Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77526
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鎧鍵zh_TW
dc.contributor.advisorKai-Chien Yangen
dc.contributor.author王華琪zh_TW
dc.contributor.authorHua-Chi Wangen
dc.date.accessioned2021-07-10T22:07:01Z-
dc.date.available2024-02-28-
dc.date.copyright2018-10-09-
dc.date.issued2018-
dc.date.submitted2002-01-01-
dc.identifier.citation1. Organization WH. The top 10 causes of death. 2018.
2. Welfare MoHa. Taiwan’s Leading Causes of Death in 2016. 2017.
3. McMurray JJ. Clinical practice. Systolic heart failure. N Engl J Med. 2010;362:228-38.
4. Askoxylakis V, Thieke C, Pleger ST, Most P, Tanner J, Lindel K, Katus HA, Debus J and Bischof M. Long-term survival of cancer patients compared to heart failure and stroke: a systematic review. BMC Cancer. 2010;10:105.
5. Reilly K. Cardiac Fibrosis: New Treatments in Cardiovascular Medicine. Us Pharm. 2015;40:32-35.
6. Schelbert EB, Fonarow GC, Bonow RO, Butler J and Gheorghiade M. Therapeutic targets in heart failure: refocusing on the myocardial interstitium. J Am Coll Cardiol. 2014;63:2188-98.
7. Falke LL, Gholizadeh S, Goldschmeding R, Kok RJ and Nguyen TQ. Diverse origins of the myofibroblast-implications for kidney fibrosis. Nat Rev Nephrol. 2015;11:233-44.
8. Uchida S and Dimmeler S. Long noncoding RNAs in cardiovascular diseases. Circ Res. 2015;116:737-50.
9. Boon RA, Jae N, Holdt L and Dimmeler S. Long Noncoding RNAs: From Clinical Genetics to Therapeutic Targets? J Am Coll Cardiol. 2016;67:1214-1226.
10. Devaux Y, Zangrando J, Schroen B, Creemers EE, Pedrazzini T, Chang CP, Dorn GW, 2nd, Thum T, Heymans S and Cardiolinc n. Long noncoding RNAs in cardiac development and ageing. Nat Rev Cardiol. 2015;12:415-25.
11. Micheletti R, Plaisance I, Abraham BJ, Sarre A, Ting CC, Alexanian M, Maric D, Maison D, Nemir M, Young RA, Schroen B, Gonzalez A, Ounzain S and Pedrazzini T. The long noncoding RNA Wisper controls cardiac fibrosis and remodeling. Sci Transl Med. 2017;9.
12. Han P, Li W, Lin CH, Yang J, Shang C, Nuernberg ST, Jin KK, Xu W, Lin CY, Lin CJ, Xiong Y, Chien H, Zhou B, Ashley E, Bernstein D, Chen PS, Chen HV, Quertermous T and Chang CP. A long noncoding RNA protects the heart from pathological hypertrophy. Nature. 2014;514:102-106.
13. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA, Steinhauser ML, Ding H, Butty VL, Torrey L, Haas S, Abo R, Tabebordbar M, Lee RT, Burge CB and Boyer LA. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell. 2013;152:570-83.
14. Yang KC, Yamada KA, Patel AY, Topkara VK, George I, Cheema FH, Ewald GA, Mann DL and Nerbonne JM. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014;129:1009-21.
15. Langfelder P and Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559.
16. Wang K, Liu CY, Zhou LY, Wang JX, Wang M, Zhao B, Zhao WK, Xu SJ, Fan LH, Zhang XJ, Feng C, Wang CQ, Zhao YF and Li PF. APF lncRNA regulates autophagy and myocardial infarction by targeting miR-188-3p. Nat Commun. 2015;6:6779.
17. Trapnell C, Pachter L and Salzberg SL. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009;25:1105-11.
18. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ and Pachter L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010;28:511-5.
19. Paraskevopoulou MD, Vlachos IS, Karagkouni D, Georgakilas G, Kanellos I, Vergoulis T, Zagganas K, Tsanakas P, Floros E, Dalamagas T and Hatzigeorgiou AG. DIANA-LncBase v2: indexing microRNA targets on non-coding transcripts. Nucleic Acids Res. 2016;44:D231-8.
20. van Rooij E, Sutherland LB, Thatcher JE, DiMaio JM, Naseem RH, Marshall WS, Hill JA and Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc Natl Acad Sci U S A. 2008;105:13027-32.
