Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77484
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇南維
dc.contributor.authorHsu-Sheng Yehen
dc.contributor.author葉旭昇zh_TW
dc.date.accessioned2021-07-10T22:04:17Z-
dc.date.available2021-07-10T22:04:17Z-
dc.date.copyright2018-08-18
dc.date.issued2018
dc.date.submitted2018-08-16
dc.identifier.citation許宸 (2015) 枯草桿菌BCRC 80517對大豆異黃酮生物轉換之研究。國立台灣大學農業化學系碩士論文。
Akal, Z., Alpsoy, L., and Baykal, A. (2016). Superparamagnetic iron oxide conjugated with folic acid and carboxylated quercetin for chemotherapy applications. Ceramics International, 42(7), 9065-9072.
Alarcón, J., Alderete, J., Escobar, C., Araya, R., and Cespedes, C. L. (2013). Aspergillus niger catalyzes the synthesis of flavonoids from chalcones. Biocatalysis and Biotransformation, 31(4), 160-167.
Benkert, P., Biasini, M., Schwede, T. (2011). Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 27(3), 343-350.
Berman, K.M., Cohn, M. (1970). Phosphoenolpyruvate Synthetase of Escherichia coli purification, some properties, and the role of divalent metal ions. Journal of Biological Chemistry, 245(20), 5309-5318.
Bertoni, M., Kiefer, F., Biasini, M., Bordoli, L., Schwede, T. (2017). Modeling protein quaternary structure of homo- and hetero-oligomers beyond binary interactions by homology. Scientific Reports, 7(1), 10480.
Bienert, S., Waterhouse, A., de Beer, T. A. P., Tauriello, G., Studer, G., Bordoli, L., Schwede, T. (2017). The SWISS-MODEL Repository - new features and functionality. Nucleic Acids Research., 45(D1), D313-D319.
Cao, H., Chen, X., Jassbi, A. R., and Xiao, J. (2014). Microbial biotransformation of bioactive flavonoids. Biotechnology Advances, 33(1), 214-223.
Cho, K. M., Seo, W. T., Yun, H. D., Nam, S. H., Kim, N. D., Choi, J. S., and Kim, H. Y. (2009). Changes of phytochemical constituents (isoflavones, flavanols, and phenolic acids) during Cheonggukjang fermentation using potential probiotics Bacillus subtilis CS90. International Meeting of the Microbiological Society of Korea, 224-224.
Demmig-Adams, B., and McCauley, L. (2005). Breast cancer, estrogen, soy genistein, and other dietary factors: Towards an understanding of their mechanistic interactions. Nutrition and Food Science, 35(1), 35-42.
Erlejman, A., Verstraeten, S., Fraga, C., and Oteiza, P. (2004). The interaction of flavonoids with membranes: potential determinant of flavonoid antioxidant effects. Free radical research, 38(12), 1311-1320.
Flora K., Hahn M., Rosen H., Benner K. (1998). Milk thistle (Silybum marianum) for the therapy of liver disease. The American Journal of Gastroenterology. , 93(2):139-43.
Guex, N., Peitsch, M. C., Schwede, T. (2009). Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis, 30(S1), S162-S173.
Haddad, Y., Vallerand, D., Brault, A., and Haddad, P. S. (2011). Antioxidant and hepatoprotective effects of silibinin in a rat model of nonalcoholic steatohepatitis. Evid Based Complement Alternat Med, 2011, nep164.
Hsu, C., Ho, H. W., Chang, C. F., Wang, S. T., Fang, T. F., Lee, M. H. and Su, N. W. (2013). Soy isoflavone-phosphate conjugates derived by cultivating Bacillus subtilis var. natto BCRC 80517 with isoflavone. Food Research International, 53(1), 487-495.
Hu, Y., Ge, C., Yuan, W., Zhu, R., Zhang, W., Du, L., and Xue, J. (2010). Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. Journal of the Science of Food and Agriculture, 90(7), 1194-1202.
Hutchins, A. M., Holden, J. F., Adams, M. W. (2001). Phosphoenolpyruvate synthetase from the hyperthermophilic archaeon Pyrococcus furiosus. Journal of Bacteriology, 183(2), 709-715.
Ibrahim, A. R. (2005). Biotransformation of chrysin and apigenin by Cunninghamella elegans. Chemical and Pharmaceutical Bulletin (Tokyo), 53(6), 671-673.
