請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77501完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林泰元 | zh_TW |
| dc.contributor.author | 吳佳玲 | zh_TW |
| dc.contributor.author | Chia-Ling Wu | en |
| dc.date.accessioned | 2021-07-10T22:05:40Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2018-10-09 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Glenn, J.D. and K.A. Whartenby, Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy. World J Stem Cells, 2014. 6(5): p. 526-39.
2. In 't Anker, P.S., S.A. Scherjon, C. Kleijburg-van der Keur, G.M. de Groot-Swings, F.H. Claas, W.E. Fibbe, and H.H. Kanhai, Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells, 2004. 22(7): p. 1338-45. 3. Murphy, M.B., K. Moncivais, and A.I. Caplan, Mesenchymal stem cells: environmentally responsive therapeutics for regenerative medicine. Exp Mol Med, 2013. 45: p. e54. 4. Dominici, M., K. Le Blanc, I. Mueller, I. Slaper-Cortenbach, F. Marini, D. Krause, R. Deans, A. Keating, D. Prockop, and E. Horwitz, Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 2006. 8(4): p. 315-7. 5. Lv, F.J., R.S. Tuan, K.M. Cheung, and V.Y. Leung, Concise review: the surface markers and identity of human mesenchymal stem cells. Stem Cells, 2014. 32(6): p. 1408-19. 6. Fukuchi, Y., H. Nakajima, D. Sugiyama, I. Hirose, T. Kitamura, and K. Tsuji, Human placenta-derived cells have mesenchymal stem/progenitor cell potential. Stem Cells, 2004. 22(5): p. 649-58. 7. Miao, Z., J. Jin, L. Chen, J. Zhu, W. Huang, J. Zhao, H. Qian, and X. Zhang, Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int, 2006. 30(9): p. 681-7. 8. Manochantr, S., U.p. Y, P. Kheolamai, S. Rojphisan, M. Chayosumrit, C. Tantrawatpan, A. Supokawej, and S. Issaragrisil, Immunosuppressive properties of mesenchymal stromal cells derived from amnion, placenta, Wharton's jelly and umbilical cord. Intern Med J, 2013. 43(4): p. 430-9. 9. Di Nicola, M., C. Carlo-Stella, M. Magni, M. Milanesi, P.D. Longoni, P. Matteucci, S. Grisanti, and A.M. Gianni, Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood, 2002. 99(10): p. 3838-43. 10. Luz-Crawford, P., M. Kurte, J. Bravo-Alegria, R. Contreras, E. Nova-Lamperti, G. Tejedor, D. Noel, C. Jorgensen, F. Figueroa, F. Djouad, and F. Carrion, Mesenchymal stem cells generate a CD4+CD25+Foxp3+ regulatory T cell population during the differentiation process of Th1 and Th17 cells. Stem Cell Res Ther, 2013. 4(3): p. 65. 11. Ribeiro, A., P. Laranjeira, S. Mendes, I. Velada, C. Leite, P. Andrade, F. Santos, A. Henriques, M. Graos, C.M. Cardoso, A. Martinho, M. Pais, C.L. da Silva, J. Cabral, H. Trindade, and A. Paiva, Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells. Stem Cell Res Ther, 2013. 4(5): p. 125. 12. Ma, S., N. Xie, W. Li, B. Yuan, Y. Shi, and Y. Wang, Immunobiology of mesenchymal stem cells. Cell Death Differ, 2014. 21(2): p. 216-25. 13. Prockop, D.J., D.J. Kota, N. Bazhanov, and R.L. Reger, Evolving paradigms for repair of tissues by adult stem/progenitor cells (MSCs). J Cell Mol Med, 2010. 14(9): p. 2190-9. 14. Krampera, M., L. Cosmi, R. Angeli, A. Pasini, F. Liotta, A. Andreini, V. Santarlasci, B. Mazzinghi, G. Pizzolo, F. Vinante, P. Romagnani, E. Maggi, S. Romagnani, and F. Annunziato, Role for interferon-gamma in the immunomodulatory activity of human bone marrow mesenchymal stem cells. Stem Cells, 2006. 24(2): p. 386-98. 