請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77513完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林文貞 | zh_TW |
| dc.contributor.advisor | Wen-Jen Lin | en |
| dc.contributor.author | 羅予辰 | zh_TW |
| dc.contributor.author | Yu-Chen Lo | en |
| dc.date.accessioned | 2021-07-10T22:06:20Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-11 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood-brain barrier. Nat Rev Neurosci. 2006;7(1):41-53.
Abuchowski A, McCoy JR, Palczuk NC, van Es T, Davis FF. Effect of covalent attachment of polyethylene glycol on immunogenicity and circulating life of bovine liver catalase. J Biol Chem. 1977;252(11):3582-6. Adiseshaiah PP, Hall JB, McNeil SE. Nanomaterial standards for efficacy and toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010;2(1):99-112. Agarwal S, Sane R, Oberoi R, Ohlfest JR, Elmquist WF. Delivery of molecularly targeted therapy to malignant glioma, a disease of the whole brain. Expert Reviews in Molecular Medicine. 2011;13:e17. Alai M, Lin WJ. A novel once daily microparticulate dosage form comprising lansoprazole to prevent nocturnal acid breakthrough in the case of gastro-esophageal reflux disease: preparation, pharmacokinetic and pharmacodynamic evaluation. J Microencapsul. 2013;30(6):519-29. Alhakamy NA, Berkland CJ. Polyarginine molecular weight determines transfection efficiency of calcium condensed complexes. Mol Pharm. 2013;10(5):1940-8. Ameringer T, Fransen P, Bean P, Johnson G, Pereira S, Evans RA, et al. Polymer coatings that display specific biological signals while preventing nonspecific interactions. J Biomed Mater Res A. 2012;100(2):370-9. Amoozgar Z, Yeo Y. Recent advances in stealth coating of nanoparticle drug delivery systems. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2012;4(2):219-33. Asghar U, Witkiewicz AK, Turner NC, Knudsen ES. The history and future of targeting cyclin-dependent kinases in cancer therapy. Nat Rev Drug Discov. 2015;14(2):130-46. Barton KL, Misuraca K, Cordero F, Dobrikova E, Min HD, Gromeier M, et al. PD-0332991, a CDK4/6 inhibitor, significantly prolongs survival in a genetically engineered mouse model of brainstem glioma. PLoS One. 2013;8(10):e77639. Bechara C, Sagan S. Cell-penetrating peptides: 20 years later, where do we stand? FEBS Lett. 2013;587(12):1693-702. Bi Y, Liu L, Lu Y, Sun T, Shen C, Chen X, et al. T7 Peptide-Functionalized PEG-PLGA Micelles Loaded with Carmustine for Targeting Therapy of Glioma. ACS Appl Mater Interfaces. 2016. (Epub ahead of print) Biemans E, Jakel L, de Waal RMW, Kuiperij HB, Verbeek MM. Limitations of the hCMEC/D3 cell line as a model for Abeta clearance by the human blood-brain barrier. J Neurosci Res. 2017;95(7):1513-22. Bonaccorso A, Musumeci T, Carbone C, Vicari L, Lauro MR, Puglisi G. Revisiting the role of sucrose in PLGA-PEG nanocarrier for potential intranasal delivery. Pharm Dev Technol. 2018;23(3):265-74. Borrelli A, Tornesello AL, Tornesello ML, Buonaguro FM. Cell Penetrating Peptides as Molecular Carriers for Anti-Cancer Agents. Molecules. 2018;23(2). pii: E295. Byeon HJ, Thao le Q, Lee S, Min SY, Lee ES, Shin BS, et al. Doxorubicin-loaded nanoparticles consisted of cationic- and mannose-modified-albumins for dual-targeting in brain tumors. J Control Release. 2016;225:301-13. Canavese M, Santo L, Raje N. Cyclin dependent kinases in cancer: potential for therapeutic intervention. Cancer Biol Ther. 2012;13(7):451-7. Cecchelli R, Berezowski V, Lundquist S, Culot M, Renftel M, Dehouck MP, et al. Modelling of the blood-brain barrier in drug discovery and development. Nat Rev Drug Discov. 2007;6(8):650-61. Cedeño-Arias M, Sánchez-Ramírez J, Blanco-Santana R, Rengifo-Calzado E. Validation of a Flow Cytometry Based Binding Assay for Evaluation of Monoclonal Antibody Recognizing EGF Receptor. Scientia Pharmaceutica. 2011;79(3):569-81. Chen Y, Zhang M, Jin H, Li D, Xu F, Wu A, et al. Glioma Dual-Targeting Nanohybrid Protein Toxin Constructed by Intein-Mediated Site-Specific Ligation for Multistage Booster Delivery. Theranostics. 2017;7(14):3489-503. Chittasupho C, Xie SX, Baoum A, Yakovleva T, Siahaan TJ, Berkland CJ. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci. 2009;37(2):141-50. Cho K, Wang X, Nie S, Chen ZG, Shin DM. Therapeutic nanoparticles for drug delivery in cancer. Clin Cancer Res. 2008;14(5):1310-6. Cloughesy TF, Cavenee WK, Mischel PS. Glioblastoma: from molecular pathology to targeted treatment. Annu Rev Pathol. 2014;9:1-25. Costa P, Sousa Lobo JM. Modeling and comparison of dissolution profiles. Eur J Pharm Sci. 2001;13(2):123-33. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061-8. Creixell M, Peppas NA. Co-delivery of siRNA and therapeutic agents using nanocarriers to overcome cancer resistance. Nano Today. 2012;7(4):367-79. Cui Y, Xu Q, Chow PK, Wang D, Wang CH. Transferrin-conjugated magnetic silica PLGA nanoparticles loaded with doxorubicin and paclitaxel for brain glioma treatment. Biomaterials. 2013;34(33):8511-20. Cui Y, Zhang M, Zeng F, Jin H, Xu Q, Huang Y. Dual-Targeting Magnetic PLGA Nanoparticles for Codelivery of Paclitaxel and Curcumin for Brain Tumor Therapy. ACS Appl Mater Interfaces. 2016;8(47):32159-69. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Preat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505-22. Daniels TR, Delgado T, Rodriguez JA, Helguera G, Penichet ML. The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol. 2006;121(2):144-58. Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharm. 2010;67(3):217-23. Davis ME. Glioblastoma: Overview of Disease and Treatment. Clinical journal of oncology nursing. 2016;20(5):S2-S8. de Gooijer MC, Zhang P, Thota N, Mayayo-Peralta I, Buil LC, Beijnen JH, et al. P-glycoprotein and breast cancer resistance protein restrict the brain penetration of the CDK4/6 inhibitor palbociclib. Invest New Drugs. 2015;33(5):1012-9. Delehanty JB, Boeneman K, Bradburne CE, Robertson K, Bongard JE, Medintz IL. Peptides for specific intracellular delivery and targeting of nanoparticles: implications for developing nanoparticle-mediated drug delivery. Ther Deliv. 2010;1(3):411-33. Dixit S, Novak T, Miller K, Zhu Y, Kenney ME, Broome A-M. Transferrin receptor-targeted theranostic gold nanoparticles for photosensitizer delivery in brain tumors. Nanoscale. 2015;7(5):1782-90. Dong X. Current Strategies for Brain Drug Delivery. Theranostics. 2018;8(6):1481-93. Dorati R, DeTrizio A, Spalla M, Migliavacca R, Pagani L, Pisani S, et al. Gentamicin Sulfate PEG-PLGA/PLGA-H Nanoparticles: Screening Design and Antimicrobial Effect Evaluation toward Clinic Bacterial Isolates. Nanomaterials (Basel). 2018;8(1). pii: E37. Du J, Lane LA, Nie S. Stimuli-Responsive Nanoparticles for Targeting the Tumor Microenvironment. Journal of controlled release : official journal of the Controlled Release Society. 2015;219:205-14. Elsayed A, Al-Remawi M, Qinna N, Farouk A, Al-Sou’od KA, Badwan AA. Chitosan–Sodium Lauryl Sulfate Nanoparticles as a Carrier System for the In Vivo Delivery of Oral Insulin. AAPS PharmSciTech. 2011;12(3):958. Farkhani SM, Shirani A, Mohammadi S, Zakeri-Milani P, Shahbazi Mojarrad J, Valizadeh H. Effect of poly-glutamate on uptake efficiency and cytotoxicity of cell penetrating peptides. IET Nanobiotechnol. 2016;10(2):87-95. Farkhani SM, Valizadeh A, Karami H, Mohammadi S, Sohrabi N, Badrzadeh F. Cell penetrating peptides: efficient vectors for delivery of nanoparticles, nanocarriers, therapeutic and diagnostic molecules. Peptides. 2014;57:78-94. Fazeny-Dorner B, Wenzel C, Veitl M, Piribauer M, Rossler K, Dieckmann K, et al. Survival and prognostic factors of patients with unresectable glioblastoma multiforme. Anticancer Drugs. 2003;14(4):305-12. Franceschi E, Stupp R, van den Bent MJ, van Herpen C, Laigle Donadey F, Gorlia T, et al. EORTC 26083 phase I/II trial of dasatinib in combination with CCNU in patients with recurrent glioblastoma. Neuro Oncol. 2012;14(12):1503-10. Gao H, Yang Z, Zhang S, Cao S, Shen S, Pang Z, et al. Ligand modified nanoparticles increases cell uptake, alters endocytosis and elevates glioma distribution and internalization. Sci Rep. 2013;3:2534. Gao H, Zhang S, Cao S, Yang Z, Pang Z, Jiang X. Angiopep-2 and activatable cell-penetrating peptide dual-functionalized nanoparticles for systemic glioma-targeting delivery. Mol Pharm. 2014;11(8):2755-63. Gerlowski LE, Jain RK. Microvascular permeability of normal and neoplastic tissues. Microvasc Res. 1986;31(3):288-305. Goyal R, Macri L, Kohn J. Formulation Strategy for the Delivery of Cyclosporine A: Comparison of Two Polymeric Nanospheres. Scientific Reports. 2015;5:13065. Guidotti G, Brambilla L, Rossi D. Cell-Penetrating Peptides: From Basic Research to Clinics. Trends Pharmacol Sci. 2017;38(4):406-24. Guo Z, Peng H, Kang J, Sun D. Cell-penetrating peptides: Possible transduction mechanisms and therapeutic applications. Biomedical Reports. 2016;4(5):528-34. Hamilton E, Infante JR. Targeting CDK4/6 in patients with cancer. Cancer Treat Rev. 2016;45:129-38. Han L, Huang R, Liu S, Huang S, Jiang C. Peptide-conjugated PAMAM for targeted doxorubicin delivery to transferrin receptor overexpressed tumors. Mol Pharm. 2010;7(6):2156-65. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100(1):57-70. Harding C. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. The Journal of Cell Biology. 1983;97(2):329-39. Herve F, Ghinea N, Scherrmann JM. CNS delivery via adsorptive transcytosis. Aaps j. 2008;10(3):455-72. Hirose H, Takeuchi T, Osakada H, Pujals S, Katayama S, Nakase I, et al. Transient focal membrane deformation induced by arginine-rich peptides leads to their direct penetration into cells. Mol Ther. 2012;20(5):984-93. Holgado MA, Arias JL, Cozar MJ, Alvarez-Fuentes J, Ganan-Calvo AM, Fernandez-Arevalo M. Synthesis of lidocaine-loaded PLGA microparticles by flow focusing. Effects on drug loading and release properties. Int J Pharm. 2008;358(1-2):27-35. Huang Y, Jiang Y, Wang H, Wang J, Shin MC, Byun Y, et al. Curb challenges of the "Trojan Horse" approach: smart strategies in achieving effective yet safe cell-penetrating peptide-based drug delivery. Adv Drug Deliv Rev. 2013;65(10):1299-315. Jefferies WA, Brandon MR, Hunt SV, Williams AF, Gatter KC, Mason DY. Transferrin receptor on endothelium of brain capillaries. Nature. 1984;312(5990):162-3. Jeong YI, Kim DH, Chung CW, Yoo JJ, Choi KH, Kim CH, et al. Self-assembled nanoparticles of hyaluronic acid/poly(DL-lactide-co-glycolide) block copolymer. Colloids Surf B Biointerfaces. 2012;90:28-35. Johnsen KB, Burkhart A, Melander F, Kempen PJ, Vejlebo JB, Siupka P, et al. Targeting transferrin receptors at the blood-brain barrier improves the uptake of immunoliposomes and subsequent cargo transport into the brain parenchyma. Sci Rep. 2017;7(1):10396. Jones AR, Shusta EV. Blood-Brain Barrier Transport of Therapeutics via Receptor-Mediation. Pharmaceutical research. 2007;24(9):1759-71. Jones SW, Christison R, Bundell K, Voyce CJ, Brockbank SM, Newham P, et al. Characterisation of cell-penetrating peptide-mediated peptide delivery. Br J Pharmacol. 2005;145(8):1093-102. Kang T, Jiang M, Jiang D, Feng X, Yao J, Song Q, et al. Enhancing Glioblastoma-Specific Penetration by Functionalization of Nanoparticles with an Iron-Mimic Peptide Targeting Transferrin/Transferrin Receptor Complex. Mol Pharm. 2015;12(8):2947-61. Kannan V, Balabathula P, Thoma LA, Wood GC. Effect of sucrose as a lyoprotectant on the integrity of paclitaxel-loaded liposomes during lyophilization. J Liposome Res. 2015;25(4):270-8. Kawamoto M, Horibe T, Kohno M, Kawakami K. A novel transferrin receptor-targeted hybrid peptide disintegrates cancer cell membrane to induce rapid killing of cancer cells. BMC Cancer. 2011;11:359-. Kawamoto M, Kohno M, Horibe T, Kawakami K. Immunogenicity and toxicity of transferrin receptor-targeted hybrid peptide as a potent anticancer agent. Cancer Chemother Pharmacol. 2013;71(3):799-807. Keles GE, Anderson B, Berger MS. The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol. 1999;52(4):371-9. Kibria G, Hatakeyama H, Ohga N, Hida K, Harashima H. Dual-ligand modification of PEGylated liposomes shows better cell selectivity and efficient gene delivery. J Control Release. 2011;153(2):141-8. Kobayashi H, Watanabe R, Choyke PL. Improving Conventional Enhanced Permeability and Retention (EPR) Effects; What Is the Appropriate Target? Theranostics. 2014;4(1):81-9. Kosuge M, Takeuchi T, Nakase I, Jones AT, Futaki S. Cellular internalization and distribution of arginine-rich peptides as a function of extracellular peptide concentration, serum, and plasma membrane associated proteoglycans. Bioconjug Chem. 2008;19(3):656-64. Kou L, Sun J, Zhai Y, He Z. The endocytosis and intracellular fate of nanomedicines: Implication for rational design. Asian Journal of Pharmaceutical Sciences. 2013;8(1):1-10. Kuang Y, An S, Guo Y, Huang S, Shao K, Liu Y, et al. T7 peptide-functionalized nanoparticles utilizing RNA interference for glioma dual targeting. Int J Pharm. 2013;454(1):11-20. Löscher W, Potschka H. Blood-Brain Barrier Active Efflux Transporters: ATP-Binding Cassette Gene Family. NeuroRx. 2005;2(1):86-98. Lee JH, Engler JA, Collawn JF, Moore BA. Receptor mediated uptake of peptides that bind the human transferrin receptor. Eur J Biochem. 2001;268(7):2004-12. Li Y, Monteiro-Riviere NA. Mechanisms of cell uptake, inflammatory potential and protein corona effects with gold nanoparticles. Nanomedicine (Lond). 2016;11(24):3185-203. Lim JS, Turner NC, Yap TA. CDK4/6 Inhibitors: Promising Opportunities beyond Breast Cancer. Cancer Discov. 2016;6(7):697-9. Lin WJ, Kao LT. Cytotoxic enhancement of hexapeptide-conjugated micelles in EGFR high-expressed cancer cells. Expert Opin Drug Deliv. 2014;11(10):1537-50. Liu G, Shen H, Mao J, Zhang L, Jiang Z, Sun T, et al. Transferrin modified graphene oxide for glioma-targeted drug delivery: in vitro and in vivo evaluations. ACS Appl Mater Interfaces. 2013;5(15):6909-14. Liu S, Guo Y, Huang R, Li J, Huang S, Kuang Y, et al. Gene and doxorubicin co-delivery system for targeting therapy of glioma. Biomaterials. 2012;33(19):4907-16. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803-20. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 2011;3(3):1377-97. Makadia HK, Siegel SJ. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers. 2011;3(3):1377-97. Malumbres M. Cyclin-dependent kinases. Genome Biol. 2014;15(6):122. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387-92. Melikov K, Hara A, Yamoah K, Zaitseva E, Zaitsev E, Chernomordik Leonid V. Efficient entry of cell-penetrating peptide nona-arginine into adherent cells involves a transient increase in intracellular calcium. Biochemical Journal. 2015;471(Pt 2):221-30. Michaud K, Solomon DA, Oermann E, Kim JS, Zhong WZ, Prados MD, et al. Pharmacologic inhibition of cyclin-dependent kinases 4 and 6 arrests the growth of glioblastoma multiforme intracranial xenografts. Cancer Res. 2010;70(8):3228-38. Michen B, Geers C, Vanhecke D, Endes C, Rothen-Rutishauser B, Balog S, et al. Avoiding drying-artifacts in transmission electron microscopy: Characterizing the size and colloidal state of nanoparticles. Scientific Reports. 2015;5:9793. Milane L, Duan Z, Amiji M. Development of EGFR-targeted polymer blend nanocarriers for combination paclitaxel/lonidamine delivery to treat multi-drug resistance in human breast and ovarian tumor cells. Mol Pharm. 2011;8(1):185-203. Mitchell DJ, Kim DT, Steinman L, Fathman CG, Rothbard JB. Polyarginine enters cells more efficiently than other polycationic homopolymers. J Pept Res. 2000;56(5):318-25. O'Leary B, Finn RS, Turner NC. Treating cancer with selective CDK4/6 inhibitors. Nat Rev Clin Oncol. 2016;13(7):417-30. Oberoi RK, Parrish KE, Sio TT, Mittapalli RK, Elmquist WF, Sarkaria JN. Strategies to improve delivery of anticancer drugs across the blood-brain barrier to treat glioblastoma. Neuro Oncol. 2016;18(1):27-36. Oh S, Kim BJ, Singh NP, Lai H, Sasaki T. Synthesis and anti-cancer activity of covalent conjugates of artemisinin and a transferrin-receptor targeting peptide. Cancer Lett. 2009;274(1):33-9. Oller-Salvia B, Sanchez-Navarro M, Giralt E, Teixido M. Blood-brain barrier shuttle peptides: an emerging paradigm for brain delivery. Chem Soc Rev. 2016;45(17):4690-707. Ostrom QT, Bauchet L, Davis FG, Deltour I, Fisher JL, Langer CE, et al. The epidemiology of glioma in adults: a "state of the science" review. Neuro Oncol. 2014;16(7):896-913. Ostrom QT, Gittleman H, Xu J, Kromer C, Wolinsky Y, Kruchko C, et al. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2009-2013. Neuro Oncol. 2016;18(suppl_5):v1-v75. Palm-Apergi C, Lonn P, Dowdy SF. Do cell-penetrating peptides actually "penetrate" cellular membranes? Mol Ther. 2012;20(4):695-7. Pardridge WM. Crossing the blood-brain barrier: are we getting it right? Drug Discov Today. 2001;6(1):1-2. Pardridge WM. Drug transport across the blood-brain barrier. J Cereb Blood Flow Metab. 2012;32(11):1959-72. Pardridge WM, Eisenberg J, Yang J. Human blood-brain barrier transferrin receptor. Metabolism. 1987;36(9):892-5. Parrish KE, Pokorny J, Mittapalli RK, Bakken K, Sarkaria JN, Elmquist WF. Efflux transporters at the blood-brain barrier limit delivery and efficacy of cyclin-dependent kinase 4/6 inhibitor palbociclib (PD-0332991) in an orthotopic brain tumor model. J Pharmacol Exp Ther. 2015;355(2):264-71. Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, et al. An integrated genomic analysis of human glioblastoma multiforme. Science. 2008;321(5897):1807-12. Peyressatre M, Prevel C, Pellerano M, Morris MC. Targeting cyclin-dependent kinases in human cancers: from small molecules to Peptide inhibitors. Cancers (Basel). 2015;7(1):179-237. Piñero DJ, Connor JR. Iron in the Brain: An Important Contributor in Normal and Diseased States. The Neuroscientist. 2000;6(6):435-53. Ponka P, Lok CN. The transferrin receptor: role in health and disease. Int J Biochem Cell Biol. 1999;31(10):1111-37. Prados MD, Byron SA, Tran NL, Phillips JJ, Molinaro AM, Ligon KL, et al. Toward precision medicine in glioblastoma: the promise and the challenges. Neuro-Oncology. 2015;17(8):1051-63. Prior R, Reifenberger G, Wechsler W. Transferrin receptor expression in tumours of the human nervous system: relation to tumour type, grading and tumour growth fraction. Virchows Archiv A. 1990;416(6):491-6. Reardon DA, Vredenburgh JJ, Desjardins A, Peters KB, Sathornsumetee S, Threatt S, et al. Phase 1 trial of dasatinib plus erlotinib in adults with recurrent malignant glioma. J Neurooncol. 2012;108(3):499-506. Robison AD, Sun S, Poyton MF, Johnson GA, Pellois JP, Jungwirth P, et al. Polyarginine Interacts More Strongly and Cooperatively than Polylysine with Phospholipid Bilayers. J Phys Chem B. 2016;120(35):9287-96. Ryoko Tsukamoto HY. Quantum Dots Conjugated with Transferrin for Brain Tumor Cell Imaging. Journal of Cell Science & Therapy. 2013;04(03). Schroder LB, McDonald KL. CDK4/6 Inhibitor PD0332991 in Glioblastoma Treatment: Does It Have a Future? Front Oncol. 2015;5:259. Semete B, Booysen L, Lemmer Y, Kalombo L, Katata L, Verschoor J, et al. In vivo evaluation of the biodistribution and safety of PLGA nanoparticles as drug delivery systems. Nanomedicine. 2010;6(5):662-71. Sharma G, Modgil A, Layek B, Arora K, Sun C, Law B, et al. Cell penetrating peptide tethered bi-ligand liposomes for delivery to brain in vivo: Biodistribution and transfection. J Control Release. 2013;167(1):1-10. Sharma G, Modgil A, Sun C, Singh J. Grafting of cell-penetrating peptide to receptor-targeted liposomes improves their transfection efficiency and transport across blood-brain barrier model. J Pharm Sci. 2012;101(7):2468-78. Shi J, Kantoff PW, Wooster R, Farokhzad OC. Cancer nanomedicine: progress, challenges and opportunities. Nature Reviews Cancer. 2016;17:20. Spring L, Bardia A, Modi S. Targeting the cyclin D–cyclin-dependent kinase (CDK)4/6–retinoblastoma pathway with selective CDK 4/6 inhibitors in hormone receptor-positive breast cancer: rationale, current status, and future directions. Discovery medicine. 2016;21(113):65-74. Srinivasan B, Kolli AR, Esch MB, Abaci HE, Shuler ML, Hickman JJ. TEER measurement techniques for in vitro barrier model systems. Journal of laboratory automation. 2015;20(2):107-26. Sun M, Zhu Z, Wang H, Han C, Liu D, Tian L, et al. Surface density of polyarginine influence the size, zeta potential, cellular uptake and tissue distribution of the nanostructured lipid carrier. Drug Deliv. 2017;24(1):519-26. Szerlip NJ, Pedraza A, Chakravarty D, Azim M, McGuire J, Fang Y, et al. Intratumoral heterogeneity of receptor tyrosine kinases EGFR and PDGFRA amplification in glioblastoma defines subpopulations with distinct growth factor response. Proc Natl Acad Sci U S A. 2012;109(8):3041-6. Taal W, Bromberg JE, van den Bent MJ. Chemotherapy in glioma. CNS Oncol. 2015;4(3):179-92. Ter-Avetisyan G, Tunnemann G, Nowak D, Nitschke M, Herrmann A, Drab M, et al. Cell entry of arginine-rich peptides is independent of endocytosis. J Biol Chem. 2009;284(6):3370-8. Thakkar JP, Dolecek TA, Horbinski C, Ostrom QT, Lightner DD, Barnholtz-Sloan JS, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev. 2014;23(10):1985-96. Tong R, Kohane DS. New Strategies in Cancer Nanomedicine. Annu Rev Pharmacol Toxicol. 2016;56:41-57. Torti SV, Torti FM. Iron and cancer: more ore to be mined. Nat Rev Cancer. 2013;13(5):342-55. Tortorella S, Karagiannis TC. Transferrin receptor-mediated endocytosis: a useful target for cancer therapy. J Membr Biol. 2014;247(4):291-307. Tran S, DeGiovanni PJ, Piel B, Rai P. Cancer nanomedicine: a review of recent success in drug delivery. Clin Transl Med. 2017;6(1):44. Turner NC, Ro J, Andre F, Loi S, Verma S, Iwata H, et al. Palbociclib in Hormone-Receptor-Positive Advanced Breast Cancer. N Engl J Med. 2015;373(3):209-19. Uchida Y, Ohtsuki S, Katsukura Y, Ikeda C, Suzuki T, Kamiie J, et al. Quantitative targeted absolute proteomics of human blood-brain barrier transporters and receptors. J Neurochem. 2011;117(2):333-45. van Tellingen O, Yetkin-Arik B, de Gooijer MC, Wesseling P, Wurdinger T, de Vries HE. Overcoming the blood-brain tumor barrier for effective glioblastoma treatment. Drug Resist Updat. 2015;19:1-12. Vashist SK. Comparison of 1-Ethyl-3-(3-Dimethylaminopropyl) Carbodiimide Based Strategies to Crosslink Antibodies on Amine-Functionalized Platforms for Immunodiagnostic Applications. Diagnostics. 2012;2(3):23-33. Wang Q, Shen M, Zhao T, Xu Y, Lin J, Duan Y, et al. Low toxicity and long circulation time of Polyampholyte-coated magnetic nanoparticles for blood pool contrast agents. Scientific Reports. 2015;5:7774. Wang S, Meng Y, Li C, Qian M, Huang R. Receptor-Mediated Drug Delivery Systems Targeting to Glioma. Nanomaterials (Basel). 2015;6(1). pii: E3. Warren RA, Green FA, Enns CA. Saturation of the endocytic pathway for the transferrin receptor does not affect the endocytosis of the epidermal growth factor receptor. J Biol Chem. 1997;272(4):2116-21. Wei L, Guo XY, Yang T, Yu MZ, Chen DW, Wang JC. Brain tumor-targeted therapy by systemic delivery of siRNA with Transferrin receptor-mediated core-shell nanoparticles. Int J Pharm. 2016;510(1):394-405. Wei X, Chen X, Ying M, Lu W. Brain tumor-targeted drug delivery strategies. Acta Pharm Sin B. 2014;4(3):193-201. Weller M, Wick W, Aldape K, Brada M, Berger M, Pfister SM, et al. Glioma. Nat Rev Dis Primers. 2015;1:15017. Whittaker SR, Mallinger A, Workman P, Clarke PA. Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol Ther. 2017;173:83-105. Wicki A, Witzigmann D, Balasubramanian V, Huwyler J. Nanomedicine in cancer therapy: challenges, opportunities, and clinical applications. J Control Release. 2015;200:138-57. Wilson TA, Karajannis MA, Harter DH. Glioblastoma multiforme: State of the art and future therapeutics. Surg Neurol Int. 2014;5:64. Xiao G, Gan L-S. Receptor-Mediated Endocytosis and Brain Delivery of Therapeutic Biologics. International Journal of Cell Biology. 2013;2013:703545. Xie Y, Killinger B, Moszczynska A, Merkel OM. Targeted Delivery of siRNA to Transferrin Receptor Overexpressing Tumor Cells via Peptide Modified Polyethylenimine. Molecules. 2016;21(10). pii: E1334. Yang Z, Tang W, Luo X, Zhang X, Zhang C, Li H, et al. Dual-Ligand Modified Polymer-Lipid Hybrid Nanoparticles for Docetaxel Targeting Delivery to Her2/neu Overexpressed Human Breast Cancer Cells. J Biomed Nanotechnol. 2015;11(8):1401-17. Yue J, Liu S, Wang R, Hu X, Xie Z, Huang Y, et al. Fluorescence-labeled immunomicelles: preparation, in vivo biodistribution, and ability to cross the blood-brain barrier. Macromol Biosci. 2012;12(9):1209-19. Zhang K, Tang X, Zhang J, Lu W, Lin X, Zhang Y, et al. PEG-PLGA copolymers: their structure and structure-influenced drug delivery applications. J Control Release. 2014;183:77-86. Zhang Y, Zhai M, Chen Z, Han X, Yu F, Li Z, et al. Dual-modified liposome codelivery of doxorubicin and vincristine improve targeting and therapeutic efficacy of glioma. Drug Deliv. 2017;24(1):1045-55. Zong T, Mei L, Gao H, Cai W, Zhu P, Shi K, et al. Synergistic dual-ligand doxorubicin liposomes improve targeting and therapeutic efficacy of brain glioma in animals. Mol Pharm. 2014;11(7):2346-57. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77513 | - |
| dc.description.abstract | 神經膠質瘤 (Glioma)為目前最常見的原發性腦腫瘤,然而血腦障壁 (Blood brain barrier, BBB)限制了大部分藥物的遞輸,成為目前臨床治療一大困境。本篇研究以聚乳酸-甘醇酸 (poly(lactide-co-glycolide), PLGA)作為藥物載體骨架,於上接枝聚乙二醇二胺 (poly(ethylene glycol) bis(amine), PEG-diamine)以增加奈米顆粒安定性,利用腦內皮細胞及神經膠質瘤細胞上高度表現運鐵蛋白受體 (Transferrin receptor, TfR )特性,選用對運鐵蛋白受體具標靶能力的T7胜肽及有助於載體穿膜的R9胜肽接枝於PLGA-PEG上,由於R9為非選擇性之細胞穿膜胜肽,為了降低其對於正常之毒殺性,利用PEG鏈長之差異性,使R9接枝於短鏈PEG並包埋於長鏈PEG中,降低其全身循環時與正常細胞直接接觸造成毒殺作用。
本實驗所使用之奈米顆粒皆以溶媒揮發法製備而得,在空的載體中,產率可達70%以上,其粒徑大小落於162.6 nm至173.5 nm之間,且呈現單一粒徑分布 (PDI<0.2),表面電荷隨著R9胜肽修飾而增加,落於-18.6 mV至7.9 mV之間。 除了對物化性質分析之外,為了探討不同胜肽接枝奈米顆粒對於細胞的標靶能力,針對bEnd.3腦內皮細胞及U87-MG神經膠質瘤細胞進行細胞吞噬實驗。實驗結果顯示,首先,無論在bEnd.3腦內皮細胞或U87-MG神經膠質瘤細胞中,T7修飾可增加細胞對奈米顆粒吞噬,但在L929低表現之對照細胞株中,T7修飾對於奈米顆粒吞噬並無明顯影響。接著,進一步探討雙胜肽修飾之奈米顆粒對於細胞吞噬效率影響,流式細胞儀定量分析結果顯示,在bEnd.3細胞中,相較於未修飾之奈米載體,T7、R9及雙胜肽修飾之奈米顆粒可提升細胞吞噬量分別達2.1、4.1及2.8倍;而在U87-MG細胞中,可分別達1.7、4.6及2.2倍。由以上結果可知T7修飾之奈米顆粒可藉由標靶運鐵蛋白受體以提升細胞吞噬量,而R9修飾可藉由穿膜增加細胞吞噬量,雖然R9胜肽修飾能最有效提升奈米顆粒進入細胞效率,但其非選擇性限制了臨床應用性。 為了進一步探討奈米顆粒對於血腦障壁的穿透效率,本實驗利用穿透式細胞培養盤 (Transwell plate)共同培養bEnd.3腦內皮細胞及U87-MG神經膠質瘤細胞以建立了體外血腦障壁模型,其中,在4小時及12小時穿透試驗結果皆顯示,bEnd.3腦內皮細胞中對於不同胜肽修飾之奈米顆粒具有不同吞噬效率,由高到低依序為R9>雙胜肽>T7>未修飾,而在U87-MG細胞中亦得到相同趨勢,此結果可說明藉由雙胜肽修飾,不但可提升奈米顆粒穿透血腦障壁能力,且能增加其進入神經膠質瘤細胞之能力。除此之外,本研究亦利用體內試驗觀察奈米顆粒之全身循環分布,結果顯示T7修飾相較於未修飾及R9修飾之奈米顆粒更能累積於腦部,且雙胜肽修飾能更進一步提升奈米顆粒於腦部累積量。 接著,將奈米粒子進一步包覆Palbociclib (PBC)作為治療藥物探討其對於神經膠質瘤治療之助益,PBC為一種週期蛋白依賴性激酶4/6抑制劑 (Cyclin dependent kinase 4/6 inhibitors, CDK4/6 inhibitors),能專一性阻斷癌細胞中高度表現的CDK4/6蛋白生成,進而遏止下游細胞週期調控相關路徑,以抑腫瘤細胞的增生。所有包覆藥物之奈米顆粒產率可達65%以上,其粒徑大小落於168.4 nm至185.8 nm之間,且呈現單一粒徑分布 (PDI<0.2),其表面電荷落於-17.8mV至-10.0 mV之間,藥物包覆率可達60%,且負載率可達8%。於4˚C水中及冷凍乾燥後回溶於水之4週安定性試驗顯示奈米顆粒之粒徑皆可維持,並無明顯凝集現象。此外,在體外釋放試驗中,可知於pH 5.5環境下的奈米載體釋放藥物速度,較pH 7.4環境下為快。在細胞毒殺試驗中,可發現胜肽修飾之奈米顆粒可提升PBC對於細胞的毒殺效果,其純藥及包覆於各種不同胜肽修飾之奈米顆粒之IC50分別為PBC純藥:18.9 ± 1.3 μg/mL、未修飾:8.2 ± 0.8 μg/mL、T7修飾:6.0 ± 0.7 μg/mL、雙胜肽修飾:2.9 ± 0.5 μg/mL及R9修飾:2.4 ± 0.1 μg/mL。 以上結果證明雙胜肽修飾之奈米顆粒能藉由胜肽之標靶及穿透能力提升PBC遞輸到腦部效率,將有潛力作為針對神經膠質瘤的治療方法。 | zh_TW |
| dc.description.abstract | Treatment of glioma remains a critical challenge worldwide, since therapeutic effect is greatly hindered by the poor transportation across blood brain barrier (BBB) and the low penetration into tumor cells. To overcome this hurdle, we investigated the potential of dual-ligand polymeric vector to deliver the desired therapeutic agent into glioma cells. In this study, poly(lactic-co-glycolic acid) (PLGA) was served as the main polymer, and poly(ethylene glycol) bis(amine) (PEG-diamine) was conjugated to improve their stability. In addition, the transferrin receptor targeting ligand (T7) and cell-penetrating peptide (R9) were decorated for improving transport of anticancer drugs across BBB and into tumor tissues. Since R9 was characterized as a ligand without specificity, PEG with shorter chain lengths (PEG2k) was chose for conjugation of R9, while T7 was conjugated on long chain of PEG5k. By this design, R9 could be shielded during circulation.
