請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77519
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 林靜嫻楊鎧鍵 | zh_TW |
dc.contributor.advisor | Chin-Hsien LinKai-Chien Yang | en |
dc.contributor.author | 柯嘉怡 | zh_TW |
dc.contributor.author | Chia-I Ko | en |
dc.date.accessioned | 2021-07-10T22:06:39Z | - |
dc.date.available | 2024-02-28 | - |
dc.date.copyright | 2018-10-05 | - |
dc.date.issued | 2018 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Alshbool, F. Z., Karim, Z. A., Vemana, H. P., Conlon, C., Lin, O. A., & Khasawneh, F. T. The regulator of G-protein signaling 18 regulates platelet aggregation, hemostasis and thrombosis. Biochem Biophys Res Commun. 2015 Jul 10. 462, 378-382.
Budczies, J., Klauschen, F., Sinn, B. V., Gyorffy, B., Schmitt, W. D., Darb-Esfahani, S., & Denkert, C. Cutoff Finder: a comprehensive and straightforward Web application enabling rapid biomarker cutoff optimization. PLoS One. 2012 7, e51862. Carrieri, C., Forrest, A. R., Santoro, C., Persichetti, F., Carninci, P., Zucchelli, S., & Gustincich, S. Expression analysis of the long non-coding RNA antisense to Uchl1 (AS Uchl1) during dopaminergic cells' differentiation in vitro and in neurochemical models of Parkinson's disease. Front Cell Neurosci. 2015 9, 114. Chalimoniuk, M., Stolecka, A., Zieminska, E., Stepien, A., Langfort, J., & Strosznajder, J. B. Involvement of multiple protein kinases in cPLA2 phosphorylation, arachidonic acid release, and cell death in in vivo and in vitro models of 1-methyl-4-phenylpyridinium-induced parkinsonism--the possible key role of PKG. J Neurochem. 2009 Jul. 110, 307-317. Cheng, S. J., Chang, C. F., Lee, J. J., Chen, H. M., Wang, H. J., Liou, Y. L., . . . Chiang, C. P. Hypermethylated ZNF582 and PAX1 are effective biomarkers for detection of oral dysplasia and oral cancer. Oral Oncol. 2016 Nov. 62, 34-43. Choong, C. J., Sasaki, T., Hayakawa, H., Yasuda, T., Baba, K., Hirata, Y., . . . Mochizuki, H. A novel histone deacetylase 1 and 2 isoform-specific inhibitor alleviates experimental Parkinson's disease. Neurobiol Aging. 2016 Jan. 37, 103-116. Crespo, A. C., Silva, B., Marques, L., Marcelino, E., Maruta, C., Costa, S., . . . Martins, M. Genetic and biochemical markers in patients with Alzheimer's disease support a concerted systemic iron homeostasis dysregulation. Neurobiol Aging. 2014 Apr. 35, 777-785. de Lau, L. M., & Breteler, M. M. Epidemiology of Parkinson's disease. Lancet Neurol. 2006 Jun. 5, 525-535. Emre, M., Aarsland, D., Brown, R., Burn, D. J., Duyckaerts, C., Mizuno, Y., . . . Dubois, B. Clinical diagnostic criteria for dementia associated with Parkinson's disease. Mov Disord. 2007 Sep 15. 22, 1689-1707; quiz 1837. Fan, J., Yang, M. X., Ouyang, Q., Fu, D., Xu, Z., Liu, X., . . . Tang, F. Phosphatase PPM1A is a novel prognostic marker in pancreatic ductal adenocarcinoma. Hum Pathol. 2016 Sep. 55, 151-158. Fang, F., Yang, W., Florio, J. B., Rockenstein, E., Spencer, B., Orain, X. M., . . . Wu, C. Synuclein impairs trafficking and signaling of BDNF in a mouse model of Parkinson's disease. Sci Rep. 2017 Jun 20. 7, 3868. Fiscus, R. R. Involvement of cyclic GMP and protein kinase G in the regulation of apoptosis and survival in neural cells. Neurosignals. 2002 Jul-Aug. 11, 175-190. Gegenbauer, K., Elia, G., Blanco-Fernandez, A., & Smolenski, A. Regulator of G-protein signaling 18 integrates activating and inhibitory signaling in platelets. Blood. 2012 Apr 19. 119, 3799-3807. Gelb, D. J., Oliver, E., & Gilman, S. Diagnostic criteria for Parkinson disease. Arch Neurol. 1999 Jan. 56, 33-39. Geng, J., Fan, J., Ouyang, Q., Zhang, X., Zhang, X., Yu, J., . . . Zheng, J. Loss of PPM1A expression enhances invasion and the epithelial-to-mesenchymal transition in bladder cancer by activating the TGF-beta/Smad signaling pathway. Oncotarget. 2014 Jul 30. 5, 5700-5711. Goetz, C. G., Tilley, B. C., Shaftman, S. R., Stebbins, G. T., Fahn, S., Martinez-Martin, P., . . . LaPelle, N. Movement Disorder Society-sponsored revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008 Nov 15. 23, 2129-2170. Gui, Y. X., Liu, H., Zhang, L. S., Lv, W., & Hu, X. Y. Altered microRNA profiles in cerebrospinal fluid exosome in Parkinson disease and Alzheimer disease. Oncotarget. 2015 Oct 19. Hoops, S., Nazem, S., Siderowf, A. D., Duda, J. E., Xie, S. X., Stern, M. B., & Weintraub, D. Validity of the MoCA and MMSE in the detection of MCI and dementia in Parkinson disease. Neurology. 2009 Nov 24. 73, 1738-1745. Huang, J., Wang, G., Tang, J., Zhuang, W., Wang, L. P., Liou, Y. L., . . . Zhu, Y. S. DNA Methylation Status of PAX1 and ZNF582 in Esophageal Squamous Cell Carcinoma. Int J Environ Res Public Health. 2017 Feb 22. 14, Iwakura, Y., Piao, Y. S., Mizuno, M., Takei, N., Kakita, A., Takahashi, H., & Nawa, H. Influences of dopaminergic lesion on epidermal growth factor-ErbB signals in Parkinson's disease and its model: neurotrophic implication in nigrostriatal neurons. J Neurochem. 2005 May. 93, 974-983. Kraus, T. F., Haider, M., Spanner, J., Steinmaurer, M., Dietinger, V., & Kretzschmar, H. A. Altered Long Noncoding RNA Expression Precedes the Course of Parkinson's Disease-a Preliminary Report. Mol Neurobiol. 2016 Mar 28. Lamb, C. A., Nuhlen, S., Judith, D., Frith, D., Snijders, A. P., Behrends, C., & Tooze, S. A. TBC1D14 regulates autophagy via the TRAPP complex and ATG9 traffic. Embo j. 2016 Feb 1. 35, 281-301. Lee, J. T. Epigenetic regulation by long noncoding RNAs. Science. 2012 Dec 14. 338, 1435-1439. Lei, X., Callaway, M., Zhou, H., Yang, Y., & Chen, W. Obesity associated Lyplal1 gene is regulated in diet induced obesity but not required for adipocyte differentiation. Mol Cell Endocrinol. 2015 Aug 15. 411, 207-213. Li, D., Chen, G., Yang, J., Fan, X., Gong, Y., Xu, G., . . . Geng, B. Transcriptome analysis reveals distinct patterns of long noncoding RNAs in heart and plasma of mice with heart failure. PLoS One. 2013 8, e77938. Liang, Z. Q., Li, Y. L., Zhao, X. L., Han, R., Wang, X. X., Wang, Y., . . . Qin, Z. H. NF-kappaB contributes to 6-hydroxydopamine-induced apoptosis of nigral dopaminergic neurons through p53. Brain Res. 2007 May 11. 1145, 190-203. Lin, H., Chen, T. C., Chang, T. C., Cheng, Y. M., Chen, C. H., Chu, T. Y., . . . Yu, M. H. Methylated ZNF582 gene as a marker for triage of women with Pap smear reporting low-grade squamous intraepithelial lesions - a Taiwanese Gynecologic Oncology Group (TGOG) study. Gynecol Oncol. 2014 Oct. 135, 64-68. Litvan, I., Goldman, J. G., Troster, A. I., Schmand, B. A., Weintraub, D., Petersen, R. C., . . . Emre, M. Diagnostic criteria for mild cognitive impairment in Parkinson's disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012 Mar. 27, 349-356. Lu, X., An, H., Jin, R., Zou, M., Guo, Y., Su, P. F., . . . Yarbrough, W. G. PPM1A is a RelA phosphatase with tumor suppressor-like activity. Oncogene. 2014 May 29. 33, 2918-2927. Luo, J., Sun, L., Lin, X., Liu, G., Yu, J., Parisiadou, L., . . . Cai, H. A calcineurin- and NFAT-dependent pathway is involved in alpha-synuclein-induced degeneration of midbrain dopaminergic neurons. Hum Mol Genet. 2014 Dec 15. 23, 6567-6574. Mercer, T. R., Dinger, M. E., & Mattick, J. S. Long non-coding RNAs: insights into functions. Nat Rev Genet. 2009 Mar. 10, 155-159. Musci, G., Polticelli, F., & Bonaccorsi di Patti, M. C. Ceruloplasmin-ferroportin system of iron traffic in vertebrates. World J Biol Chem. 2014 May 26. 5, 204-215. Nalls, M. A., Pankratz, N., Lill, C. M., Do, C. B., Hernandez, D. G., Saad, M., . . . Singleton, A. B. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson's disease. Nat Genet. 2014 Sep. 46, 989-993. Ng, S. Y., Lin, L., Soh, B. S., & Stanton, L. W. Long noncoding RNAs in development and disease of the central nervous system. Trends Genet. 2013 Aug. 29, 461-468. Paul, K. C., Schulz, J., Bronstein, J. M., Lill, C. M., & Ritz, B. R. Association of Polygenic Risk Score With Cognitive Decline and Motor Progression in Parkinson Disease. JAMA Neurol. 2018 Mar 1. 75, 360-366. Ramalingam, M., & Kim, S. J. The Neuroprotective Role of Insulin Against MPP(+) -Induced Parkinson's Disease in Differentiated SH-SY5Y Cells. J Cell Biochem. 2016 Apr. 117, 917-926. Rieker, C., Schober, A., Bilbao, A., Schutz, G., & Parkitna, J. R. Ablation of serum response factor in dopaminergic neurons exacerbates susceptibility towards MPTP-induced oxidative stress. Eur J Neurosci. 2012 Mar. 35, 735-741. Scheele, C., Petrovic, N., Faghihi, M. A., Lassmann, T., Fredriksson, K., Rooyackers, O., . . . Timmons, J. A. The human PINK1 locus is regulated in vivo by a non-coding natural antisense RNA during modulation of mitochondrial function. BMC Genomics. 2007 Mar 15. 8, 74. She, H., Yang, Q., & Mao, Z. Neurotoxin-induced selective ubiquitination and regulation of MEF2A isoform in neuronal stress response. J Neurochem. 2012 Sep. 122, 1203-1210. Shi, G. X., Harrison, K., Han, S. B., Moratz, C., & Kehrl, J. H. Toll-like receptor signaling alters the expression of regulator of G protein signaling proteins in dendritic cells: implications for G protein-coupled receptor signaling. J Immunol. 2004 May 1. 172, 5175-5184. Shohat, M., Ben-Meir, D., & Lavi, S. Protein phosphatase magnesium dependent 1A (PPM1A) plays a role in the differentiation and survival processes of nerve cells. PLoS One. 2012 7, e32438. Smith, L. K., He, Y., Park, J. S., Bieri, G., Snethlage, C. E., Lin, K., . . . Villeda, S. A. beta2-microglobulin is a systemic pro-aging factor that impairs cognitive function and neurogenesis. Nat Med. 2015 Aug. 21, 932-937. Soreq, L., Guffanti, A., Salomonis, N., Simchovitz, A., Israel, Z., Bergman, H., & Soreq, H. Long non-coding RNA and alternative splicing modulations in Parkinson's leukocytes identified by RNA sequencing. PLoS Comput Biol. 2014 Mar. 10, e1003517. Soto-Ortolaza, A. I., Heckman, M. G., Labbe, C., Serie, D. J., Puschmann, A., Rayaprolu, S., . . . Ross, O. A. GWAS risk factors in Parkinson's disease: LRRK2 coding variation and genetic interaction with PARK16. Am J Neurodegener Dis. 2013 2, 287-299. Sveinbjornsdottir, S., Hicks, A. A., Jonsson, T., Petursson, H., Gugmundsson, G., Frigge, M. L., . . . Stefansson, K. Familial aggregation of Parkinson's disease in Iceland. N Engl J Med. 2000 Dec 14. 343, 1765-1770. Tombaugh, T. N., & McIntyre, N. J. The mini-mental state examination: a comprehensive review. J Am Geriatr Soc. 1992 Sep. 40, 922-935. Trapnell, C., Pachter, L., & Salzberg, S. L. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics. 2009 May 1. 25, 1105-1111. Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., . . . Pachter, L. Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol. 2010 May. 28, 511-515. Trinh, J., & Farrer, M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013 Aug. 9, 445-454. van der Vaart, B., Franker, M. A., Kuijpers, M., Hua, S., Bouchet, B. P., Jiang, K., . . . Akhmanova, A. Microtubule plus-end tracking proteins SLAIN1/2 and ch-TOG promote axonal development. J Neurosci. 2012 Oct 17. 32, 14722-14728. Visser, M., Marinus, J., Stiggelbout, A. M., & Van Hilten, J. J. Assessment of autonomic dysfunction in Parkinson's disease: the SCOPA-AUT. Mov Disord. 2004 Nov. 19, 1306-1312. Wan, P., Su, W., & Zhuo, Y. The Role of Long Noncoding RNAs in Neurodegenerative Diseases. Mol Neurobiol. 2016 Feb 24. Wang, Q., Zhang, H., Liu, M., Zhang, Z., Wei, Z., Sun, N., . . . Zhang, Y. [P38 MAPK signaling pathway regulates nuclear factor-kappaB and inducible nitric oxide synthase expressions in the substantia nigra in a mouse model of Parkinson's disease]. Nan Fang Yi Ke Da Xue Xue Bao. 2014 Jul. 34, 1176-1180. Wang, S., Zhang, X., Guo, Y., Rong, H., & Liu, T. The long noncoding RNA HOTAIR promotes Parkinson's disease by upregulating LRRK2 expression. Oncotarget. 2017 Apr 11. 8, 24449-24456. Wills, M. K., Keyvani Chahi, A., Lau, H. R., Tilak, M., Guild, B. D., New, L. A., . . . Jones, N. Signaling adaptor ShcD suppresses extracellular signal-regulated kinase (Erk) phosphorylation distal to the Ret and Trk neurotrophic receptors. J Biol Chem. 2017 Apr 7. 292, 5748-5759. Wu, P., Zuo, X., Deng, H., Liu, X., Liu, L., & Ji, A. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull. 2013 Aug. 97, 69-80. Xie, Z., Chan, E. C., & Druey, K. M. R4 Regulator of G Protein Signaling (RGS) Proteins in Inflammation and Immunity. Aaps j. 2016 Mar. 18, 294-304. Yang, K. C., Yamada, K. A., Patel, A. Y., Topkara, V. K., George, I., Cheema, F. H., . . . Nerbonne, J. M. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation. 2014 Mar 4. 129, 1009-1021. Yoon, J. H., Mo, J. S., Kim, M. Y., Ann, E. J., Ahn, J. S., Jo, E. H., . . . Park, H. S. LRRK2 functions as a scaffolding kinase of ASK1-mediated neuronal cell death. Biochim Biophys Acta. 2017 Dec. 1864, 2356-2368. Zhang, Q. S., Wang, Z. H., Zhang, J. L., Duan, Y. L., Li, G. F., & Zheng, D. L. Beta-asarone protects against MPTP-induced Parkinson's disease via regulating long non-coding RNA MALAT1 and inhibiting alpha-synuclein protein expression. Biomed Pharmacother. 2016 Oct. 83, 153-159. Zhang, S., Chen, S., Liu, A., Wan, J., Tang, L., Zheng, N., & Xiong, Y. Inhibition of BDNF production by MPP(+) through up-regulation of miR-210-3p contributes to dopaminergic neuron damage in MPTP model. Neurosci Lett. 2018 May 14. 675, 133-139. Zharikov, S., & Shiva, S. Platelet mitochondrial function: from regulation of thrombosis to biomarker of disease. Biochem Soc Trans. 2013 Feb 1. 41, 118-123. Zhou, Y., Zhao, Y., Gao, Y., Hu, W., Qu, Y., Lou, N., . . . Yang, H. Hepatitis C virus NS3 protein enhances hepatocellular carcinoma cell invasion by promoting PPM1A ubiquitination and degradation. J Exp Clin Cancer Res. 2017 Mar 10. 36, 42. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77519 | - |
dc.description.abstract | 巴金森氏症為最常見的神經退化性疾病之一,除了動作遲緩障礙外,也會有非運動症狀,其中認知功能減退,甚至演變為巴金森失智症,對病患預後影響甚鉅。在現今人口老化的社會,其照護對社會成本產生重大的負擔。因此,找出具有反映疾病病程和預測巴金森病患是否會合併失智症的生物標記物,以及釐清此病症之致病機轉,實為重要的臨床課題。
長鏈非編碼核糖核酸(long non-coding RNA,以下稱lncRNA)為長度超過200個鹼基的非編碼核糖核酸,在發展中的腦部以及成人的腦部都被大量的表現。過去的研究顯示,lncRNA具有調控基因的功能。在巴金森氏症患者的腦脊髓液中的lncRNA表現量和健康對照組不同,另一研究發現巴金森氏症患者在接受深腦電刺激術之後lncRNA的表現型態變化會出現在腦部的杏仁核和基底核(巴金森氏症病變腦區)中,暗示了lncRNA在血液中的表現可能可以反映出巴金森氏症患者的嚴重程度。但礙於腦脊髓液的取得為一侵襲性高的檢查,加上lncRNA可透過血腦屏障至周邊血液中,因此我們假設血漿中相關的lncRNA片段將可以協助臨床醫師評估病患運動症狀和認知功能退化,作為非侵襲性周邊血液指標。 我們的研究的第一部分目標為尋找與巴金森氏症風險相關之lncRNA。我們收納了19位早發型(發病年齡小於50歲)巴金森氏症患者、20位典型(發病年齡晚於50歲)巴金森氏症患者以及40位年齡與性別對照之健康受試者。我們利用次世代RNA定序法,比較巴金森氏症患者和健康對照組受試者的血漿中lncRNA的表現形態差異,以找出與疾病風險相關之lncRNA。結果顯示血漿中之lncRNA的表現模式可用以分辨健康受試者和巴金森氏症患者,其準確率在早發型巴金森氏症患者和典型巴金森氏症患者分別可達68.29%和80.00%。因為lncRNA往往是透過順式調控來達到附基因調控,故我們分析了在健康受試者和巴金森氏症患者身上表達最顯著不同之20個lncRNA附近之mRNA的表現,發現在早發型巴金森氏症患者和典型巴金森氏症患者中,分別有25%和35%的lncRNA附近之mRNA呈現順性的變化。 我們研究的第二部分為藉由逐年臨床追蹤病患動作與評估認知功能,希望能找出與巴金森症認知功能退化相關的疾病進展lncRNA指標。67位典型巴金森氏症患者在經過約一年之追蹤後,有13位(19.4%)患者產生認知功能退化(簡短智能測驗分數MMSE下降大於等於兩分)。經由比較有產生認知功能退化和未產生認知功能退化的患者的lncRNA表現,我們發現有6個lncRNA的表現在此兩群患者間有顯著的不同 (lnc-ZNF582-3, lnc-LYPLAL1-5, lnc-RGS21-1, lnc-TRIM69-2, lnc-SLC40A1-3, lnc-C14orf135-3)。存活分析進一步發現其中兩個lncRNA(lnc-RGS21-1, lnc-TRIM69-2)可用以預測巴金森氏症患者產生認知功能退化的風險。 綜上所述,我們的結果顯示血漿中的lncRNA可以部份反映巴金森氏症疾病罹病風險與疾病進程的退化,尤其部分標的lncRNA可以做為預測巴金森症患者認知功能減退的指標。我們的實驗結果仍需將來的動物或是細胞功能性實驗以驗證這些lncRNA在巴金森症致病機轉之角色。 | zh_TW |
dc.description.abstract | Parkinson’s disease (PD) is the second most common neurodegenerative disorder, characterized by symptoms of resting tremor, rigidity, bradykinesia and postural instability. The current mainstay treatment is supplement with dopaminergic medications, and there is no disease-modifying therapy available for PD yet. Therefore, there is an unmet need to develop biomarkers that could predict the risk and reflect disease progression in patients with PD.
Many of the transcription output of human genome is composed with non-coding RNAs. Long non-coding RNA (lncRNA) is defined as non-coding RNA with molecules greater than 200 nucleotides, and are highly expressed in the adult and developing brain. Many lncRNA-related dysfunction has been found to play critical roles in neurodegenerative disorders. However, to our knowledge, there are no studies design to analyze the significance of plasma levels of lncRNAs in patients with PD till date. In this study, we aim to determine the circulating lncRNA expression profiles in patients with PD, and to test the hypothesis that the lncRNA expression signature could be used to predict the progression of non-motor symptoms in patients with PD, as well as to explore pathogenic mechanisms via which lncRNAs contributing to PD. We first enrolled 19 young-onset PD patients (onset age at less than 50 years, YPD), 20 late-onset PD patients (onset age at order than 50 years, OPD) and 41 age/gender matched control subjects. The plasma levels of lncRNAs were examined to determine the specific lncRNA expression signature for PD. LncRNAs could be identified from plasma of young onset and late onset PD patients with an accuracy rate of 68.29% and 80.00%, respectively. For lncRNAs could exert its epigenetic regulation through cis-regulation, we also analysis expression pattern of its nearby mRNA for the twenty lncRNAs with the most significant different expression pattern between PD patients and controls. 25% and 35% of lncRNAs with significant differential expression pattern in OPD group and YPD group, respectively, showed cis-change with its nearby mRNA. And we followed Mini-Mental State Examination (MMSE) in an OPD patient cohort for around 1 year and to determine the specific lncRNAs expression pattern that could be use as prognostic biomarkers in cognition performance in PD patients. Among these 67 OPD patients, 13(19.4%) with MMSE deterioration ≧2 points after 1 year follow up. While comparing the lncRNA expression pattern between PD patients with and without dementia, we found that the expression of 6 lncRNAs (lnc-ZNF582-3, lnc-LYPLAL1-5, lnc-RGS21-1, lnc-TRIM69-2, lnc-SLC40A1-3, lnc-C14orf135-3) were significantly different between these two groups. The result of survival analysis showed that 2 of these afore mentioned lncRNAs (lnc-RGS21-1, lnc-TRIM69-2) could predict the risk of dementia in PD patients. In conclusion, our results demonstrated the feasibility of specific plasma lncRNA as a surrogate biomarker for risk and cognitive progression of PD. Further functional studies are warranted to validate the role of these lncRNAs in the pathogenesis of PD. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:06:39Z (GMT). No. of bitstreams: 1 ntu-107-P05421011-1.pdf: 2730514 bytes, checksum: e7b6481c53b6ba27204f4de96b79be2e (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | Verification Letter from the Oral Examination Committee for Graduate Students……… i
Acknowledgement………………….………………………….…………………………. ii Chinese Abstract…..………………………………………………….…………..……… iii English Abstract……..………………………………………………..….…….…………. v Thesis for a Master’s Degree Chapter I Introduction.……………………………………………………………………1 Chapter II Research Object, Methods and Materials………………………………………11 II-1 Research Object…………..……...…………………………………………………11 II-2 Research Methods and Materials…………….……………………………………12 Chapter III Results…………………………………………………………………………18 Chapter IV Discussion….………………………………………………………………….23 Chapter V Future Prospect………………………………………………………….…….27 Chapter VI References……….……………………………………………………….…….28 Chapter VII Figures and Tables………...………………………………………..….…….39 Figure 1………………..……………………………………………………………….39 Figure 2…………………………..…………………………………………………….40 Figure 3……..……………………………………………………………………….…41 Figure 4…..…………………………………………………………………………….43 Figure 5…………………………………………..…………………………………….44 Figure 6..……………………………………………………………………………….45 Figure 7………………………………..……………………………………………….46 Figure 8……………………..………………………………………………………….47 Figure 9………………………..……………………………………………………….48 Figure 10 ………………………..……………………………………………………. 49 Figure 11 ………………………………..……………………………………………. 50 Figure 12 ……………………………………..………………………………………..51 Table 1 ……………………………………………………………………………52 Table 2 ……………………………………………………………………………54 Table 3 ……………………………………………………………………………55 Table 4 ……………………………………………………………………………56 Table 5 ……………………………………………………………………………58 Table 6 ……………………………………………………………………………60 Table 7 ……………………………………………………………………………61 Table 8 ……………………………………………………………………………62 Table 9 ……………………………………………………………………………64 Table 10 ………………………………………………………………………..…66 Table 11 ……………………………………………………………………….….67 Table 12 ……………………………………………………………….……….…69 Table 13 ……………………………………………………………….……….…70 | - |
dc.language.iso | en | - |
dc.title | 以人體循環中的長鏈非編碼核糖核酸作為巴金森氏症的風險評估和疾病進展的生物標記物 | zh_TW |
dc.title | Circulating Long Non-coding RNA as a Biomarker for the Risk & Progression of Parkinson's Disease | en |
dc.type | Thesis | - |
dc.date.schoolyear | 106-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 楊偉勛;陳達夫 | zh_TW |
dc.contributor.oralexamcommittee | Wei-Shiung Yang;Ta-Fu Chen | en |
dc.subject.keyword | 巴金森氏症,長鏈非編碼核糖核酸,血漿生物標記物,非運動症狀,巴金森失智症, | zh_TW |
dc.subject.keyword | Parkinson’s disease,long non-coding RNA,plasma biomarker,non-motor symptom,Parkinson’s disease dementia, | en |
dc.relation.page | 71 | - |
dc.identifier.doi | 10.6342/NTU201803313 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2018-08-14 | - |
dc.contributor.author-college | 醫學院 | - |
dc.contributor.author-dept | 臨床醫學研究所 | - |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-2.pdf 目前未授權公開取用 | 2.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。