15. Hu, Y., C. Qin, G. Zheng, D. Lai, H. Tao, Y. Zhang, G. Qiu, M. Ge, L. Huang, L. Chen, B. Cheng, Q. Shu, and J. Xu, Mesenchymal Stem Cell-Educated Macrophages Ameliorate LPS-Induced Systemic Response. Mediators Inflamm, 2016. 2016: p. 3735452. 16. Kim, J. and P. Hematti, Mesenchymal stem cell-educated macrophages: a novel type of alternatively activated macrophages. Exp Hematol, 2009. 37(12): p. 1445-53. 17. Vasandan, A.B., S. Jahnavi, C. Shashank, P. Prasad, A. Kumar, and S.J. Prasanna, Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism. Sci Rep, 2016. 6: p. 38308. 18. Standiford, T.J. and P.A. Ward, Therapeutic targeting of acute lung injury and acute respiratory distress syndrome. Transl Res, 2016. 167(1): p. 183-91. 19. Wheeler, A.P. and G.R. Bernard, Acute lung injury and the acute respiratory distress syndrome: a clinical review. Lancet, 2007. 369(9572): p. 1553-64. 20. Ragaller, M. and T. Richter, Acute lung injury and acute respiratory distress syndrome. J Emerg Trauma Shock, 2010. 3(1): p. 43-51. 21. Ferguson, N.D., E. Fan, L. Camporota, M. Antonelli, A. Anzueto, R. Beale, L. Brochard, R. Brower, A. Esteban, L. Gattinoni, A. Rhodes, A.S. Slutsky, J.L. Vincent, G.D. Rubenfeld, B.T. Thompson, and V.M. Ranieri, The Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med, 2012. 38(10): p. 1573-82. 22. Johnson, E.R. and M.A. Matthay, Acute lung injury: epidemiology, pathogenesis, and treatment. J Aerosol Med Pulm Drug Deliv, 2010. 23(4): p. 243-52. 23. Butt, Y., A. Kurdowska, and T.C. Allen, Acute Lung Injury: A Clinical and Molecular Review. Arch Pathol Lab Med, 2016. 140(4): p. 345-50. 24. Eisner, M.D., T. Thompson, L.D. Hudson, J.M. Luce, D. Hayden, D. Schoenfeld, M.A. Matthay, and N. Acute Respiratory Distress Syndrome, Efficacy of low tidal volume ventilation in patients with different clinical risk factors for acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med, 2001. 164(2): p. 231-6. 25. Perkins, G.D., D.F. McAuley, D.R. Thickett, and F. Gao, The beta-agonist lung injury trial (BALTI): a randomized placebo-controlled clinical trial. Am J Respir Crit Care Med, 2006. 173(3): p. 281-7. 26. National Heart, L., N. Blood Institute Acute Respiratory Distress Syndrome Clinical Trials, H.P. Wiedemann, A.P. Wheeler, G.R. Bernard, B.T. Thompson, D. Hayden, B. deBoisblanc, A.F. Connors, Jr., R.D. Hite, and A.L. Harabin, Comparison of two fluid-management strategies in acute lung injury. N Engl J Med, 2006. 354(24): p. 2564-75. 27. Matute-Bello, G., C.W. Frevert, and T.R. Martin, Animal models of acute lung injury. Am J Physiol Lung Cell Mol Physiol, 2008. 295(3): p. L379-99. 28. O'Grady, N.P., H.L. Preas, J. Pugin, C. Fiuza, M. Tropea, D. Reda, S.M. Banks, and A.F. Suffredini, Local inflammatory responses following bronchial endotoxin instillation in humans. Am J Respir Crit Care Med, 2001. 163(7): p. 1591-8. 29. Meduri, G.U., G. Kohler, S. Headley, E. Tolley, F. Stentz, and A. Postlethwaite, Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest, 1995. 108(5): p. 1303-14. 30. Levitt, J.E., M.K. Gould, L.B. Ware, and M.A. Matthay, The pathogenetic and prognostic value of biologic markers in acute lung injury. J Intensive Care Med, 2009. 24(3): p. 151-67. 31. Abraham, E., Neutrophils and acute lung injury. Crit Care Med, 2003. 31(4 Suppl): p. S195-9. 32. Soni, S., M.R. Wilson, K.P. O'Dea, M. Yoshida, U. Katbeh, S.J. Woods, and M. Takata, Alveolar macrophage-derived microvesicles mediate acute lung injury. Thorax, 2016. 71(11): p. 1020-1029. 33. Sone, Y., V.B. Serikov, and N.C. Staub, Sr., Intravascular macrophage depletion attenuates endotoxin lung injury in anesthetized sheep. J Appl Physiol (1985), 1999. 87(4): p. 1354-9. 34. Schif-Zuck, S., N. Gross, S. Assi, R. Rostoker, C.N. Serhan, and A. Ariel, Saturated-efferocytosis generates pro-resolving CD11b low macrophages: modulation by resolvins and glucocorticoids. Eur J Immunol, 2011. 41(2): p. 366-79. 35. Mosser, D.M. and J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 2008. 8(12): p. 958-69. 36. Gordon, S. and F.O. Martinez, Alternative activation of macrophages: mechanism and functions. Immunity, 2010. 32(5): p. 593-604. 37. Arora, S., M.A. Olszewski, T.M. Tsang, R.A. McDonald, G.B. Toews, and G.B. Huffnagle, Effect of cytokine interplay on macrophage polarization during chronic pulmonary infection with Cryptococcus neoformans. Infect Immun, 2011. 79(5): p. 1915-26. 38. Taylor, E.L., A.G. Rossi, I. Dransfield, and S.P. Hart, Analysis of neutrophil apoptosis. Methods Mol Biol, 2007. 412: p. 177-200. 39. Martinez, F.O., A. Sica, A. Mantovani, and M. Locati, Macrophage activation and polarization. Front Biosci, 2008. 13: p. 453-61. 40. Seo, S.U., H.J. Kwon, H.J. Ko, Y.H. Byun, B.L. Seong, S. Uematsu, S. Akira, and M.N. Kweon, Type I interferon signaling regulates Ly6C(hi) monocytes and neutrophils during acute viral pneumonia in mice. PLoS Pathog, 2011. 7(2): p. e1001304. 41. D'Alessio, F.R., K. Tsushima, N.R. Aggarwal, E.E. West, M.H. Willett, M.F. Britos, M.R. Pipeling, R.G. Brower, R.M. Tuder, J.F. McDyer, and L.S. King, CD4+CD25+Foxp3+ Tregs resolve experimental lung injury in mice and are present in humans with acute lung injury. J Clin Invest, 2009. 119(10): p. 2898-913. 42. Matute-Bello, G., G. Downey, B.B. Moore, S.D. Groshong, M.A. Matthay, A.S. Slutsky, W.M. Kuebler, and G. Acute Lung Injury in Animals Study, An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol, 2011. 44(5): p. 725-38. 43. Duan, M., D.P. Steinfort, D. Smallwood, M. Hew, W. Chen, M. Ernst, L.B. Irving, G.P. Anderson, and M.L. Hibbs, CD11b immunophenotyping identifies inflammatory profiles in the mouse and human lungs. Mucosal Immunol, 2016. 9(2): p. 550-63. 44. Krasnodembskaya, A., G. Samarani, Y. Song, H. Zhuo, X. Su, J.W. Lee, N. Gupta, M. Petrini, and M.A. Matthay, Human mesenchymal stem cells reduce mortality and bacteremia in gram-negative sepsis in mice in part by enhancing the phagocytic activity of blood monocytes. Am J Physiol Lung Cell Mol Physiol, 2012. 302(10): p. L1003-13. 45. Devaney, J., S. Horie, C. Masterson, S. Elliman, F. Barry, T. O'Brien, G.F. Curley, D. O'Toole, and J.G. Laffey, Human mesenchymal stromal cells decrease the severity of acute lung injury induced by E. coli in the rat. Thorax, 2015. 70(7): p. 625-35. 46. Gupta, N., X. Su, B. Popov, J.W. Lee, V. Serikov, and M.A. Matthay, Intrapulmonary delivery of bone marrow-derived mesenchymal stem cells improves survival and attenuates endotoxin-induced acute lung injury in mice. J Immunol, 2007. 179(3): p. 1855-63. 47. Han, S. and R.K. Mallampalli, The acute respiratory distress syndrome: from mechanism to translation. J Immunol, 2015. 194(3): p. 855-60. 48. Braza, F., S. Dirou, V. Forest, V. Sauzeau, D. Hassoun, J. Chesne, M.A. Cheminant-Muller, C. Sagan, A. Magnan, and P. Lemarchand, Mesenchymal Stem Cells Induce Suppressive Macrophages Through Phagocytosis in a Mouse Model of Asthma. Stem Cells, 2016. 34(7): p. 1836-45. 49. Mei, S.H., S.D. McCarter, Y. Deng, C.H. Parker, W.C. Liles, and D.J. Stewart, Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med, 2007. 4(9): p. e269. 50. Jackson, M.V., T.J. Morrison, D.F. Doherty, D.F. Mcauley, M.A. Matthay, A. Kissenpfennig, C.M. O'Kane, and A.D. Krasnodembskaya, Mitochondrial Transfer via Tunneling Nanotubes is an Important Mechanism by Which Mesenchymal Stem Cells Enhance Macrophage Phagocytosis in the In Vitro and In Vivo Models of ARDS. Stem Cells, 2016. 34(8): p. 2210-2223. 51. Gupta, K., A. Hergrueter, and C.A. Owen, Adipose-derived stem cells weigh in as novel therapeutics for acute lung injury. Stem Cell Res Ther, 2013. 4(1): p. 19. 52. Zhang, S., S.D. Danchuk, K.M. Imhof, J.A. Semon, B.A. Scruggs, R.W. Bonvillain, A.L. Strong, J.M. Gimble, A.M. Betancourt, D.E. Sullivan, and B.A. Bunnell, Comparison of the therapeutic effects of human and mouse adipose-derived stem cells in a murine model of lipopolysaccharide-induced acute lung injury. Stem Cell Res Ther, 2013. 4(1): p. 13. 53. Zhang, Z., W. Li, Z. Heng, J. Zheng, P. Li, X. Yuan, W. Niu, C. Bai, and H. Liu, Combination therapy of human umbilical cord mesenchymal stem cells and FTY720 attenuates acute lung injury induced by lipopolysaccharide in a murine model. Oncotarget, 2017. 8(44): p. 77407-77414. 54. Chen, S.J., Y.L. Liu, and H.K. Sytwu, Immunologic regulation in pregnancy: from mechanism to therapeutic strategy for immunomodulation. Clin Dev Immunol, 2012. 2012: p. 258391. 55. Faas, M.M. and P. de Vos, Uterine NK cells and macrophages in pregnancy. Placenta, 2017. 56: p. 44-52. 56. Zhang, H.J., F. Ye, C. Zong, Y.Y. Jing, X. Yang, F.B. Lai, Y.L. Dong, X.R. Pan, J.N. Zhu, X.Y. Li, L. Liang, X.J. Hou, L.X. Wei, and Z.P. Han, Mesenchymal stem cells inhibit alveolar macrophages from polarization to inflammatory phenotype through the IL6/STAT3/SOCS3 signaling pathway. International Journal of Clinical and Experimental Medicine, 2016. 9(7): p. 13418-13432. 57. Sdrimas, K. and S. Kourembanas, MSC microvesicles for the treatment of lung disease: a new paradigm for cell-free therapy. Antioxid Redox Signal, 2014. 21(13): p. 1905-15. 58. Walter, J., L.B. Ware, and M.A. Matthay, Mesenchymal stem cells: mechanisms of potential therapeutic benefit in ARDS and sepsis. Lancet Respir Med, 2014. 2(12): p. 1016-26. 59. Johnson, C.L., Y. Soeder, and M.H. Dahlke, Concise Review: Mesenchymal Stromal Cell-Based Approaches for the Treatment of Acute Respiratory Distress and Sepsis Syndromes. Stem Cells Transl Med, 2017. 6(4): p. 1141-1151. 60. Condor, J.M., C.E. Rodrigues, R. Sousa Moreira, D. Canale, R.A. Volpini, M.H. Shimizu, N.O. Camara, L. Noronha Ide, and L. Andrade, Treatment With Human Wharton's Jelly-Derived Mesenchymal Stem Cells Attenuates Sepsis-Induced Kidney Injury, Liver Injury, and Endothelial Dysfunction. Stem Cells Transl Med, 2016. 5(8): p. 1048-57. 61. Galstian, G.M., E.N. Parovichnikova, P.M. Makarova, L.A. Kuzmina, V.V. Troitskaya, E. Gemdzhian, N.I. Drize, and V.G. Savchenko, The Results of the Russian Clinical Trial of Mesenchymal Stromal Cells (MSCs) in Severe Neutropenic Patients (pts) with Septic Shock (SS) (RUMCESS trial). Blood, 2015. 126(23). 62. Wilson, J.G., K.D. Liu, H. Zhuo, L. Caballero, M. McMillan, X. Fang, K. Cosgrove, R. Vojnik, C.S. Calfee, J.W. Lee, A.J. Rogers, J. Levitt, J. Wiener-Kronish, E.K. Bajwa, A. Leavitt, D. McKenna, B.T. Thompson, and M.A. Matthay, Mesenchymal stem (stromal) cells for treatment of ARDS: a phase 1 clinical trial. Lancet Respir Med, 2015. 3(1): p. 24-32. 63. Laffey, J.G. and M.A. Matthay, Fifty Years of Research in ARDS. Cell-based Therapy for Acute Respiratory Distress Syndrome. Biology and Potential Therapeutic Value. Am J Respir Crit Care Med, 2017. 196(3): p. 266-273. 64. Chan, M.C., D.I. Kuok, C.Y. Leung, K.P. Hui, S.A. Valkenburg, E.H. Lau, J.M. Nicholls, X. Fang, Y. Guan, J.W. Lee, R.W. Chan, R.G. Webster, M.A. Matthay, and J.S. Peiris, Human mesenchymal stromal cells reduce influenza A H5N1-associated acute lung injury in vitro and in vivo. Proc Natl Acad Sci U S A, 2016. 113(13): p. 3621-6. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77501 | - |
| dc.description.abstract | 急性肺損傷(ALI)與嚴重程度更高的急性呼吸窘迫綜合徵(ARDS)為臨床公衛統計上高發病率和死亡率的疾病,佔醫院重症照護患者的26%至58%。在其的眾多危險因素中,細菌性肺炎和敗血症為構成死亡的主要原因。儘管已有許多研究探討急性肺損傷的病理機轉試圖發展最佳治療方法,目前臨床上治療選擇仍然有限:其用藥主要為抗發炎藥物,同時給病患接上呼吸器避免呼吸衰竭。這些支持性治療雖有助於降低死亡率,但對肺部組織受損和纖維化仍未能有效治癒。近年來,間葉幹細胞(MSCs)被報導具有免疫調控的特性,且已被運用在發炎與退化性疾病的基礎研究及臨床試驗中。本實驗室成功分離並鑑定人類胎盤絨毛膜蛻膜間葉幹細胞(placenta-choriodecidual derived mesenchymal stromal cells, pcMSCs),以體外無血清培養基進行繼代培養。由於先前已經證實pcMSCs在實驗性自體免疫腦脊髓炎(EAE)模式中具治療潛力,便假設其同樣可做為急性肺損傷的細胞治療來源。我們透過脂多醣(LPS)誘導的急性肺損傷動物模式及體外pcMSCs/骨髓來源巨噬細胞(BMDM)共同培養系統,探討pcMSCs的治療潛力與機制。首先於體內實驗,證實尾靜脈給予pcMSCs可降低ALI小鼠的死亡率、免疫細胞浸潤和發炎性細胞激素的產生,使CD11c+肺泡巨噬細胞的活化程度受到抑制,且治療組小鼠亦觀察到肺組織損傷降低和肺功能回升;體外系統結果亦呈現相同趨勢:pcMSCs可能透過本身的COX-2表現量上升,抑制BMDM受LPS刺激而大量分泌的細胞激素,並進一步調控骨髓前驅細胞分化為BMDM的過程。雖然pcMSCs並未顯著促使CD86+/M1轉變為CD206+/M2表型,卻能使活化巨噬細胞內染的TNF-α降低並伴隨IL-10上升。另一方面,經過TNF-α和IFN-γ預處理之pcMSCs則可觀察到免疫抑制能力的提升。本實驗從pcMSC/巨噬細胞互動的角度證明其在發炎性疾病急性肺損傷的治療成效,期望可以作為具應用潛力的細胞治療產品。 | zh_TW |
| dc.description.abstract | Acute lung injury (ALI) and its most devastating form, the acute respiratory distress syndrome (ARDS), caused morbidity and mortality ranging from 26 to 58% of patients in critical care. Among the associated risk factors, pneumonia and sepsis constitute the leading cause of death. Although intensive studies have been made to reveal optimal treatment for this disease, the clinically adopted therapeutic options are still limited: pharmacological cares which mainly include anti-inflammatory agents and non-pharmacological ventilators are utilized. These supportive treatments contributed to the decrease in mortality, but protection of damaged pulmonary tissue and end-staged fibrosis remain incurable. Mesenchymal stem cells (MSCs) have been reported to be potentiate in immunomodulation and regenerative abilities. Recently, we have successfully identified a novel type of MSCs derived from placenta-choriodecidual membrane abbreviated in pcMSCs. The cells were established in an in vitro serum-free culture condition which could be applied for clinical use. As pcMSCs have previously been confirmed to exert therapeutic potential in mice experimental autoimmune encephalomyelitis (EAE) model, we subsequently hypothesized that pcMSCs will also be a promising cell therapy source for ALI. In this study, we conducted in vivo lipopolysaccharide (LPS)-induced ALI and in vitro pcMSC/bone marrow-derived monocyte (BMDM) co-culture system to reveal the therapeutic efficacies. The results first showed that pcMSC treatment reduced mortality, infiltration and cytokine production in ALI mice, with further flow cytometry analysis demonstrated that CD11c+ alveolar macrophages activation were regulated. pcMSCs therapy also rescued tissue damage and lung function after LPS challenge. In vitro co-culture presented similar trend that pro-inflammatory cytokines secreted by LPS-induced BMDM were also down-regulated with an upregulation of anti-inflammatory COX-2 in pcMSCs. Furthermore, pcMSCs were able to suppress differentiation from bone marrow progenitors to BMDMs. However, the co-culture of pcMSCs and LPS-induced BMDMs failed to promote significant population shifting from CD86+/M1 to CD206+/M2 phenotype, while intracellular staining indicated the downregulation of TNF-α accompanied by the upregulation in IL-10. On the other hand, pretreatment of pcMSCs with TNF-α and IFN-γ increased the immunosuppressive capacity. Taken together, the results indicated that pcMSCs provide therapeutic potentials by programming macrophages to an anti-inflammatory state and eventually resulting in the protection of pulmonary tissue. In conclusion, we demonstrated the modulation of ALI from a perspective of pcMSC/macrophage interaction, and that pcMSCs may serve as a promising cell therapy product for ALI. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:05:40Z (GMT). No. of bitstreams: 1 ntu-107-R05443005-1.pdf: 2031360 bytes, checksum: ff8f2a9423984eea25e2ad23ff285cb1 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 中文摘要 iv
Abstract v Chapter 1 Introduction 1 1.1 An overview of mesenchymal stem cells (MSCs) 2 1.2 Placenta choriodecidual-derived mesenchymal stromal cells (pcMSCs) 3 1.3 The immunomodulatory properties of MSCs 4 1.4 Acute lung injury (ALI)/ Acute respiratory distress syndrome (ARDS) 6 1.5 Lipopolysaccharide (LPS)-induced acute lung injury in vivo model 8 1.6 The immunopathology in ALI 9 1.7 The role of macrophages in ALI 10 1.8 Aims of study 13 Chapter 2 Materials and methods 14 2.1 Animals 15 2.2 Human placenta choriodecidual-derived mesenchymal stem cells (pcMSCs) 15 2.3 In vivo LPS-induced acute lung injury animal model 16 2.4 Bronchoalveolar lavage fluid (BALF) extraction 17 2.5 Liu’s staining 17 2.6 Histological section and Hematoxylin-Eosin (H&E) staining 18 2.7 Lung function measurements 18 2.8 Murine bone marrow-derived macrophages (BMDMs) 19 2.9 In vitro LPS-induced BMDM-based cell model 20 2.10 Enzyme-Linked Immunosorbent Assay (ELISA) 21 2.11 Quantitative real time PCR 22 2.12 Flow cytometry analysis 22 2.13 Statistical analysis 23 Chapter 3 Results 24 3.1 BALB/c mice exerted dose-dependent changes in mortality upon LPS induction 25 3.2 Administration of pcMSCs improved survival rate and promoted body weight recovery in LPS-induced ALI model 25 3.3 Immune cells infiltration in high (400 μg)/low (150 μg) dose of LPS induction were accompanied by phenotypical change in CD11cpos alveolar macrophages 26 3.4 pcMSC therapy modulated CD11b expression in CD11cpos residential macrophages and further reduced inflammatory parameters in ALI mice 28 3.5 pcMSC treatment on LPS-induced BALB/c mice showed potential to alleviate pulmonary tissue damage and rescue lung function 30 3.6 LPS induced time-dependent upregulation of pro-inflammatory cytokine gene expressions in BMDMs 31 3.7 pcMSCs altered the transcriptional and translational profile of pro-inflammatory cytokine production in LPS-induced BMDMs 33 3.8 pcMSCs inhibited the differentiation of murine bone marrow progenitor cells to F4/80+/CD11b+ macrophages 34 3.9 pcMSCs did not promote LPS-induced BMDMs shifting from M1 to M2 phenotype but significantly reduced intracellular TNF-α expression 35 3.10 Pretreatment of pcMSCs with pro-inflammatory cytokines enhanced in vitro immunosuppression capacity 37 Chapter 4 Discussion and conclusion 38 4.1 The comparison of pcMSC with other MSC therapies in ALI model 39 4.2 The capability of MSCs in M1/M2-shifting regulation 43 4.3 Recent advance of MSCs in ALI clinical trial 44 4.4 Conclusion 45 Chapter 5 Figures and legends 47 Figure 1. BALB/c mice exerted dose-dependent changes in mortality rate upon LPS induction 49 Figure 2. Administration of pcMSCs improved survival rate and promoted recovery in LPS-induced ALI model 51 Figure 3. Innate immune cells infiltration in high (400 μg)/low (150 μg) dose of LPS induction were accompanied by phenotypical change in CD11cpos alveolar macrophages 53 Figure 4. pcMSC therapy modulated CD11b expression in CD11cpos residential macrophages and further reduced inflammatory parameters in ALI mice 56 Figure 5. pcMSC treatment on LPS-induced BALB/c mice showed potential to alleviate pulmonary tissue damage and rescue lung function 58 Figure 6. LPS induced time-dependent upregulation of pro-inflammatory cytokine gene expressions in BMDMs 60 Figure 7. pcMSCs altered the transcriptional and translational profile of pro-inflammatory cytokine production in LPS-induced BMDMs 63 Figure 8. pcMSCs inhibited the differentiation of murine bone marrow progenitor cells to F4/80+/CD11b+ macrophages 65 Figure 9. pcMSCs did not promote LPS-induced BMDMs shifting from M1 to M2 phenotype but significantly reduced intracellular TNF-α expression 67 Figure 10. Pretreatment of pcMSCs with pro-inflammatory cytokines enhanced in vitro immunosuppression capacity 69 Table 1. Antibodies for flow cytometry 70 Table 2. Real time PCR human primer sequences 70 Table 3. Real time PCR mouse primer sequences 71 Chapter 6 References 72 | - |
| dc.language.iso | en | - |
| dc.subject | 巨噬細胞 | zh_TW |
| dc.subject | 胎盤絨毛膜間葉幹細胞 | zh_TW |
| dc.subject | 免疫調控 | zh_TW |
| dc.subject | 細胞治療 | zh_TW |
| dc.subject | 急性肺損傷 | zh_TW |
| dc.subject | Acute lung injury | en |
| dc.subject | Placenta choriodecidual-derived mesenchymal stromal cells | en |
| dc.subject | macrophages | en |
| dc.subject | Immunomodulation | en |
| dc.subject | Cell therapy | en |
| dc.title | 人類胎盤絨毛膜蛻膜間葉細胞在酯多糖誘發急性肺損傷動物模式療效之評估 | zh_TW |
| dc.title | The evaluation for the therapeutic effects of human placenta choriodecidual-derived mesenchymal stromal cells (pcMSCs) in LPS-induced acute lung injury animal model | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 黃彥華;林琬琬;朱清良 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 急性肺損傷,胎盤絨毛膜間葉幹細胞,巨噬細胞,細胞治療,免疫調控, | zh_TW |
| dc.subject.keyword | Acute lung injury,Placenta choriodecidual-derived mesenchymal stromal cells,macrophages,Immunomodulation,Cell therapy, | en |
| dc.relation.page | 78 | - |
| dc.identifier.doi | 10.6342/NTU201803585 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-16 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 藥理學研究所 | - |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 1.98 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
