請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77516完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳青周 | zh_TW |
| dc.contributor.author | 葉禹萱 | zh_TW |
| dc.contributor.author | Yu-Hsuan Yeh | en |
| dc.date.accessioned | 2021-07-10T22:06:29Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-05 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Alamgeer, Muhammad, Ganju, Vinod, & Watkins, D. Neil. (2013). Novel therapeutic targets in non-small cell lung cancer. Current Opinion in Pharmacology, 13(3), 394-401.
Bender, Eric. (2014). Epidemiology: The dominant malignancy. Nature, 513, S2. Bethune, Gillian, Bethune, Drew, Ridgway, Neale, & Xu, Zhaolin. (2010). Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. Journal of Thoracic Disease, 2(1), 48-51. Bonnet, D., & Dick, J. E. (1997). Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med, 3(7), 730-737. Byers, Lauren Averett, Diao, Lixia, Wang, Jing, Saintigny, Pierre, Girard, Luc, Peyton, Mike, Shen, Li, Fan, Youhong, Giri, Uma, Tumula, Praveen K., Nilsson, Monique B., Gudikote, Jayanthi, Tran, Hai, Cardnell, Robert J. G., Bearss, David J., Warner, Steven L., Foulks, Jason M., Kanner, Steven B., Gandhi, Varsha, Krett, Nancy, Rosen, Steven T., Kim, Edward S., Herbst, Roy S., Blumenschein, George R., Lee, J. Jack, Lippman, Scott M., Ang, Kian, Mills, Gordon B., Hong, Waun K., Weinstein, John N., Wistuba, Ignacio I., Coombes, Kevin R., Minna, John D., & Heymach, John V. (2013). An epithelial-mesenchymal transition (EMT) gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clinical cancer research : an official journal of the American Association for Cancer Research, 19(1), 279-290. Cabanero, M., Sangha, R., Sheffield, B. S., Sukhai, M., Pakkal, M., Kamel-Reid, S., Karsan, A., Ionescu, D., Juergens, R. A., Butts, C., & Tsao, M. S. (2017). Management of EGFR-mutated non-small-cell lung cancer: practical implications from a clinical and pathology perspective. Current Oncology, 24(2), 111-119. Calvayrac, Olivier, Pradines, Anne, Pons, Elvire, Mazières, Julien, & Guibert, Nicolas. (2017). Molecular biomarkers for lung adenocarcinoma. European Respiratory Journal, 49(4). Camidge, D. Ross, Kono, Scott A., Flacco, Antonella, Tan, Aik-Choon, Doebele, Robert C., Zhou, Qing, Crino, Lucio, Franklin, Wilbur A., & Varella-Garcia, Marileila. (2010). Optimizing the Detection of Lung Cancer Patients Harboring Anaplastic Lymphoma Kinase (<em>ALK</em>) Gene Rearrangements Potentially Suitable for ALK Inhibitor Treatment. Clinical Cancer Research, 16(22), 5581. Ceder, J. A., Jansson, L., Ehrnstrom, R. A., Ronnstrand, L., & Abrahamsson, P. A. (2008). The characterization of epithelial and stromal subsets of candidate stem/progenitor cells in the human adult prostate. Eur Urol, 53(3), 524-531. Chan, Bryan A., & Hughes, Brett G. M. (2015). Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Translational Lung Cancer Research, 4(1), 36-54. Chan, Bryan A., & Hughes, Brett G.M. (2014). Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Translational Lung Cancer Research, 4(1), 36-54. Charafe-Jauffret, E., Monville, F., Ginestier, C., Dontu, G., Birnbaum, D., & Wicha, M. S. (2008). Cancer stem cells in breast: current opinion and future challenges. Pathobiology, 75(2), 75-84. Cherfils, Jacqueline, & Zeghouf, Mahel. (2013). Regulation of Small GTPases by GEFs, GAPs, and GDIs. Physiological Reviews, 93(1), 269-309. Cho, Hee Jun, Baek, Kyoung Eun, Park, Sun-Mi, Kim, In-Kyu, Choi, Yeong-Lim, Cho, Hye-Jung, Nam, In-Koo, Hwang, Eun Mi, Park, Jae-Yong, Han, Jae Yoon, Kang, Sang Soo, Kim, Dong Chul, Lee, Won Sup, Lee, Mi-Ni, Oh, Goo Taeg, Kim, Jae Won, Lee, Chang Won, & Yoo, Jiyun. (2009). RhoGDI2 Expression Is Associated with Tumor Growth and Malignant Progression of Gastric Cancer. Clinical Cancer Research, 15(8), 2612. Cho, Hee Jun, Baek, Kyoung Eun, & Yoo, Jiyun. (2010). RhoGDI2 as a therapeutic target in cancer. Expert Opinion on Therapeutic Targets, 14(1), 67-75. Chung, Jin-Haeng, Rho, Jin Kyung, Xu, Xianhua, Lee, Jong Seok, Yoon, Ho Il, Lee, Choon Taek, Choi, Yun Jung, Kim, Hye-Ryoun, Kim, Cheol Hyeon, & Lee, Jae Cheol. (2011). Clinical and molecular evidences of epithelial to mesenchymal transition in acquired resistance to EGFR-TKIs. Lung Cancer, 73(2), 176-182. Dean, M., Fojo, T., & Bates, S. (2005). Tumour stem cells and drug resistance. Nat Rev Cancer, 5(4), 275-284. Dragu, Denisa L., Necula, Laura G., Bleotu, Coralia, Diaconu, Carmen C., & Chivu-Economescu, Mihaela. (2015). Therapies targeting cancer stem cells: Current trends and future challenges. World Journal of Stem Cells, 7(9), 1185-1201. Dransart, Estelle, Olofsson, Birgitta, & Cherfils, Jacqueline. (2005). RhoGDIs Revisited: Novel Roles in Rho Regulation. Traffic, 6(11), 957-966. Engelman, Jeffrey A., Zejnullahu, Kreshnik, Mitsudomi, Tetsuya, Song, Youngchul, Hyland, Courtney, Park, Joon Oh, Lindeman, Neal, Gale, Christopher-Michael, Zhao, Xiaojun, Christensen, James, Kosaka, Takayuki, Holmes, Alison J., Rogers, Andrew M., Cappuzzo, Federico, Mok, Tony, Lee, Charles, Johnson, Bruce E., Cantley, Lewis C., & Jänne, Pasi A. (2007). <em>MET</em> Amplification Leads to Gefitinib Resistance in Lung Cancer by Activating ERBB3 Signaling. Science, 316(5827), 1039. Eramo, A., Lotti, F., Sette, G., Pilozzi, E., Biffoni, M., Di Virgilio, A., Conticello, C., Ruco, L., Peschle, C., & De Maria, R. (2008). Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ, 15(3), 504-514. Ercan, Dalia, Zejnullahu, Kreshnik, Yonesaka, Kimio, Xiao, Yun, Capelletti, Marzia, Rogers, Andrew, Lifshits, Eugene, Brown, Alison, Lee, Charles, Christensen, James G., Kwiatkowski, David J., Engelman, Jeffrey A., & Jänne, Pasi A. (2010). Amplification of EGFR T790M causes resistance to an irreversible EGFR inhibitor. Oncogene, 29(16), 2346-2356. Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. (0028-4793 (Print)). Forget, Marie-Annick, Desrosiers, Richard R., Gingras, Denis, & Béliveau, Richard. (2002). Phosphorylation states of Cdc42 and RhoA regulate their interactions with Rho GDP dissociation inhibitor and their extraction from biological membranes. Biochemical Journal, 361(Pt 2), 243-254. Glinsky, G. V. (2007). Stem cell origin of death-from-cancer phenotypes of human prostate and breast cancers. Stem Cell Rev, 3(1), 79-93. Han, Bingchen, Qu, Ying, Jin, Yanli, Yu, Yi, Deng, Nan, Wawrowsky, Kolja, Zhang, Xiao, Li, Na, Bose, Shikha, Wang, Qiang, Sakkiah, Sugunadevi, Abrol, Ravinder, Jensen, Tor W., Berman, Benjamin, Tanaka, Hisashi, Johnson, Jeffrey, Gao, Bowen, Hao, Jijun, Liu, Zhenqiu, Buttyan, Ralph, Ray, Partha S., Hung, Mien-Chie, Giuliano, Armando E., & Cui, Xiaojiang. (2015). FOXC1 Activates Smoothened-Independent Hedgehog Signaling in Basal-like Breast Cancer. Cell reports, 13(5), 1046-1058. Han, Bingchen, Qu, Ying, Yu-Rice, Yi, Johnson, Jeffrey, & Cui, Xiaojiang. (2016). FOXC1-induced Gli2 activation: A non-canonical pathway contributing to stemness and anti-Hedgehog resistance in basal-like breast cancer. Molecular & Cellular Oncology, 3(3), e1131668. Hancock, J. F., & Hall, A. (1993). A novel role for RhoGDI as an inhibitor of GAP proteins. The EMBO Journal, 12(5), 1915-1921. Hardavella, Georgia, George, Rachel, & Sethi, Tariq. (2016). Lung cancer stem cells—characteristics, phenotype. Translational Lung Cancer Research, 5(3), 272-279. Hayashi, H., & Kume, T. (2008). Forkhead transcription factors regulate expression of the chemokine receptor CXCR4 in endothelial cells and CXCL12-induced cell migration. Biochem Biophys Res Commun, 367(3), 584-589. Hayashi, Hisaki, & Kume, Tsutomu. (2008). Foxc Transcription Factors Directly Regulate Dll4 and Hey2 Expression by Interacting with the VEGF-Notch Signaling Pathways in Endothelial Cells. PLoS ONE, 3(6), e2401. Huang, Cheng-Po, Tsai, Meng-Feng, Chang, Tzu-Hua, Tang, Wei-Chien, Chen, Su-Yu, Lai, Hsiao-Hsuan, Lin, Ting-Yu, Yang, James Chih-Hsin, Yang, Pan-Chyr, Shih, Jin-Yuan, & Lin, Shwu-Bin. (2013). ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer letters, 328(1), 144-151. Jensen, Tor W., Ray, Tania, Wang, Jinhua, Li, Xiaodong, Naritoku, Wesley Y., Han, Bingchen, Bellafiore, Frank, Bagaria, Sanjay P., Qu, Annie, Cui, Xiaojiang, Taylor, Clive R., & Ray, Partha S. (2015). Diagnosis of Basal-Like Breast Cancer Using a FOXC1-Based Assay. JNCI: Journal of the National Cancer Institute, 107(8), djv148-djv148. Jiang, Feng, Qiu, Qi, Khanna, Abha, Todd, Nevins W., Deepak, Janaki, Xing, Lingxiao, Wang, Huijun, Liu, Zhenqiu, Su, Yun, Stass, Sanford A., & Katz, Ruth L. (2009). Aldehyde Dehydrogenase 1 Is a Tumor Stem Cell-Associated Marker in Lung Cancer. Molecular Cancer Research, 7(3), 330. Kobayashi, Susumu, Boggon, Titus J., Dayaram, Tajhal, Jänne, Pasi A., Kocher, Olivier, Meyerson, Matthew, Johnson, Bruce E., Eck, Michael J., Tenen, Daniel G., & Halmos, Balázs. (2005). EGFR Mutation and Resistance of Non–Small-Cell Lung Cancer to Gefitinib. New England Journal of Medicine, 352(8), 786-792. Koppaka, Vindhya, Thompson, David C., Chen, Ying, Ellermann, Manuel, Nicolaou, Kyriacos C., Juvonen, Risto O., Petersen, Dennis, Deitrich, Richard A., Hurley, Thomas D., & Vasiliou, Vasilis. (2012). Aldehyde Dehydrogenase Inhibitors: a Comprehensive Review of the Pharmacology, Mechanism of Action, Substrate Specificity, and Clinical Application. Pharmacological Reviews, 64(3), 520-539. Korpanty, Grzegorz J., Graham, Donna M., Vincent, Mark D., & Leighl, Natasha B. (2014). Biomarkers That Currently Affect Clinical Practice in Lung Cancer: EGFR, ALK, MET, ROS-1, and KRAS. Frontiers in Oncology, 4, 204. Kume, Tsutomu, Jiang, HaiYan, Topczewska, Jolanta M., & Hogan, Brigid L. M. (2001). The murine winged helix transcription factors, Foxc1 and Foxc2, are both required for cardiovascular development and somitogenesis. Genes & Development, 15(18), 2470-2482. L., Siegel Rebecca, D., Miller Kimberly, & Ahmedin, Jemal. (2018). Cancer statistics, 2018. CA: A Cancer Journal for Clinicians, 68(1), 7-30. Li, Jinming, Feng, Zhi C., Yeung, Frances S. H., Wong, Melanie R. M., Oakie, Amanda, Fellows, George F., Goodyer, Cynthia G., Hess, David A., & Wang, Rennian. (2014). Aldehyde dehydrogenase 1 activity in the developing human pancreas modulates retinoic acid signalling in mediating islet differentiation and survival. Diabetologia, 57(4), 754-764. Limin, Xia, Wenjie, Huang, Dean, Tian, Hongwu, Zhu, Xingshun, Qi, Zheng, Chen, Yongguo, Zhang, Hao, Hu, Daiming, Fan, Yongzhan, Nie, & Kaichun, Wu. (2013). Overexpression of forkhead box C1 promotes tumor metastasis and indicates poor prognosis in hepatocellular carcinoma. Hepatology, 57(2), 610-624. Lin, Yun-Chieh, Lin, Yu-Chin, Shih, Jin-Yuan, Huang, Wei-Jan, Chao, Shi-Wei, Chang, Yih-Leong, & Chen, Ching-Chow. (2015). DUSP1 Expression Induced by HDAC1 Inhibition Mediates Gefitinib Sensitivity in Non–Small Cell Lung Cancers. Clinical Cancer Research, 21(2), 428. Lundin, Amber, & Driscoll, Barbara. (2013). Lung cancer stem cells: progress and prospects. Cancer letters, 338(1), 89-93. Ma, L., Xu, G., Sotnikova, A., Szczepanowski, M., Giefing, M., Krause, K., Krams, M., Siebert, R., Jin, J., & Klapper, W. (2007). Loss of expression of LyGDI (ARHGDIB), a rho GDP-dissociation inhibitor, in Hodgkin lymphoma. Br J Haematol, 139(2), 217-223. Maione, Paolo, Sacco, Paola Claudia, Sgambato, Assunta, Casaluce, Francesca, Rossi, Antonio, & Gridelli, Cesare. (2015). Overcoming resistance to targeted therapies in NSCLC: current approaches and clinical application. Therapeutic Advances in Medical Oncology, 7(5), 263-273. Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., Brooks, M., Reinhard, F., Zhang, C. C., Shipitsin, M., Campbell, L. L., Polyak, K., Brisken, C., Yang, J., & Weinberg, R. A. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133(4), 704-715. Matikas, Alexios, Mistriotis, Dimitrios, Georgoulias, Vasilios, & Kotsakis, Athanasios. (2017). Targeting KRAS mutated non-small cell lung cancer: A history of failures and a future of hope for a diverse entity. Critical Reviews in Oncology/Hematology, 110, 1-12. Melosky, B., Leighl, N. B., Rothenstein, J., Sangha, R., Stewart, D., & Papp, K. (2015). Management of egfr tki–induced dermatologic adverse events. Current Oncology, 22(2), 123-132. Minari, Roberta, Bordi, Paola, & Tiseo, Marcello. (2016). Third-generation epidermal growth factor receptor-tyrosine kinase inhibitors in T790M-positive non-small cell lung cancer: review on emerged mechanisms of resistance. Translational Lung Cancer Research, 5(6), 695-708. Mok, Tony S., Wu, Yi-Long, Thongprasert, Sumitra, Yang, Chih-Hsin, Chu, Da-Tong, Saijo, Nagahiro, Sunpaweravong, Patrapim, Han, Baohui, Margono, Benjamin, Ichinose, Yukito, Nishiwaki, Yutaka, Ohe, Yuichiro, Yang, Jin-Ji, Chewaskulyong, Busyamas, Jiang, Haiyi, Duffield, Emma L., Watkins, Claire L., Armour, Alison A., & Fukuoka, Masahiro. (2009). Gefitinib or Carboplatin–Paclitaxel in Pulmonary Adenocarcinoma. New England Journal of Medicine, 361(10), 947-957. Morris, S. W., Kirstein, M. N., Valentine, M. B., Dittmer, K. G., Shapiro, D. N., Saltman, D. L., & Look, A. T. (1994). Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin's lymphoma. Science, 263(5151), 1281. Mott, Landon, Su, Kai, & Pack, Daniel W. (2018). Evaluation of FOXC1 as a therapeutic target for basal-like breast cancer. Cancer Gene Therapy, 25(3), 84-91. Myatt, Stephen S., & Lam, Eric W. F. (2007). The emerging roles of forkhead box (Fox) proteins in cancer. Nature Reviews Cancer, 7, 847. Nishida, Naoyo, Yano, Hirohisa, Nishida, Takashi, Kamura, Toshiharu, & Kojiro, Masamichi. (2006). Angiogenesis in Cancer. Vascular Health and Risk Management, 2(3), 213-219. Niu, H., Li, H., Xu, C., & He, P. (2010). Expression profile of RhoGDI2 in lung cancers and role of RhoGDI2 in lung cancer metastasis. Oncol Rep, 24(2), 465-471. Niu, H., Wu, B., Jiang, H., Li, H., Zhang, Y., Peng, Y., & He, P. (2014). Mechanisms of RhoGDI2 Mediated Lung Cancer Epithelial-Mesenchymal Transition Suppression. Cellular Physiology and Biochemistry, 34(6), 2007-2016. Niu, H., Wu, B., Peng, Y., Jiang, H., Zhang, Y., Wang, J., Zhang, Y., & He, P. (2015). RNA interference-mediated knockdown of RhoGDI2 induces the migration and invasion of human lung cancer A549 cells via activating the PI3K/Akt pathway. Tumor Biology, 36(1), 409-419. Oser, Matthew G., Niederst, Matthew J., Sequist, Lecia V., & Engelman, Jeffrey A. (2015). Transformation from non-small-cell lung cancer to small-cell lung cancer: molecular drivers and cells of origin. The Lancet. Oncology, 16(4), e165-e172. Ou-Yang, L., Xiao, S. J., Liu, P., Yi, S. J., Zhang, X. L., Ou-Yang, S., Tan, S. K., & Lei, X. (2015). Forkhead box C1 induces epithelialmesenchymal transition and is a potential therapeutic target in nasopharyngeal carcinoma. Mol Med Rep, 12(6), 8003-8009. Pardal, Ricardo, Clarke, Michael F., & Morrison, Sean J. (2003). Applying the principles of stem-cell biology to cancer. Nature Reviews Cancer, 3, 895. Prince, M. E., Sivanandan, R., Kaczorowski, A., Wolf, G. T., Kaplan, M. J., Dalerba, P., Weissman, I. L., Clarke, M. F., & Ailles, L. E. (2007). Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. Proc Natl Acad Sci U S A, 104(3), 973-978. Ray, Partha S., Bagaria, Sanjay P., Wang, Jinhua, Shamonki, Jaime M., Ye, Xing, Sim, Myung-Shin, Steen, Shawn, Qu, Ying, Cui, Xiaojiang, & Giuliano, Armando E. (2011). Basal-Like Breast Cancer Defined by FOXC1 Expression Offers Superior Prognostic Value: A Retrospective Immunohistochemical Study. Annals of Surgical Oncology, 18(13), 3839-3847. Reya, Tannishtha, Morrison, Sean J., Clarke, Michael F., & Weissman, Irving L. (2001). Stem cells, cancer, and cancer stem cells. Nature, 414, 105. Rosell, Rafael, & Karachaliou, Niki. (2016). Large-scale screening for somatic mutations in lung cancer. The Lancet, 387(10026), 1354-1356. Rosell, Rafael, Karachaliou, Niki, Morales-Espinosa, Daniela, Costa, Carlota, Molina, Miguel Angel, Sansano, Irene, Gasco, Amaya, Viteri, Santiago, Massuti, Bartomeu, Wei, Jia, González Cao, María, & Martínez Bueno, Alejandro. (2013). Adaptive resistance to targeted therapies in cancer. Translational Lung Cancer Research, 2(3), 152-159. Saleem, R. A., Banerjee-Basu, S., Murphy, T. C., Baxevanis, A., & Walter, M. A. (2004). Essential structural and functional determinants within the forkhead domain of FOXC1. Nucleic Acids Research, 32(14), 4182-4193. Seo, Dong-Cheol, Sung, Ji-Min, Cho, Hee-Jung, Yi, Hee, Seo, Kun-Ho, Choi, In-Soo, Kim, Dong-Ku, Kim, Jin-Suk, El-Aty Am, Abd, & Shin, Ho-Chul. (2007). Gene expression profiling of cancer stem cell in human lung adenocarcinoma A549 cells. Molecular Cancer, 6, 75-75. Shang, Y., Cai, X., & Fan, D. (2013). Roles of epithelial-mesenchymal transition in cancer drug resistance. Curr Cancer Drug Targets, 13(9), 915-929. Sharma, Sreenath V., Bell, Daphne W., Settleman, Jeffrey, & Haber, Daniel A. (2007). Epidermal growth factor receptor mutations in lung cancer. Nature Reviews Cancer, 7, 169. Singh, A., & Settleman, J. (2010). EMT, cancer stem cells and drug resistance: an emerging axis of evil in the war on cancer. Oncogene, 29, 4741. Soda, Manabu, Choi, Young Lim, Enomoto, Munehiro, Takada, Shuji, Yamashita, Yoshihiro, Ishikawa, Shunpei, Fujiwara, Shin-ichiro, Watanabe, Hideki, Kurashina, Kentaro, Hatanaka, Hisashi, Bando, Masashi, Ohno, Shoji, Ishikawa, Yuichi, Aburatani, Hiroyuki, Niki, Toshiro, Sohara, Yasunori, Sugiyama, Yukihiko, & Mano, Hiroyuki. (2007). Identification of the transforming EML4–ALK fusion gene in non-small-cell lung cancer. Nature, 448, 561. Suda, Kenichi, Tomizawa, Kenji, & Mitsudomi, Tetsuya. (2010). Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer and Metastasis Reviews, 29(1), 49-60. Tan, Chee-Seng, Gilligan, David, & Pacey, Simon. (2015). Treatment approaches for EGFR-inhibitor-resistant patients with non-small-cell lung cancer. The Lancet Oncology, 16(9), e447-e459. Theodorescu, Dan, Sapinoso, L. M., Conaway, M. R., Oxford, G., Hampton, G. M., & Frierson, H. F. (2004). Reduced Expression of Metastasis Suppressor RhoGDI2 Is Associated with Decreased Survival for Patients with Bladder Cancer. Clinical Cancer Research, 10(11), 3800. Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2(6), 442-454. Tomita, Hiroyuki, Tanaka, Kaori, Tanaka, Takuji, & Hara, Akira. (2016). Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget, 7(10), 11018-11032. Visvader, Jane E. (2011). Cells of origin in cancer. Nature, 469, 314. Wang, Jinhua, Ray, Partha S., Sim, Myung-Shin, Zhou, Xiao Zhen, Lu, Kun Ping, Lee, Adrian V., Lin, Xin, Bagaria, Sanjay P., Giuliano, Armando E., & Cui, Xiaojiang. (2012). FOXC1 regulates the functions of human basal-like breast cancer cells by activating NF-κB signaling. Oncogene, 31(45), 4798-4802. Wang, Jinhua, Xu, Yali, Li, Li, Wang, Lin, Yao, Ru, Sun, Qiang, & Du, Guanhua. (2016). FOXC1 is associated with estrogen receptor alpha and affects sensitivity of tamoxifen treatment in breast cancer. Cancer Medicine, 6(1), 275-287. Wang, L. Y., Li, L. S., & Yang, Z. (2016). Correlation of FOXC1 protein with clinicopathological features in serous ovarian tumors. Oncol Lett, 11(2), 933-938. Wang, Xiaochun, Goldstein, David, Crowe, Philip J., & Yang, Jia-Lin. (2016). Next-generation EGFR/HER tyrosine kinase inhibitors for the treatment of patients with non-small-cell lung cancer harboring EGFR mutations: a review of the evidence. OncoTargets and therapy, 9, 5461-5473. Wei, L. X., Zhou, R. S., Xu, H. F., Wang, J. Y., & Yuan, M. H. (2013). High expression of FOXC1 is associated with poor clinical outcome in non-small cell lung cancer patients. Tumour Biol, 34(2), 941-946. Weigel, D., Jurgens, G., Kuttner, F., Seifert, E., & Jackle, H. (1989). The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell, 57, 645–658 Weng, Chien-Hui Chen, Li-Yu, Lin, Yu-Chin , Shih, Jin-Yuan , Lin, Yun-Chieh Tseng, Ruo-Yu , Chiu, An-Chieh , Yeh, Yu-Hsuan , Liu, Chi , Lin, Yi-Ting , Fang, Jim-Min , & Chen, Ching-Chow (2018). Epithelial-mesenchymal transition (EMT) beyond EGFR mutations per se is a common mechanism for acquired resistance to EGFR TKI. Oncogene. Wu, Shang-Gin, Liu, Yi-Nan, Tsai, Meng-Feng, Chang, Yih-Leong, Yu, Chong-Jen, Yang, Pan-Chyr, Yang, James Chih-Hsin, Wen, Yueh-Feng, & Shih, Jin-Yuan. (2016). The mechanism of acquired resistance to irreversible EGFR tyrosine kinase inhibitor-afatinib in lung adenocarcinoma patients. Oncotarget, 7(11), 12404-12413. Yang, Zhi, Jiang, Shuai, Cheng, Yicheng, Li, Tian, Hu, Wei, Ma, Zhiqiang, Chen, Fulin, & Yang, Yang. (2017). FOXC1 in cancer development and therapy: deciphering its emerging and divergent roles. Therapeutic Advances in Medical Oncology, 9(12), 797-816. Yi, B., Zhang, Y., Zhu, D., Zhang, L., Song, S., He, S., Zhang, B., Li, D., & Zhou, J. (2015). Overexpression of RhoGDI2 correlates with the progression and prognosis of pancreatic carcinoma. Oncol Rep, 33(3), 1201-1206. Zhang, Y., Rivera Rosado, L. A., Moon, S. Y., & Zhang, B. (2009). Silencing of D4-GDI inhibits growth and invasive behavior in MDA-MB-231 cells by activation of Rac-dependent p38 and JNK signaling. J Biol Chem, 284(19), 12956-12965. Zhang, Yaqin, Rosado, Leslie A. Rivera, Moon, Sun Young, & Zhang, Baolin. (2009). Silencing of D4-GDI Inhibits Growth and Invasive Behavior in MDA-MB-231 Cells by Activation of Rac-dependent p38 and JNK Signaling. The Journal of Biological Chemistry, 284(19), 12956-12965. Zhang, Yaqin, & Zhang, Baolin. (2006). D4-GDI, a Rho GTPase Regulator, Promotes Breast Cancer Cell Invasiveness. Cancer Research, 66(11), 5592. Zheng, Z., Li, J., He, X., Chen, X., Yu, B., Ji, J., Zhang, J., Wang, T., Gu, Q., Zhu, Z., & Liu, B. (2010). Involvement of RhoGDI2 in the resistance of colon cancer cells to 5-fluorouracil. Hepatogastroenterology, 57(102-103), 1106-1112. Zheng, Zhong, Liu, Bingya, & Wu, Xiaohua. (2015). RhoGDI2 up-regulates P-glycoprotein expression via Rac1 in gastric cancer cells. Cancer Cell International, 15(1), 41. Zhou, Bin-Bing S., Zhang, Haiying, Damelin, Marc, Geles, Kenneth G., Grindley, Justin C., & Dirks, Peter B. (2009). Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nature Reviews Drug Discovery, 8, 806. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77516 | - |
| dc.description.abstract | 以EGFR-TKI治療EGFR activating mutation之非小細胞肺癌病人,具相當好的療效,但數個月後病人會產生acquired resistance。轉錄因子FOXC1在癌症中扮演重要角色,我們發現,在EGFR-TKI抗藥性細胞中,其表現增加。本篇論文使用H1975與H1975/AR (AZD9291 resistance) 細胞探討FOXC1在EGFR-TKI抗藥性之角色。