21. Kriegel AJ, Liu Y, Fang Y, Ding X and Liang M. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol Genomics. 2012;44:237-44.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77526-
dc.description.abstract心臟疾病是全球致死率最高之疾病之一,由心臟疾病所引起心臟衰竭每年全球發生率超過2300萬人,五年的死亡率高達10%,甚至比許多癌症更嚴重。當心肌受損後會伴隨過多的細胞外間質(Extracellular matrix, ECM)累積,造成心臟纖維化(Cardiac fibrosis)使心臟功能喪失而最終導致心衰竭(Heart failure, HF)。然而目前並沒有能夠針對心臟纖維化做治療之藥物,因此目前急需要找到可以有效抑制心臟纖維化的治療方式。
隨著基因學的進步,目前已知的人類基因有百分之九十以上會被轉錄為RNA,然而其中能被轉譯為蛋白質的RNA只佔了大約百分之一。其餘無法被轉錄的RNA包含了小分子核糖核酸(microRNA, miRNA)以及長鏈非編碼核糖核酸(Long non-coding RNA, lncRNA),目前已有許多研究指出長鏈非編碼核糖核酸與許多心臟疾病及心臟的發育相關。
因此透過RNA定序技術(RNA sequencing),我們從人類心衰竭之樣本找出與心臟纖維化有高度相關的lncRNA—lnc-fibrogen,目前的研究成果發現lnc-fibrogen能夠藉由調節microRNA—miR-29a來影響心臟纖維化之病理過程。透過抑制lnc-fibrogen的表現減少心臟纖維化的機轉,未來有機會可以做為治療心臟纖維化之治療標的。
Lnc-fibrogen 是主要存在於人類心臟纖維母細胞(HCF)的長鏈非編碼核糖核酸,我們發現再給予TGF-β1刺激後,人類心臟纖維母細胞中lnc-fibrogen含量顯著增加。抑制lnc-fibrogen在HCF中的表現量可以減少TGF-β1刺激所引起的纖維母細胞活化,以及ECM 相關基因的表現量增加。另外,在HCF使lnc-fibrogen過過度表現會造成ECM相關基因,包含COL1A1以及ACTA2 的表現量增加、細胞增生、以及促進肌纖維母細胞(Myofibroblast)形成。Lnc-fibrogen主要分佈在細胞質(Cytosol)當中,並且我們發現lnc-fibrogen能夠使細胞質中ECM相關基因的穩定性降低。接著我們利用相關的計算分析方法預測出可能會有交互作用的小分子核糖核酸(microRNA, miRNA),miR-29a。在先前的研究中指出miR-29a與心臟纖維化相關,因此後續便進一步針對miR-29a與lnc-fibrogen之間的機制做研究。利用小分子核糖核酸定序(MicroRNA sequencing)我們發現抑制lnc-fibrogen表現後miR-29a的表現量顯著下降。透過RNA pull-down assay 我們證明了lnc-fibrogen能與miR-29a直接結合,此外,我們藉由luciferase reporter assay的方法證明了lnc-fibrogen與miR-29a之間結合的專一性,並且miR-29a能夠有效抑制lnc-fibrogen的表現量。並且,當我們將lnc-fibrogen與miR-29a之間的專一結合序列改變,lnc-fibrogen與miR-29a的專一結合性便會消失。隨後,給予miR-29a的target site blocker 抑制miR-29a與lnc-fibrogen之間的結合,我們發現target site blocker 可以有效抑制lnc-fibrogen過度表現所造成的ECM相關基因的表現量下降。同樣地,為了瞭解lnc-fibrogen在生物體內(in vivo)的功能,我們利用CRISPR/Cas9的基因編輯技術製造了lnc-fibrogen-/-的小鼠。在動物實驗中也發現lnc-fibrogen-/-的小鼠可以有效減少血管收縮數血管收縮素(angiotensin II, AngII)所導致的心臟肥厚(cardiac hypertrophy)、心功能不全(cardiac dysfunction)、心臟纖維化及相關ECM基因的表現的表現量增加。更重要的是,我們也發現miR-29在野生型(wild-type, WT)C57BL/6J老鼠給予一個月的血管收縮素後會顯著減少,而lnc-fibrogen-/-小鼠的miR-29a減少情形有明顯改善。因此,我們驗證了lnc-fibrogen在生物體內也具有相同促進纖維化的作用。
總結來說,從我們的實驗結果可以發現大量表現在心臟纖維母細胞的長鏈非編碼核糖核酸—lnc-fibrogen 可以藉由扮演抗心臟纖維化小分子核糖核酸miR-29a之micro RNA sponge進而促進心臟纖維化。因此藉由探討lnc-fibrogen參與在心臟纖維化過程中的機轉,或許可以作為人類心臟纖維化疾病的治療標的。
zh_TW
dc.description.abstractIntroduction:
Heart failure (HF) is one of the leading causes of death worldwide, with a 5-year mortality rate of ~10%, worse than many cancers. The loss of myocardium following cardiac injury is compensated by the excessive production of extracellular matrix (ECM) and the formation of a collagen-rich fibrotic scar. Scar formation, tissue remodeling, and progressive interstitial fibrosis lead to a severe loss of function and ultimately HF. There is, however, no effective therapy to prevent or reverse the progression of cardiac fibrosis. There is a clear need to identify novel mediators/pathways underlying cardiac fibrosis to develop effective therapeutics. With the advances in genomic medicine, it is now known that more than 90% of the human genome is transcribed into RNA while the