All the blank nanoparticles (NPs) were prepared by solvent evaporation method, with all the yields up to 70%. The particle sizes were at the range of 162.6 nm to 173.5 nm with mono-distribution (PDI<0.2), and the zeta potentials were ranged from -18.6 mV to 7.9 mV, showing increasing manner with the modification of R9 peptide. The targeting effects of these NPs were evaluated by in vitro cellular uptake study. A higher intracellular internalization of NPs could be seen in bEnd.3 and U87-MG cells when treated with T7-NPs, compared to unconjugated NPs. However, it showed no difference in L929 negative cells. The quantitative analysis by flow cytometry illustrated that the cellular uptakes of T7-, R9- and dual peptide-NPs were respectively increased by 2.1-, 4.1-, and 2.8- times in bEnd.3 cells and 1.7-, 4.6-, and 2.2- times in U87-MG cells (compared to unconjugated NPs). Although R9-NPs exhibited the prominent increase in cellular uptake, the non-specific property limited their use in clinic. To further explore the transport efficiency of these NPs, the in vitro BBB model co-cultured with bEnd.3 and U87-MG cells was established. After 4 hr and 12 hr incubation with different formulations, the internalization of NPs in bEnd.3 displayed a clear tendency as follows: R9-NPs > dual peptide-NPs > T7-NPs > unconjugated NPs, showing statistical difference between each other. Meanwhile, the same results could also be seen in U87-MG cells, exploiting the BBB-crossing and glioma-penetrating ability of dual peptide-NPs. In vivo imaging also revealed that T7-NPs accumulated more specifically in brain tissues than non-targeted and R9-NPs, and the dual peptide- NPs could further enhance accumulation in the brain, showing the success of overcoming the in vivo BBB by dual targeting mechanism. These NPs were further loaded with palbociclib (PBC), a potent cell cycle inhibitor selective for CDK4/6, to exert anti-glioma effect. They presented the sizes of 168.4 nm to 185.8 nm with narrow size distribution (PDI<0.2). The zeta potentials were in the range of -17.8 mV to -10.0 mV. The encapsulation efficiency achieved 60%, and the drug loading was approximately 8%. All these formulations exhibited great stability at 4℃ in ddH2O and after lyophilized for 28 days. In vitro release study demonstrated PBC released faster in pH 5.5 than pH 7.4. The in vitro cytotoxicity study showed that the anti-glioma effect of PBC was significantly elevated by encapsulation of NPs, especially for those with peptide modification. (IC50 of free PBC: 18.9 μg/mL, PBC@NPs: 8.2 μg/mL, PBC@T7-NPs: 6.0 μg/mL, PBC@dual peptide NPs: 2.9 μg/mL and PBC@R9-NPs: 2.4 μg/mL) In conclusion, this dual peptide functionalized NPs served as great glioma targeting systems to promote the penetration and accumulation of PBC into tumor sites, which would be of pronounced significance for the therapy of glioma. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:06:20Z (GMT). No. of bitstreams: 1 ntu-107-R05423008-1.pdf: 10387836 bytes, checksum: 651c0657031e29bdef381c14bd8cc639 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 Ⅰ
致謝 II 中文摘要 IV Abstract VI TABLE OF CONTENTS VIII LIST OF FIGURES XV LIST OF TABLES XXII Abbreviation XXIV Chapter Ⅰ Introduction 1 1.1. Glioma 1 1.1.1. Introduction 1 1.1.2. Epidemiology 3 1.1.3. Symptoms 3 1.1.4. Treatments 3 1.1.4.1. Surgery 4 1.1.4.2. Radiation therapy 4 1.1.4.3. Chemotherapy 4 1.1.4.4. Statement of current treatments 5 1.2. Cyclin-dependent kinase (CDK) 6 1.2.1. Introduction 6 1.2.2. CDK activity in cancers 7 1.2.3. The role of CDK inhibitors in cancer therapy 9 1.2.4. CDK4/6 inhibitors 10 1.2.4.1. Palbociclib (PBC) 10 1.3. Blood brain barrier (BBB) 14 1.3.1. The multiple defense mechanism of BBB 14 1.3.1.1. Physical barrier 14 1.3.1.2. Transport barrier 14 1.3.1.3. Metabolic or enzymatic barrier 15 1.3.2. Transport pathway across BBB 16 1.3.2.1. Paracellular (Figure 1-7(a)) 16 1.3.2.2. Transcellular (Figure 1-7(b)) 16 1.3.2.3. Carrier / transporters -mediated endocytosis (Figure 1-7(c)) 16 1.3.2.4. Receptor-mediated endocytosis (Figure 1-7(d)) 17 1.3.2.5. Absorptive-mediated endocytosis (Figure 1-7(e)) 17 1.4. Strategies of drug delivery to the brain 18 1.4.1. Nanoparticle (NP)-mediated brain delivery 18 1.4.1.1. Receptor-mediated transport (RMT) 18 1.4.1.2. Absorptive-mediated transcytosis (AMT) 19 1.4.1.3. Multi-targeting strategies 19 1.5. Transferrin receptor (TfR) 20 1.5.1. Expression of TfR on BBB 22 1.5.2. TfR and glioma cancer cells 24 1.5.3. TfR-targeting for glioma treatment 26 1.6. T7 peptide 27 1.7. Cell-penetrating peptides (CPPs) 28 1.7.1. Classification 28 1.7.1.1. Cationic 29 1.7.1.2. Amphipathic 29 1.7.1.3. Hydrophobic 29 1.7.2. Mechanism 31 1.7.3. R9 peptide 32 1.8. Cancer nanomedicine 33 1.8.1. Strategies in cancer nanomedicine 33 1.8.1.1. Passive targeting 33 1.8.1.2. Active targeting 34 1.8.1.3. Stimuli-responsive and triggered release systems 34 1.8.2. Materials for cancer nanomedicine 35 1.8.2.1. Poly(lactic-co-glycolic acid) (PLGA) 35 1.8.2.2. Poly(ethylene glycol) bis(amine) (PEG-diamine) 36 Chapter Ⅱ Motivation and purpose 37 Chapter Ⅲ Materials 40 3.1. Chemical reagents 40 3.2. Cell culture 43 3.3. Equipment 44 3.4. Consumables 46 3.5. Solution and buffer preparation 46 3.6. Animals 47 Chapter Ⅳ Methods 48 4.1 Synthesis and characterization of PLGA-PEG 50 4.1.1 Activation of PLGA (Milane et al., 2011) 50 4.1.2 PLGA-PEG-diamine (Lin and Kao, 2014) 51 4.1.3 Characterization 53 4.2 Synthesis and characterization of peptide conjugated PLGA-PEG 56 4.2.1 PLGA-PEG5k-T7* ( Hsin-Lin Huang, 2017; Lin and Kao, 2014) 56 4.2.2 PLGA-PEG2k-R9 60 4.2.3 Characterization 62 4.3 Preparation and characteristics of blank NPs 64 4.3.1 Physicochemical properties 67 4.3.2 Transmission Electron Microscopy (TEM) 67 4.4 Preparation of PBC loaded nanoparticles (PBC@NPs) 68 4.4.1 Physicochemical properties of PBC@NPs 71 4.4.2 Drug encapsulation and loading efficiency 71 4.4.3 Stability study 72 4.4.3.1 Stability in 4℃ ddH2O 72 4.4.3.2 Stability during and after lyophilization process 72 4.5 Identification of TfR on bEnd.3 and glioma cells 73 4.6 Binding affinity of T7-peptide 75 4.7 Cellular uptake of peptide-conjugated NPs 76 4.7.1 Quantitative analysis of cellular uptake 76 4.7.1.1 The targeting efficiency of T7-conjugated NPs 76 4.7.1.2 The cellular uptake of dual peptide-functionalized NPs 76 4.7.2 Fluorescence microscope 77 4.8 In vitro transport study 78 4.8.1 Establishment of in vitro BBB model 78 4.8.1.1 Validation integrity by TEER measurement 79 4.8.1.2 Permeability test for in vitro BBB model 80 4.8.2 Transport efficiency 81 4.8.2.1 Transport efficiency of T7-conjugated nanoparticles 81 4.8.2.2 Transport efficiency of dual peptide-functionalized NPs 81 4.8.2.3 Transport efficiency of free PBC and PBC@NPs 82 4.9 Endocytosis mechanism study 84 4.10 In vitro release study 86 4.10.1 Quantification of released PBC 87 4.10.2 In vitro release kinetic models 87 4.10.2.1 Zero-order model 87 4.10.2.2 First-order model 88 4.10.2.3 Higuchi model 88 4.10.2.4 Hixson-Crowell model 88 4.10.2.5 t50 88 4.10.2.6 Comparison between different formulations 89 4.11 Cytotoxicity 90 4.12 In vivo biodistribution study 92 4.13 Statistics 93 Chapter Ⅴ Results and discussions 94 5.1 Synthesis of PLGA-PEG 94 5.1.1 Activation of PLGA 94 5.1.1.1 Hydrogen nuclear magnetic resonance (1H-NMR) 94 5.1.1.2 Gel permeation chromatography (GPC) 96 5.1.2 Conjugation of PEG-diamine 98 5.2 Synthesis and characterization of peptide conjugated PLGA-PEG 107 5.2.1 PLGA-PEG5k-T7* 107 5.2.2 PLGA-PEG2k-R9 112 5.3 Characterization of balnk nanoparticles (NPs) 116 5.4 Characterization of PBC loaded nanoparticles (PBC@NPs) 120 5.4.1 Quantification of PBC 120 5.4.2 Optimization of PBC@NPs formulation 121 5.4.3 Characterization of optimized PBC@NPs for in vitro study 123 5.4.4 Stability study 127 5.4.4.1 Stability of PBC@NPs in 4℃ ddH2O 127 5.4.4.2 Stability of lyophilized PBC@NPs 129 5.5 Identification of transferrin receptor (TfR) on bEnd.3 and glioma cells 132 5.6 Binding affinity of T7*-peptide 134 5.7 Cellular uptake 137 5.7.1 The targeting efficiency of T7 conjugated nanoparticls (PPT* NPs) 137 5.7.2 The cellular uptake of dual peptide-functionalized NPs 140 5.7.2.1 Quantitative analysis of cellular uptake 140 5.7.2.2 Qualitative analysis by fluorescence microsocope 143 5.8 In vitro transport study 146 5.8.1 Estabishment of in vitro BBB model 146 5.8.1.1 TEER measurement 146 5.8.1.2 Permeability test of in vitro BBB model 147 5.8.2 In vitro transport study 148 5.8.2.1 Transport efficiency of T7-conjugated NPs 148 5.8.2.2 Transport efficiency of dual peptide functionalized NPs 151 5.8.3 Transport efficiency of free PBC and PBC@NPs 154 5.9 Mechanism study 156 5.10 In vitro release study 160 5.10.1 Quantification of released PBC 160 5.10.2 In vitro release of PBC@NPs at pH 7.4 and pH 5.5 161 5.11 In vitro cytotoxicity 166 5.11.1 The cytotoxicity of blank NPs 166 5.11.2 In vitro cytotoxicity of PBC@NPs 171 5.11.2.1 U87-MG cells 171 5.11.2.2 bEnd.3 cells 176 5.12 In vivo biodistribution 179 Chapter Ⅵ Conclusions 188 Chapter Ⅶ Reference 191 | - |
| dc.language.iso | en | - |
| dc.subject | 神經膠質瘤 | zh_TW |
| dc.subject | 帕博西尼 | zh_TW |
| dc.subject | 雙胜? | zh_TW |
| dc.subject | 奈米顆粒 | zh_TW |
| dc.subject | dual-peptide | en |
| dc.subject | glioma | en |
| dc.subject | palbociclib | en |
| dc.subject | nanoparticles | en |
| dc.title | 雙胜肽修飾之奈米載體包覆帕博西尼應用於神經膠質瘤治療 | zh_TW |
| dc.title | Dual peptide-functionalized nanoparticles encapsulated palbociclib for glioma therapy | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 方嘉佑;劉佳雯 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 神經膠質瘤,帕博西尼,雙胜?,奈米顆粒, | zh_TW |
| dc.subject.keyword | glioma,palbociclib,dual-peptide,nanoparticles, | en |
| dc.relation.page | 205 | - |
| dc.identifier.doi | 10.6342/NTU201803386 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-15 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 藥學研究所 | - |
| 顯示於系所單位: | 藥學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 10.14 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