過量表現FOXC1於H1975細胞,可增進細胞之生長速度、遷移能力與形成球體(sphere)癌幹細胞,FOXC1亦調控癌幹細胞基因ALDH1A1之表現。在H1975/AR細胞抑制FOXC1之表現會促進RhoGDI2轉錄;在H1975細胞抑制RhoGDI2,會促進細胞之遷移能力與癌幹細胞特性。因此ALDH1A1與RhoGDI2可能均為FOXC1之下游標的。在原位肺癌動物模式發現,高表現FOXC1可促進腫瘤生長;以Kaplan Meier Plotter分析,FOXC1高表現之肺腺癌病人整體存活率較差。這些發現推測FOXC1可能與EGFR-TKI之抗藥性有關,可成為治療非小細胞肺癌的一個預後標記。 | zh_TW |
| dc.description.abstract | EGFR tyrosine kinase inhibitors (EGFR-TKIs) have shown good efficacy in non-small cell lung cancer (NSCLC) patients with EGFR activating mutations. However, acquired resistance develops after several months of treatment. Forkhead Box C1 (FOXC1) is an important transcriptional regulator associated with a wide variety of carcinomas including NSCLC. In this study, we found the overexpression of FOXC1 in EGFR-TKI resistant cells. Its role in the resistance of EGFR-TKIs was investigated using H1975 and AZD9291-resistant H1975/AR cell lines.
Overexpression of FOXC1 in H1975 cells led to an increase in cell proliferation, migration and sphere-forming ability. In addition, FOXC1-overexpressing cells showed an up-regulation of ALDH1A1. On the other hand, knockdown of FOXC1 in H1975/AR cells showed an up-regulation of RhoGDI2. Further analysis demonstrated that knockdown of RhoGDI2 in H1975 cells increased cell migration and sphere-forming ability. Therefore ALDH1A1 and RhoGDI2 might be the downstream targets of FOXC1. Furthermore, overexpression of FOXC1 increased tumor growth in orthotopic lung cancer model. In Kaplan Meier Plotter database, high expression of FOXC1 is related to poor overall survival in lung adenocarcinoma. These findings indicate that FOXC1 might involve in the resistance of EGFR-TKIs and provide a possible prognostic marker for the treatment of NSCLC. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:06:29Z (GMT). No. of bitstreams: 1 ntu-107-R05443006-1.pdf: 7409497 bytes, checksum: 0ad71eb94e4c29b6ef6131abcd95794a (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
誌謝 iii 中文摘要 iv Abstract v Abbreviation 1 Chapter 1. Introduction 4 Section 1: Lung cancer 5 Section 2: Tyrosine kinase inhibitor (TKI) and acquired resistance 11 Section 3: Cancer stem cell (CSC) 16 Section 4: Forkhead Box C1 (FOXC1) 22 Section 5: Rho GDP Dissociation Inhibitor Beta (RhoGDI2) 27 Study motivation 31 Chapter 2. Materials and Methods 32 Chapter 3. Results 45 Chapter 4. Discussion 66 Chapter 5. Conclusion 72 References 74 | - |
| dc.language.iso | en | - |
| dc.subject | 非小細胞肺癌 | zh_TW |
| dc.subject | 叉頭轉錄因子C1 | zh_TW |
| dc.subject | 表皮生長因子受體-酪胺酸激?抑制劑 | zh_TW |
| dc.subject | FOXC1 | en |
| dc.subject | NSCLC | en |
| dc.subject | EGFR-TKI | en |
| dc.title | 高表現FOXC1在非小細胞肺癌對EGFR—TKI抗藥性之研究 | zh_TW |
| dc.title | Role of High FOXC1 Expression in EGFR-TKI Resistant Non-Small Cell Lung Cancer | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 吳明賢;施金元 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 非小細胞肺癌,表皮生長因子受體-酪胺酸激?抑制劑,叉頭轉錄因子C1, | zh_TW |
| dc.subject.keyword | NSCLC,EGFR-TKI,FOXC1, | en |
| dc.relation.page | 83 | - |
| dc.identifier.doi | 10.6342/NTU201801891 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-15 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 藥理學研究所 | - |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 7.24 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