expression of messenger RNAs (mRNAs) and microRNAs (miRNAs) account for only~1% of all transcribed species, up to 90% of mammalian genome is transcribed as long non-coding RNAs (lncRNAs). Furthermore, studies have shown that lncRNAs are critically involved in cardiac development and diseases. Leveraging next-generation RNA sequencing on human failing myocardium, we have identified one cardiac fibroblast-enriched lncRNA, lnc-fibrogen, which is dysregulated in failing heart and its expression levels are highly correlated with that of cardiac fibrosis genes.
Purpose:
To test the hypothesis that lncRNA lnc-fibrogen plays a critical role for the development of cardiac fibrosis and to decipher the underlying molecular mechanisms
Methods and Results:
Lnc-fibrogen was specifically enriched in human cardiac fibroblasts (HCF) and was significantly upregulated in response to pro-fibrotic stimuli such as TGFβ1 treatment. Knocking down lnc-fibrogen in HCF prevented TGFβ1-induced fibroblast activation and ECM gene production. In addition, overexpression of lnc-fibrogen was sufficient to result in ECM gene, including COL1A1 and ACTA2, up-regulation, cell proliferation and myofibroblast transformation in HCF. Lnc-fibrogen was found to be mainly distributed in the cytosol, where it modulates ECM gene transcript stability. Computational analyses predict the interaction between lnc-fibrogen and miR-29a, a miRNA known to inhibit cardiac fibrosis. MicroRNA sequencing revealed that knockdown of lnc-fibrogen resulted in up-regulation of miR-29a. RNA pull-down assay using biotinylated miR-29a showed strong physical interaction between lnc-fibrogen and miR29a. Also, luciferase reporter assays in HCF using constructs with luc-WT lnc-fibrogen and luc-lnc-fibrogen mutant with miR-29a binding site deletion showed that miR-29a reduced the activity of luc-WT lnc-fibrogen, but not luc-lnc-fibrogen mutant, suggesting the functional interaction between lnc-fibrogen and miR-29a. Importantly, the treatment of miR-29a target site blocker prevented the increment of ECM and HCF proliferation induced by ectopic lnc-fibrogen expression. Furthermore, to understand the biological function of lnc-fibrogen in vivo, we generated lnc-fibrogen-/- mice using CRISPR/Cas9 genome editing technology. We found that AngII infusion for 28 days would marke cardiac hypertrophy and impaired contractility in wild-type C57BL/6J mouse. However, knockout of lnc-fibrogen significantly improved AngII-induced cardiac dysfunction and alleviated cardiac hypertrophy. Moreover, targeted deletion of lnc-fibrogen significantly repressed ECM gene such as Ctgf, Eln, Fn1 expression and cardiac fibrosis after AngII infusion for 28 days compared with wild-type C57BL/6J mouse. Consistent with the results observed in HCF, we observed that lnc-fibrogen-/- mouse had less reduction of miR-29a expression after AngII administration. Taken together, these data suggest that lnc-fibrogen modulates cardiac fibrosis by interacting with miR-29a.
Conclusions:
The present study identified a novel, cardiac fibroblast-enriched lncRNA lnc-fibrogen, which promotes cardiac fibrosis by sponging anti-fibrotic miR-29a. These results suggest that targeting lnc-fibrogen could be a potential novel therapeutic approach to treat or prevent cardiac fibrosis and heart failure.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:07:01Z (GMT). No. of bitstreams: 1
ntu-107-R05443015-1.pdf: 3093141 bytes, checksum: 4038c4fc40ab338425e256f2866fb1e7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 1
中文摘要 2
Abstract 5
Content 9
List of Figures 11
List of Tables 12
Abbreviations 13
Chapter 1. Introduction 14
1.1 Heart failure (HF) 14
1.2 Pathogenesis of myocardial fibrosis 14
1.3 The role of long non-coding RNA(lncRNA) in heart disease 15
1.4 The aim of the study 17
Chapter 2. Material and Methods 19
2.1 RNA sequencing in human left ventricular (LV) Samples 19
2.2 Co-expression network analysis identified fibrosis-related lncRNAs 19
2.3 The cell culture of Human Cardiac Fibroblast (HCF) 20
2.4 Subcellular fractionation 21
2.5 RNA extraction and qRT-PCR 21
2.6 Murine primary cardiac fibroblasts (MCF) isolation 22
2.7 NIH-3T3 mouse fibroblast culture 23
2.8 TGF- β1 stimulation in fibroblasts 23
2.9 Collagen secretion assay 23
2.10 BrdU cell proliferation assay 24
2.11 MTT cell viability assay 24
2.12 Lentiviral transduction for lnc-fibrogen knockdown 24
2.13 microRNA RT-qPCR 25
2.14 Lentiviral transduction for lnc-fibrogen overexpression 25
2.15 Angiotensin II infusion and blood pressure measurement 26
2.16 Echocardiography 26
2.17 Histology 27
2.18 Picro-Sirius Red staining 27
2.19 Immunocytochemistry (ICC) staining 27
2.20 Determining mRNA stability by using actinomycin D 28
2.21 Luciferase constructs 28
2.22 Luciferase activity assay and miRNA mimic transfection 28
2.23 Target site blocker (TSB) and transfection. 29
2.24 Pull-down assay with biotinylated miRNA 29
2.25 Generation of lnc-fibrogen-/- mice using CRISPR/Cas9 genome-editing 30
2.26 Statistical analyses 31
Chapter 3. Results 32
3.1 RNA sequencing identified lnc-fibrogen as a pro-fibrotic lncRNA 32
3.2 Lnc-fibrogen is enriched in cardiac fibroblasts and associated with cardiac fibrosis 33
3.3 Knock down of lnc-fibrogen attenuated TGFβ1-induced ECM gene expression and cardiac fibroblast activation. 35
3.4 Lnc-fibrogen modulates ECM gene transcript stability in the cytosol and functions as a microRNA sponge of miR-29a. 36
3.5 Lnc-fibrogen directly binds to miR-29a and regulates miR-29a activity. 37
3.6 In vivo targeted deletion of lnc-fibrogen protects against angiotensin II-induced cardiac hypertrophy and fibrosis. 39
Chapter 4. Discussion 42
4.1 Lnc-fibrogen modulates cardiac fibrosis by acting as a miR-29a sponge 42
4.2 miR-29a as an anti-fibrosis miRNA 43
4.3 Effects of targeted deletion of lnc-fibrogen in fibroblasts 44
References 46
Figures and Tables 48
Appendix 69
-
dc.language.isoen-
dc.subjectlnc-fibrogenzh_TW
dc.subject心臟纖維化zh_TW
dc.subject心臟肥厚zh_TW
dc.subjectmiR-29azh_TW
dc.subject長鏈非編碼核醣核酸zh_TW
dc.subjectlnc-fibrogenen
dc.subjectcardiac hypertrophyen
dc.subjectcardiac fibrosisen
dc.subjectlong non-coding RNAen
dc.subjectmiR-29aen
dc.title長鏈非編碼核糖核酸lnc-fibrogen在心臟纖維化與心臟肥厚的角色zh_TW
dc.titleThe Role of Long Non-coding RNA lnc-fibrogen in Cardiac Fibrosis and Cardiac Hypertrophyen
dc.typeThesis-
dc.date.schoolyear106-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee陳文彬;胡瑜峰zh_TW
dc.contributor.oralexamcommitteeWen-Pin Chen;Yu-Feng Huen
dc.subject.keyword心臟纖維化,心臟肥厚,長鏈非編碼核醣核酸,lnc-fibrogen,miR-29a,zh_TW
dc.subject.keywordcardiac fibrosis,cardiac hypertrophy,long non-coding RNA,lnc-fibrogen,miR-29a,en
dc.relation.page71-
dc.identifier.doi10.6342/NTU201803202-
dc.rights.note未授權-
dc.date.accepted2018-08-13-
dc.contributor.author-college醫學院-
dc.contributor.author-dept藥理學研究所-
顯示於系所單位:藥理學科所

文件中的檔案:
檔案 大小格式 
ntu-106-2.pdf
  未授權公開取用
3.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved