa, M. & Vijay-Kumar, M. Dextran sulfate sodium (DSS)-induced colitis in mice. Current protocols in immunology 104, Unit 15.25., doi:10.1002/0471142735.im1525s104 (2014). | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77530 | - |
| dc.description.abstract | 研究緣起
目前已知大腸直腸癌(colorectal cancer, CRC)並不單純由惡性腫瘤細胞構成,乃是癌細胞與周邊非惡性間質細胞(non-malignant stromal cells)共同組成的複雜微環境,其中的間質纖維細胞(stromal fibroblasts)及其所活化而成的癌症相關纖維細胞(cancer-associated fibroblasts, CAFs)已被報導在促進腫瘤生成和癌症進程中扮演重要角色,主要是透過增加癌細胞分化能力、促進細胞外間質蛋白(extracellular protein, ECM)的生成以及影響癌細胞擴散等機制。我們實驗室先前的研究發現內質網蛋白TXNDC5 (thioredoxin Domain Containing 5) 在心臟纖維化中扮演重要角色。TXNDC5蛋白是一種雙硫異構酶 (protein disulfide isomerase,PDI),主要位於細胞內質網,其功能和催化ECM蛋白之摺疊以及參與氧化還原有關。而TXNDC5基因剔除 (knockout) 的小鼠可減緩因isoproterenol (ISO) 刺激所造成的心臟病變,其纖維化相關蛋白基因COL1A1、ELN、CTGF及ACTA2的表現也比野生型給ISO的組別低。而我們也發現TXNDC5在stromal fibroblasts中高度表現,並參與其活化、分化以及ECM蛋白的生成。因此我們假設TXNDC5可參與CAF之活化,進而促進癌化過程。 研究方法 透過GEO(GSE21510, 39396及35602)以及Human Protein Atlas等資料庫的再分析,我們比較了大腸直腸癌病人以及正常大腸檢體之TXNDC5基因及蛋白表現量差異。而為了探討TXNDC5於動物體內對CRC癌化過程之影響,我們利用CRISPR基因編輯技術於小鼠進行Txndc5基因剔除,並使用azoxymethane (AOM)/ dextran sulfate sodium (DSS)模型在野生型和Txndc5基因剔除小鼠中引致CRC。最後,我們再將小鼠CRC腫瘤切片以免疫及螢光染色進行分子機制的探討。 研究成果 透過生物資訊工具的分析,我們確實發現TXNDC5 mRNA在大腸直腸癌病人檢體中較正常表現量明顯為高,尤其是在其腫瘤間質。另外,病人中具有高度TXNDC5表現者經分析後也被發現有較差的存活率。而我們使用AOM/DSS模型在野生型小鼠中引致CRC,並發現TXNDC5於腫瘤中高度表現,其中尤以tumor stromal fibroblasts為最高,而非於腫瘤細胞本身。另外,我們在Txndc5 knockout小鼠引致CRC的實驗上則發現在大腸腫瘤的數目、程度及大小上與wild-type小鼠相較之下均有顯著降低,並其腫瘤間質形成及活化程度均較野生型低,且此過程與TGFβ訊息傳遞路徑相關。 結論 綜上所述,TXNDC5於大腸直腸癌之病程中確實扮演著尚未被報導的重要角色,與tumor stromal fibroblast活化為CAF相關,並進而促進CRC腫瘤生成。而透過將TXNDC5做為標的,有望可開發預防或治療大腸直腸癌的新型治療模式。 | zh_TW |
| dc.description.abstract | Introduction
Colorectal cancer (CRC) consists of a complex mixture of malignant tumor cells and nonmalignant stromal cells that form the tumor microenvironment. Activated stromal fibroblasts, or cancer-associated fibroblasts (CAFs), characterized by increased proliferative activity, extracellular matrix protein (ECM) production, and α-smooth muscle actin (α-SMA) expression, are known to promote CRC tumorigenesis and progression. We have recently identified a stromal fibroblast-enriched protein thioredoxin domain-containing protein 5 (TXNDC5), a protein disulfide isomerase, as a critical regulator involved in endoplasmic reticulum (ER) redox activity and promoting ECM production. In our previous study, Txndc5 deletion significantly attenuated the isoproterenol-induced heart fibrosis compared with wild-type mice, so as the gene expression of fibrosis-associated genes COL1A1, ELN, CTGF, and ACTA2. Thus, we hypothesized that TXNDC5 could be a critical mediator of colon stromal fibroblast activation, thereby promoting CRC formation. Material and method To study the role of TXNDC5 in CRC carcinogenesis, we first re-analyzed GEO datasets (GSE21510, 39396 and 35602) and the Human Protein Atlas to determine TXNDC5 mRNA and protein expression levels in human colorectal cancer and normal colon tissue samples. To examine the in vivo function of TXNDC5 in CRC carcinogenesis, Txndc5-/- mice were generated using CRISPR-based genome editing technology. CRC was then induced in wild-type (WT) and Txndc5-/- mice by intraperitoneal injection of azoxymethane (AOM) in conjunction with dextran sulfate sodium (DSS) stimuli. Immunohistochemistry and immunofluorescence staining were performed on mouse CRC tumor sections. Results and discussion Bioinformatic analyses revealed strong upregulation of TXNDC5 in human CRC, especially in the tumor stroma. Increased TXNDC5 expression was correlated with higher ECM production in human CRC samples. Besides, elevated TXNDC5 expression levels are associated with worse outcomes in CRC patients. Using a mouse model of colitis-associated CRC induced by AOM/DSS treatment, we revealed that TXNDC5 expression level was specifically increased in the collagen-secreting stromal, but not in the epithelial, cells of colon tumors. Targeted deletion of Txndc5, on the other hand, resulted in significantly decreased colon tumor number and burden, compared with WT control, in response to AOM/DSS treatment. Conclusion Taken together, our data suggest an important yet previously unrecognized role of TXNDC5 in the development of CRC, possibly through activating stromal fibroblasts into CAFs that promotes tumorigenesis. Targeting TXNDC5, therefore, could be a novel therapeutic approach to treat or prevent CRC. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:07:13Z (GMT). No. of bitstreams: 1 ntu-107-R05443011-1.pdf: 4038475 bytes, checksum: d0a5deac071c587023a08407d1ad38ee (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員審定書 1
誌謝 2 中文摘要 3 Abstract 5 Content 7 List of Figures 9 List of Tables 10 Abbreviations 11 Chapter 1. Introduction 13 1.1. Colorectal cancer (CRC) 13 1.1.1. The prevalence and mortality of colorectal cancer 13 1.1.2. The 4-stage progression of colorectal cancer 13 1.1.3. The evolution of colorectal cancer therapy 14 1.2. Cancer-associated fibroblasts (CAFs) 14 1.2.1. CAFs are abundant in tumor microenvironment 14 1.2.2. Fibroblasts within tumor margins are activated into CAFs 14 1.3. Thioredoxin domain-containing 5 (TXNDC5) 15 1.3.1. TXNDC5 serves as a critical mediator of tissue/organ fibrosis 15 1.3.2. The emerging roles of PDIs in cancer studies 15 1.3.3. TXNDC5 was reported as a tumor enhancer 16 1.4. The aim of the study 16 Chapter 2. Material and Methods 17 2.1. Generation of Txndc5 knockout (KO) mice 17 2.2. AOM/DSS animal model 18 2.3. Immunohistochemistry staining 18 2.4. Immunofluorescence staining 19 2.5. Cell culture 19 2.6. Lentivirus transfection 20 2.7. Proliferation assay 20 2.8. Wound healing assay 21 Chapter 3. Results 22 3.1. TXNDC5 upregulation was observed in human and mice colorectal tumors, especially in the stromal fibroblasts 22 3.2. TXNDC5 upregulation in colorectal tumors was correlated with stromal fibroblast formation and activation 23 3.3. Txndc5 deletion resulted in significantly reduced CRC tumor burden following AOM/DSS treatment 23 3.4. Txndc5 deletion resulted in a reduced stromal fibroblast activity in AOM/DSS-induced colorectal tumor 24 3.5. Reduced TGFβ expression and its signaling activity were observed in mice lacking Txndc5 25 3.6. TXNDC5 deletion resulted in significantly reduced CRC cell proliferation 26 3.7. Aberrant TXNDC5 expression led to changes in the activity and ECM gene expression of colonic fibroblasts 26 3.8. TXNDC5 was highly expressed in the CRC tumor epithelium from Apcmin/J mice 27 3.9. Increased TXNDC5 expression in CRC cell line was correlated with a mesenchymal-like morphology 27 3.10. Altered TXNDC5 expression in CRC cell lines can significantly affect cell proliferation and migration 28 Chapter 4. Discussion 29 4.1. TXNDC5 in colorectal cancer 29 4.2. Cytokine array and co-culture assay 29 4.3. Fibroblast-secreted exosome 29 4.4. In vivo approaches to study CAF-CRC tumor interaction 30 4.5. TGFβ signaling in colorectal carcinogenesis 30 4.6. Exclude the effect of inflammation from TXNDC5 mediated pathway 31 4.7. The cell-autonomous role of TXNDC5 in colorectal cancer 31 References 32 Figures and Tables 35 Appendix 73 | - |
| dc.language.iso | en | - |
| dc.subject | 癌症相關纖維細胞 | zh_TW |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | 腫瘤間質 | zh_TW |
| dc.subject | Thioredoxin domain containing 5 (TXNDC5) | zh_TW |
| dc.subject | Transforming growth factor β (TGFβ) | zh_TW |
| dc.subject | Tumor stroma | en |
| dc.subject | Colorectal cancer (CRC) | en |
| dc.subject | Cancer-associated fibroblasts (CAFs) | en |
| dc.subject | Thioredoxin domain containing 5 (TXNDC5) | en |
| dc.subject | Transforming growth factor β (TGFβ) | en |
| dc.title | 探討內質網蛋白TXNDC5於大腸直腸癌之角色 | zh_TW |
| dc.title | The Role of ER Protein TXNDC5 in Colorectal Cancer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳明賢;黃偉謙;陳青周 | zh_TW |
| dc.contributor.oralexamcommittee | Ming-Shiang Wu;Wei-Chien Huang;Ching-Chow Chen | en |
| dc.subject.keyword | 大腸直腸癌,腫瘤間質,癌症相關纖維細胞,Thioredoxin domain containing 5 (TXNDC5),Transforming growth factor β (TGFβ), | zh_TW |
| dc.subject.keyword | Colorectal cancer (CRC),Tumor stroma,Cancer-associated fibroblasts (CAFs),Thioredoxin domain containing 5 (TXNDC5),Transforming growth factor β (TGFβ), | en |
| dc.relation.page | 73 | - |
| dc.identifier.doi | 10.6342/NTU201802787 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-13 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 藥理學研究所 | - |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 3.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