Jones, S. (2008). Phosphorylation. Biotechnology Set, Second Edition, 221-241.
Kim, J., Lee, H. J., and Lee, K. W. (2010). Naturally occurring phytochemicals for the prevention of Alzheimer’s disease. Journal of neurochemistry, 112(6), 1415-1430.
Kostek, H., Szponar, J., Tchórz, M., Majewska, M., and Lewandowska-Stanek, H. (2012). Silibinin and its hepatoprotective action from the perspective of a toxicologist. Przeglad lekarski, 69(8), 541-543.
Kostrzewa-Susłow, E., Dmochowska-Gładysz, J., Białońska, A., Ciunik, Z., and Rymowicz, W. (2006). Microbial transformations of flavanone and 6-hydroxyflavanone by Aspergillus niger strains. Journal of Molecular Catalysis B: Enzymatic, 39(1–4), 18-23.
Kostrzewa-Suslow, E., Dmochowska-Gladysz, J., Janeczko, T., Sroda, K., Michalak, K., and Palko, A. (2012). Microbial transformations of 6- and 7-methoxyflavones in Aspergillus niger and Penicillium chermesinum cultures. Zeitschrift fur Naturforschung C, 67(7-8), 411-417.
Kostrzewa-Susłow, E., and Janeczko, T. (2012). Microbial transformations of 7-methoxyflavanone. Molecules, 17(12), 14810-14820.
Kuo, A., Cappelluti, S., Cervantes-Cervantes, M., Rodriguez, M., and Bush, D. S. (1996). Okadaic acid, a protein phosphatase inhibitor, blocks calcium changes, gene expression, and cell death induced by gibberellin in wheat aleurone cells. The Plant Cell Online, 8(2), 259-269.
Kuo, L. C., and Lee, K. T. (2007). Cloning, expression, and characterization of two β-glucosidases from isoflavone glycoside-hydrolyzing Bacillus subtilis natto. Journal of Agricultural and Food Chemistry, 56(1), 119-125.
Kuo, L. C., Wu, R. Y., and Lee, K. T. (2012). A process for high-efficiency isoflavone deglycosylation using Bacillus subtilis natto NTU-18. Applied Microbiology and Biotechnology, 94(5), 1181-1188.
Lim, K., Read, R. J., Chen, C. C., Tempczyk, A., Wei, M., Ye, D., Wu, C., Dunaway-Mariano, D., Herzberg, O. (2007). Swiveling domain mechanism in pyruvate phosphate dikinase. Biochemistry, 46(51), 14845-14853.
La Duc, M. T., Satomi, M., Agata,N., Venkateswaran, K. (2003). gyrB as a phylogenetic discriminator for members of the Bacillus anthracis–cereus–thuringiensis group. Journal of Microbiological Methods, 56 (2004), 383-394.
Malesev, D., and Kuntic, V. (2007). Investigation of metal-flavonoid chelates and the determination of flavonoids via metal-flavonoid complexing reactions. Journal of the Serbian Chemical Society, 72(10), 921.
McGuire, M., Huang, K., Kapadia, G., Herzberg, O., and Dunaway-Mariano, D. (1998). Location of the phosphate binding site within Clostridium symbiosum pyruvate phosphate dikinase. Biochemistry, 37(39), 13463-13474.
Middleton, E., Kandaswami, C., and Theoharides, T. C. (2000). The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease, and cancer. Pharmacological Reviews, 52(4), 673-751.
Morton, M. S., Arisaka, O., Miyake, N., Morgan, L. D., and Evans, B. A. (2002). Phytoestrogen concentrations in serum from Japanese men and women over forty years of age. The Journal of Nutrition, 132(10), 3168-3171.
Narmandakh, A., Gad'on, N., Drepper, F., Knapp, B., Haehnel, W., and Fuchs, G. (2006). Phosphorylation of phenol by phenylphosphate synthase: role of histidine phosphate in catalysis. Journal of bacteriology, 188(22), 7815-7822.
Qi, X., Lin, W., Ma, M., Wang, C., He, Y., He, N., Gao, J., Zhou, H. Xiao, Y., Wang, Y., Zhang, P. (2016). Structural basis of rifampin inactivation by rifampin phosphotransferase. Proceedings of the National Academy of Sciences of the United States of America, 113(14), 3803-3808.
Robert, X. and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Research, 42(W1), W320-W324.
Romano, B., Pagano, E., Montanaro, V., Fortunato, A. L., Milic, N., and Borrelli, F. (2013). Novel insights into the pharmacology of flavonoids. Phytotherapy Research, 27(11), 1588-1596.
Ross, J. A., and Kasum, C. M. (2002). Dietary flavonoids: bioavailability, metabolic effects, and safety. Annual Review of Nutrition, 22, 19-34.
Sakanashi, Y., Oyama, K., Matsui, H., Oyama, T. B., Oyama, T. M., Nishimura, Y., Oyama, Y. (2008). Possible use of quercetin, an antioxidant, for protection of cells suffering from overload of intracellular Ca2+: a model experiment. Life Sciences, 83(5-6), 164-169.
Schmeling, S., Narmandakh, A., Schmitt, O., Gad'on, N., Schühle, K., and Fuchs, G. (2004). Phenylphosphate synthase: a new phosphotransferase catalyzing the first step in anaerobic phenol metabolism in Thauera aromatica. Journal of Bacteriology, 186(23), 8044-8057.
Sesso, H. D., Liu, S., Gaziano, J. M., and Buring, J. E. (2003). Dietary lycopene, tomato-based food products and cardiovascular disease in women. The Journal of Nutrition, 133(7), 2336-2341.
SPencer, J. P. E., Crozier, A. (2012). Flavonoids and Related Compounds: Bioavailability and Function. CRC Press.
Stella, V. J., and Nti-Addae, K. W. (2007). Prodrug strategies to overcome poor water solubility. Advanced Drug Delivery Reviews, 59(7), 677-694.
Stogios, P. J., Cox, G., Spanogiannopoulos, P., Pillon, M. C., Waglechner, N., Skarina, T., Koteva, K., Guarne, A., Savchenko, A., Wright, G. D. (2016). Rifampin phosphotransferase is an unusual antibiotic resistance kinase. Nature Communication, 7, 11343.
Sugihara, N., Arakawa, T., Ohnishi, M., and Furuno, K. (1999). Anti-and pro-oxidative effects of flavonoids on metal-induced lipid hydroperoxide-dependent lipid peroxidation in cultured hepatocytes loaded with α-linolenic acid. Free Radical Biology and Medicine, 27(11), 1313-1323.
Tamura K., Stecher G., Peterson D., Filipski A., and Kumar S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725-2729.
Thilakarathna, S. H., and Rupasinghe, H. (2013). Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 5(9), 3367-3387.
Toldy, A., Toth, N., Anna, P., and Marosi, G. (2006). Synthesis of phosphorus-based flame retardant systems and their use in an epoxy resin. Polymer Degradation and Stability, 91(3), 585-592.
Vesna, T., Jelena, C., Mihalj, P., Jovan, P. (2011). Isoflavone content and composition in soybean. Soybean-Biochemistry, Chemistry and Physiology. InTech.
Vitale, D. C., Piazza, C., Melilli, B., Drago, F., Salomone, S. (2013). Isoflavones: estrogenic activity, biological effect and bioavailability. European Journal of Drug Metabolism and Pharmacokinetics, 38(1), 15-25.
Waldmann, S., Almukainzi, M., Bou-Chacra, N. A., Amidon, G. L., Lee, B. J., Feng, J., Bolger, M. B. (2012). Provisional biopharmaceutical classification of some common herbs used in Western medicine. Molecular pharmaceutics, 9(4), 815-822.
Wang, H. J., Murphy, P. A. (1994). Isoflavone content in commercial soybean foods. Journal of Agricultural and Food Chemistry, 42(8), 1666-1673.
Wang, L. T., Lee, F. L., Tai, C. J., Kasai, H., (2007). Comparison of gyrB gene sequences, 16S rRNAgene sequences and DNA–DNA hybridization in the Bacillus subtilis group. International Journal of Systematic and Evolutionary Microbiology, 57(8), 1846-1850.
Wang, S. T., Fang, T. F., Hsu, C., Chen, C. H., Lin, C. J., and Su, N. W. (2015). Biotransformed product, genistein 7-O-phosphate, enhances the oral bioavailability of genistein. Journal of Functional Foods, 13, 323-335.
Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., Schwede, T. (2018). SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Research [journal on the internet], doi: 10.1093/nar/gky427. [Epub ahead of print].
Wei, Q. K., Chen, T. R., and Chen, J. T. (2008). Use of Bacillus subtilis to enrich isoflavone aglycones in fermented natto. Journal of the Science of Food and Agriculture, 88(6), 1007-1011.
Wu, C. H., and Chou, C. C. (2009). Enhancement of aglycone, vitamin K2 and superoxide dismutase activity of black soybean through fermentation with Bacillus subtilis BCRC 14715 at different temperatures. Journal of Agricultural and Food Chemistry, 57(22), 10695-10700.
Zhang, J., Wang, Q., Kleintop, B., and Raglione, T. (2014). Suppression of peak tailing of phosphate prodrugs in reversed-phase liquid chromatography. Journal of Pharmaceutical and Biomedical Analysis, 98, 247-252.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77484-
dc.description.abstract類黃酮為一類自然界中普遍存在之植物多酚類二次代謝物,具備多方面豐富及重要之生理活性。然而文獻指出,大多數類黃酮化合物的水溶性不佳,生物可利用率(bioavailability)極低,使其應用受到很大的限制。本研究室先前篩選出 Bacillus subtilis BCRC 80517,可對daidzein及genistein 進行磷酸酯化修飾,形成daidzein 7-O-phosphate (D7P)及genistein 7-O-phosphate (G7P),轉換後產物可大幅提升其水溶性及生物可利用率。先前研究室已自B. subtilis純化出該磷酸化酵素,完成蛋白質及基因定序,並成功利用大腸桿菌大量表現該酵素—類黃酮磷酸酯合成酶 (Flavonoid phosphate synthetase, FPS) 。本論文以此為基礎,進行後續研究。本研究首先探討FPS的同源蛋白質家族一級序列上之差異,並挑選出相同度 (identity) 約為70%、50%、25%之菌株,分別為Bacillus amyloliquefaciens BCRC 23350、Bacillus pumilus BCRC 11706及Bacillus megaterium BCRC 10608,透過四株菌對genistein生物轉換特性分析,我們確認同源蛋白質序列與BsnFPS之相同度在50%以下便不具有催化genistein之活性。另外,在SWISS-MODEL軟體的分析下,成功利用同源模擬法建立BsnFPS模擬三級結構,其substrate binding domain為十字架形狀,Apex為中軸、Arm1及Arm2為側臂,與swiveling domain包覆形成催化磷酸化反應之活性區。透過模擬結構與模板之序列及結構比對,找出可能為重要催化位點之胺基酸,接著以定點突變法建立蛋白質突變株,搭配酵素活性分析進行驗證,結果顯示,Lys27及His795分別為ATP binding domain及swiveling domain之重要催化位點,而Asp627、His629、His630則為Substrate binding domain中穩定His795上磷酸根之重要催化位點,而Glu329及Lys378則可能為受質活化位中與genistein鍵結有關的位點。zh_TW
dc.description.abstractFlavonoids are polyphenolic secondary metabolites that are ubiquitous in nature and possess numerous health benefits. Nevertheless, research indicated that flavonoids have low aqueous solubility and poor bioavailability, and therefore limit its use. Our previous study screened out Bacillus subtilis BCRC 80517, which could phosphorylate daidzein and genistein and form daidzein 7-O-phosphate (D7P) and genistein 7-O-phosphate (G7P). These phosphate conjugates may be greatly improved in water solubility and bioavailability. The BCRC 80517 can also biotransform most of the flavonoids. In addition, we have also purified the enzyme, identified its protein and DNA sequence, and overexpressed the recombinant protein by E. coli. Nevertheless, among the biotransformed products, only isoflavone-phosphate conjugates have been identified so far. Therefore, the objective of this research is focusing on the flavonoid phosphate synthetase (FPS), and studied on the structure analysis and catalytic sites of BsnFPS. In this thesis, the homologous proteins sequences of FPS family were aligned at first. Bacillus amyloliquefaciens BCRC 23350、Bacillus pumilus BCRC 11706, Bacillus megaterium BCRC 10608 which exist homologous proteins with about 70, 50, 25% identity to BsnFPS were choosen then. After the in vivo and in vitro experiments of genistein bioconversion, the results showed that homologous proteins which was below 50% identity with BsnFPS would not have genistein catalytic activity. Otherwise, although BsnFPS and LmRPH (EC 2.7.9.6) present only 20% identity, they still have very similar secondary structure arrangement. Using SWISS-MODEL as a tool and LmRPH as a template, the structure of BsnFPS was successfully modeled by homology modeling. Moreover, according to the alignment between BsnFPS model and its template, we have found some putative catalytic sites. The results were confirmed by site-directed mutagenesis and enzyme activity assay, showing that H795, D627, H629, H630 are the major residues which catalyze phosphorylation of BsnFPS and K27 involves the binding of the ATP. E329 and K378 may form hydrogen bonds with genistein to stabilize it.en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:04:17Z (GMT). No. of bitstreams: 1
ntu-107-R05b22050-1.pdf: 5125798 bytes, checksum: 7ceb28c5d7f6a3cbfcdf27d107e70f36 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 I
中文摘要 III
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XI
縮寫對照表 XII
第一章、前言 1
第二章、文獻回顧 2
第一節、類黃酮 2
1. 類黃酮簡介 2
2. 類黃酮之生理活性 2
第二節、類黃酮之微生物轉換 7
第三節、磷酸化酵素 8
1. 磷酸化酵素簡介 8
2. Pyruvate, phosphate dikinase, PPDK (EC 2.7.9.1) 10
3. Phosphoenolpyruvate synthase , PEPS (EC 2.7.9.2) 10
4. 磷酸苯酯合成酶 (phenylphosphate synthase, PPS) 10
5. Rifampin phosphotransferase, RPH (EC 2.7.9.6) 11
第三章、材料與方法 16
第一節、實驗大綱 16
第二節、實驗材料 17
1. 菌株 17
2. 培養基 17
3. 緩衝液 19
4. 試藥與溶劑 19
5. 實驗儀器設備 21
第三節、實驗方法 23
1. 蛋白質BsnFPS表現與分離純化 23
2. BsnFPS蛋白質家族之生物資訊學分析 28
3. 不同物種對genistein之生物轉換 28
4. 不同菌株之粗酵素液對genistein之催化反應 29
5. yvkC基因於不同物種中之表現分析 30
6. FPS蛋白質於不同物種中之表現分析 34
7. BsnFPS之結構模擬 35
8. BsnFPS定點突變株之建構 35
9. 圓二色光譜 (Circular Dichroism, CD) 實驗 39
10. 統計分析 39
第四章、結果與討論 40
第一節、BsnFPS蛋白質家族之生物資訊分析 40
1. BsnFPS蛋白質家族之序列比對 40
2. BsnFPS蛋白質家族之親緣關係演化樹 41
第二節、不同物種FPS同源性蛋白質對genistein生物轉換之特性 45
1. 不同物種對genistein之生物轉換 45
2. 不同菌株之粗酵素液對genistein之催化反應 45
3. 同源基因yvkC於不同物種中之表現 46
4. FPS同源蛋白質於不同物種中之表現 47
第三節、BsnFPS之蛋白質結構模擬 56
1. 搜尋建立模擬結構之模板 56
2. BsnFPS模擬結構之建立與分析 56
第四節、BsnFPS重要催化活性位點之分析 59
1. BsnFPS重要催化活性位點之預測 59
2. 利用BsnFPS定點突變法對重要催化位點之確認 59
第五章、結論 65
第六章、參考文獻 66
第七章、附錄 73
dc.language.isozh-TW
dc.title類黃酮磷酸酯合成酶結構分析及重要催化位點之研究zh_TW
dc.titleStudies on the Structural Analysis and Crucial Catalytic Sites of Flavonoid Phosphate Synthetaseen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李敏雄,楊健志,洪傳揚,徐駿森
dc.subject.keyword類黃酮,磷酸化,生物資訊學,同源模擬法,定點突變法,zh_TW
dc.subject.keywordflavonoid,phosphorylation,bioinformatics,homology modeling,site-directed mutagenesis,en
dc.relation.page79
dc.identifier.doi10.6342/NTU201803757
dc.rights.note未授權
dc.date.accepted2018-08-16
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-107-R05b22050-1.pdf
  目前未授權公開取用
5.01 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved