請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77483完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉宏輝 | zh_TW |
| dc.contributor.advisor | Horng-Huei Liou | en |
| dc.contributor.author | 陳恩莉 | zh_TW |
| dc.contributor.author | En-Li Chen | en |
| dc.date.accessioned | 2021-07-10T22:04:14Z | - |
| dc.date.available | 2024-02-28 | - |
| dc.date.copyright | 2019-03-11 | - |
| dc.date.issued | 2018 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | A., B. J., Shujun, L., & G., W. S. (2009). Sodium channel activity modulates multiple functions in microglia. Glia, 57(10), 1072-1081. doi:doi:10.1002/glia.20830
Abiega, O., Beccari, S., Diaz-Aparicio, I., Nadjar, A., Laye, S., Leyrolle, Q., . . . Sierra, A. (2016). Correction: Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling. PLoS Biol, 14(9), e1002554. doi:10.1371/journal.pbio.1002554 Agulhon, C., Petravicz, J., McMullen, A. B., Sweger, E. J., Minton, S. K., Taves, S. R., . . . McCarthy, K. D. (2008). What is the role of astrocyte calcium in neurophysiology? Neuron, 59(6), 932-946. doi:10.1016/j.neuron.2008.09.004 Aras, L. M., Isla, J., & Mingorance-Le Meur, A. (2015). The European patient with Dravet syndrome: results from a parent-reported survey on antiepileptic drug use in the European population with Dravet syndrome. Epilepsy Behav, 44, 104-109. doi:10.1016/j.yebeh.2014.12.028 Armstrong, C. M., & Hille, B. (1998). Voltage-Gated Ion Channels and Electrical Excitability. Neuron, 20(3), 371-380. doi:https://doi.org/10.1016/S0896-6273(00)80981-2 Avignone, E., Lepleux, M., Angibaud, J., & Nagerl, U. V. (2015). Altered morphological dynamics of activated microglia after induction of status epilepticus. J Neuroinflammation, 12, 202. doi:10.1186/s12974-015-0421-6 Balce, D. R., Li, B., Allan, E. R., Rybicka, J. M., Krohn, R. M., & Yates, R. M. (2011). Alternative activation of macrophages by IL-4 enhances the proteolytic capacity of their phagosomes through synergistic mechanisms. Blood, 118(15), 4199-4208. doi:10.1182/blood-2011-01-328906 Battista, D., Ferrari, C. C., Gage, F. H., & Pitossi, F. J. (2006). Neurogenic niche modulation by activated microglia: transforming growth factor beta increases neurogenesis in the adult dentate gyrus. Eur J Neurosci, 23(1), 83-93. doi:10.1111/j.1460-9568.2005.04539.x Belarbi, K., & Rosi, S. (2013). Modulation of adult-born neurons in the inflamed hippocampus. Frontiers in Cellular Neuroscience, 7(145). doi:10.3389/fncel.2013.00145 Black, J. A., Liu, S., & Waxman, S. G. (2009). Sodium channel activity modulates multiple functions in microglia. Glia, 57(10), 1072-1081. doi:10.1002/glia.20830 Black, J. A., Newcombe, J., & Waxman, S. G. (2013). Nav1.5 sodium channels in macrophages in multiple sclerosis lesions. Mult Scler, 19(5), 532-542. doi:10.1177/1352458512460417 Black, Joel A., & Waxman, Stephen G. (2013). Noncanonical Roles of Voltage-Gated Sodium Channels. Neuron, 80(2), 280-291. doi:https://doi.org/10.1016/j.neuron.2013.09.012 Black, J. A., Westenbroek, R. E., Catterall, W. A., & Waxman, S. G. (1995). Type II brain sodium channel expression in non-neuronal cells: embryonic rat osteoblasts. Brain Res Mol Brain Res, 34(1), 89-98. Brackenbury, W. J., & Isom, L. L. (2011). Na Channel beta Subunits: Overachievers of the Ion Channel Family. Front Pharmacol, 2, 53. doi:10.3389/fphar.2011.00053 Brunklaus, A., Ellis, R., Reavey, E., Forbes, G. H., & Zuberi, S. M. (2012). Prognostic, clinical and demographic features in SCN1A mutation-positive Dravet syndrome. Brain, 135(Pt 8), 2329-2336. doi:10.1093/brain/aws151 Carrithers, M. D., Dib-Hajj, S., Carrithers, L. M., Tokmoulina, G., Pypaert, M., Jonas, E. A., & Waxman, S. G. (2007). Expression of the voltage-gated sodium channel NaV1.5 in the macrophage late endosome regulates endosomal acidification. J Immunol, 178(12), 7822-7832. Catterall, W. A. (2000). From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron, 26(1), 13-25. Chahine, M., & O'Leary, M. E. (2011). Regulatory Role of Voltage-Gated Na Channel beta Subunits in Sensory Neurons. Front Pharmacol, 2, 70. doi:10.3389/fphar.2011.00070 Cherry, J. D., Olschowka, J. A., & O'Banion, M. K. (2014). Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflammation, 11, 98. doi:10.1186/1742-2094-11-98 Claes, L., Del-Favero, J., Ceulemans, B., Lagae, L., Van Broeckhoven, C., & De Jonghe, P. (2001). De novo mutations in the sodium-channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet, 68(6), 1327-1332. doi:10.1086/320609 Colonna, M., & Butovsky, O. (2017). Microglia Function in the Central Nervous System During Health and Neurodegeneration. Annu Rev Immunol, 35, 441-468. doi:10.1146/annurev-immunol-051116-052358 Cornejo, F., & von Bernhardi, R. (2016). Age-Dependent Changes in the Activation and Regulation of Microglia. Adv Exp Med Biol, 949, 205-226. doi:10.1007/978-3-319-40764-7_10 Craner, M. J., Damarjian, T. G., Liu, S., Hains, B. C., Lo, A. C., Black, J. A., . . . Waxman, S. G. (2005). Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia, 49(2), 220-229. doi:10.1002/glia.20112 Cunha, C., Gomes, C., Vaz, A. R., & Brites, D. (2016). Exploring New Inflammatory Biomarkers and Pathways during LPS-Induced M1 Polarization. Mediators Inflamm, 2016, 6986175. doi:10.1155/2016/6986175 Depienne, C., Bouteiller, D., Keren, B., Cheuret, E., Poirier, K., Trouillard, O., . . . Leguern, E. (2009). Sporadic infantile epileptic encephalopathy caused by mutations in PCDH19 resembles Dravet syndrome but mainly affects females. PLoS Genet, 5(2), e1000381. doi:10.1371/journal.pgen.1000381 Dhandapani, K. M., & Brann, D. W. (2003). Transforming growth factor-beta: a neuroprotective factor in cerebral ischemia. Cell Biochem Biophys, 39(1), 13-22. doi:10.1385/cbb:39:1:13 Domercq, M., Vázquez-Villoldo, N., & Matute, C. (2013). Neurotransmitter signaling in the pathophysiology of microglia. Front Cell Neurosci, 7. doi:10.3389/fncel.2013.00049 Fasano, A., Borlot, F., Lang, A. E., & Andrade, D. M. (2014). Antecollis and levodopa-responsive parkinsonism are late features of Dravet syndrome. Neurology, 82(24), 2250-2251. doi:10.1212/wnl.0000000000000521 Furuyama, T., Inagaki, S., & Takagi, H. (1993). Localizations of α1 and β1 subunits of soluble guanylate cyclase in the rat brain. Molecular Brain Research, 20(4), 335-344. doi:https://doi.org/10.1016/0169-328X(93)90060-3 Gazina, E. V., Richards, K. L., Mokhtar, M. B. C., Thomas, E. A., Reid, C. A., & Petrou, S. (2010). Differential expression of exon 5 splice variants of sodium channel α subunit mRNAs in the developing mouse brain. Neuroscience, 166(1), 195-200. doi:https://doi.org/10.1016/j.neuroscience.2009.12.011 Goldin, A. L. (2002). Evolution of voltage-gated Na(+) channels. J Exp Biol, 205(Pt 5), 575-584. Goldin, A. L., Barchi, R. L., Caldwell, J. H., Hofmann, F., Howe, J. R., Hunter, J. C., . . . Catterall, W. A. (2000). Nomenclature of voltage-gated sodium channels. Neuron, 28(2), 365-368. Guzzetta, F. (2011). Cognitive and behavioral characteristics of children with Dravet syndrome: an overview. Epilepsia, 52 Suppl 2, 35-38. doi:10.1111/j.1528-1167.2011.02999.x Harkin, L. A., Bowser, D. N., Dibbens, L. M., Singh, R., Phillips, F., Wallace, R. H., . . . Petrou, S. (2002). Truncation of the GABA(A)-receptor gamma2 subunit in a family with generalized epilepsy with febrile seizures plus. Am J Hum Genet, 70(2), 530-536. doi:10.1086/338710 Heo, K., Cho, Y. J., Cho, K. J., Kim, H. W., Kim, H. J., Shin, H. Y., . . . Kim, G. W. (2006). Minocycline inhibits caspase-dependent and -independent cell death pathways and is neuroprotective against hippocampal damage after treatment with kainic acid in mice. Neurosci Lett, 398(3), 195-200. doi:10.1016/j.neulet.2006.01.027 Hermann, B., Seidenberg, M., Sager, M., Carlsson, C., Gidal, B., Sheth, R., . . . Asthana, S. (2008). Growing old with epilepsy: the neglected issue of cognitive and brain health in aging and elder persons with chronic epilepsy. Epilepsia, 49(5), 731-740. doi:10.1111/j.1528-1167.2007.01435.x Hsiao, J., Yuan, T. Y., Tsai, M.-S., Lu, C. Y., Lin, Y. C., Lee, M. L., . . . Wahlestedt, C. (2016). Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome (Vol. 9). Isom, L. L., De Jongh, K. S., & Catterall, W. A. (1994). Auxiliary subunits of voltage-gated ion channels. Neuron, 12(6), 1183-1194. Isom, L. L., Ragsdale, D. S., De Jongh, K. S., Westenbroek, R. E., Reber, B. F., Scheuer, T., & Catterall, W. A. (1995). Structure and function of the beta 2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell, 83(3), 433-442. Jessberger, S., Romer, B., Babu, H., & Kempermann, G. (2005). Seizures induce proliferation and dispersion of doublecortin-positive hippocampal progenitor cells. Exp Neurol, 196(2), 342-351. doi:10.1016/j.expneurol.2005.08.010 Jung Gil, Y., Lee Jee, Y., Rhim, H., Oh Tae, H., & Yune Tae, Y. (2013). An increase in voltage-gated sodium channel current elicits microglial activation followed inflammatory responses in vitro and in vivo after spinal cord injury. Glia, 61(11), 1807-1821. doi:10.1002/glia.22559 Jung, K. H., Chu, K., Kim, M., Jeong, S. W., Song, Y. M., Lee, S. T., . . . Roh, J. K. (2004). Continuous cytosine-b-D-arabinofuranoside infusion reduces ectopic granule cells in adult rat hippocampus with attenuation of spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Eur J Neurosci, 19(12), 3219-3226. doi:10.1111/j.0953-816X.2004.03412.x Karadottir, R., Hamilton, N. B., Bakiri, Y., & Attwell, D. (2008). Spiking and nonspiking classes of oligodendrocyte precursor glia in CNS white matter. Nat Neurosci, 11(4), 450-456. doi:10.1038/nn2060 Kierdorf, K., & Prinz, M. (2017). Microglia in steady state. J Clin Invest, 127(9), 3201-3209. doi:10.1172/jci90602 Kis-Toth, K., Hajdu, P., Bacskai, I., Szilagyi, O., Papp, F., Szanto, A., . . . Rajnavolgyi, E. (2011). Voltage-gated sodium channel Nav1.7 maintains the membrane potential and regulates the activation and chemokine-induced migration of a monocyte-derived dendritic cell subset. J Immunol, 187(3), 1273-1280. doi:10.4049/jimmunol.1003345 Koenigsknecht-Talboo, J., & Landreth, G. E. (2005). Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci, 25(36), 8240-8249. doi:10.1523/jneurosci.1808-05.2005 Kondratskyi, A., Kondratska, K., Skryma, R., & Prevarskaya, N. (2015). Ion channels in the regulation of apoptosis. Biochimica et Biophysica Acta (BBA) - Biomembranes, 1848(10, Part B), 2532-2546. doi:https://doi.org/10.1016/j.bbamem.2014.10.030 Kron, M. M., Zhang, H., & Parent, J. M. (2010). The developmental stage of dentate granule cells dictates their contribution to seizure-induced plasticity. J Neurosci, 30(6), 2051-2059. doi:10.1523/jneurosci.5655-09.2010 Lai, A. Y., Dibal, C. D., Armitage, G. A., Winship, I. R., & Todd, K. G. (2013). Distinct activation profiles in microglia of different ages: a systematic study in isolated embryonic to aged microglial cultures. Neuroscience, 254, 185-195. doi:10.1016/j.neuroscience.2013.09.010 Lee, P. Y., Tsai, P. S., Huang, Y. H., & Huang, C. J. (2008). Inhibition of toll-like receptor-4, nuclear factor-kappaB and mitogen-activated protein kinase by lignocaine may involve voltage-sensitive sodium channels. Clin Exp Pharmacol Physiol, 35(9), 1052-1058. doi:10.1111/j.1440-1681.2008.04962.x Malik, Z. A., Denning, G. M., & Kusner, D. J. (2000). Inhibition of Ca(2+) signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J Exp Med, 191(2), 287-302. Martynoga, B., Drechsel, D., & Guillemot, F. (2012). Molecular control of neurogenesis: a view from the mammalian cerebral cortex. Cold Spring Harb Perspect Biol, 4(10). doi:10.1101/cshperspect.a008359 Mathieu, P., Piantanida, A. P., & Pitossi, F. (2010). Chronic expression of transforming growth factor-beta enhances adult neurogenesis. Neuroimmunomodulation, 17(3), 200-201. doi:10.1159/000258723 Nikolaeva, M. A., Mukherjee, B., & Stys, P. K. (2005). Na+-dependent sources of intra-axonal Ca2+ release in rat optic nerve during in vitro chemical ischemia. J Neurosci, 25(43), 9960-9967. doi:10.1523/jneurosci.2003-05.2005 Nimmerjahn, A., Kirchhoff, F., & Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science, 308(5726), 1314-1318. doi:10.1126/science.1110647 Noda, M., Nakanishi, H., Nabekura, J., & Akaike, N. (2000). AMPA-kainate subtypes of glutamate receptor in rat cerebral microglia. J Neurosci, 20(1), 251-258. Ogiwara, I., Miyamoto, H., Morita, N., Atapour, N., Mazaki, E., Inoue, I., . . . Yamakawa, K. (2007). Na<sub>v</sub>1.1 Localizes to Axons of Parvalbumin-Positive Inhibitory Interneurons: A Circuit Basis for Epileptic Seizures in Mice Carrying an <em>Scn1a</em> Gene Mutation. The Journal of Neuroscience, 27(22), 5903. Ogiwara, I., Nakayama, T., Yamagata, T., Ohtani, H., Mazaki, E., Tsuchiya, S., . . . Yamakawa, K. (2012). A homozygous mutation of voltage-gated sodium channel beta(I) gene SCN1B in a patient with Dravet syndrome. Epilepsia, 53(12), e200-203. doi:10.1111/epi.12040 Pappalardo, L. W., Black, J. A., & Waxman, S. G. (2016). Sodium channels in astroglia and microglia. Glia, 64(10), 1628-1645. doi:10.1002/glia.22967 Parent, J. M., Elliott, R. C., Pleasure, S. J., Barbaro, N. M., & Lowenstein, D. H. (2006). Aberrant seizure-induced neurogenesis in experimental temporal lobe epilepsy. Ann Neurol, 59(1), 81-91. doi:10.1002/ana.20699 Parent, J. M., Yu, T. W., Leibowitz, R. T., Geschwind, D. H., Sloviter, R. S., & Lowenstein, D. H. (1997). Dentate granule cell neurogenesis is increased by seizures and contributes to aberrant network reorganization in the adult rat hippocampus. J Neurosci, 17(10), 3727-3738. Patel, F., & Brackenbury, W. J. (2015). Dual roles of voltage-gated sodium channels in development and cancer. Int J Dev Biol, 59(7-9), 357-366. doi:10.1387/ijdb.150171wb Persson, A. K., Estacion, M., Ahn, H., Liu, S., Stamboulian-Platel, S., Waxman, S. G., & Black, J. A. (2014). Contribution of sodium channels to lamellipodial protrusion and Rac1 and ERK1/2 activation in ATP-stimulated microglia. Glia, 62(12), 2080-2095. doi:10.1002/glia.22728 Planells-Cases, R., Caprini, M., Zhang, J., Rockenstein, E. M., Rivera, R. R., Murre, C., . . . Montal, M. (2000). Neuronal death and perinatal lethality in voltage-gated sodium channel alpha(II)-deficient mice. Biophys J, 78(6), 2878-2891. doi:10.1016/s0006-3495(00)76829-9 Pocock, J. M., & Kettenmann, H. (2007). Neurotransmitter receptors on microglia. Trends Neurosci, 30(10), 527-535. doi:10.1016/j.tins.2007.07.007 Pribiag, H., & Stellwagen, D. (2013). TNF-alpha downregulates inhibitory neurotransmission through protein phosphatase 1-dependent trafficking of GABA(A) receptors. J Neurosci, 33(40), 15879-15893. doi:10.1523/jneurosci.0530-13.2013 Reddien, P. W., Cameron, S., & Horvitz, H. R. (2001). Phagocytosis promotes programmed cell death in C. elegans. Nature, 412(6843), 198-202. doi:10.1038/35084096 Rigato, C., Buckinx, R., Le-Corronc, H., Rigo, J. M., & Legendre, P. (2011). Pattern of invasion of the embryonic mouse spinal cord by microglial cells at the time of the onset of functional neuronal networks. Glia, 59(4), 675-695. doi:10.1002/glia.21140 Riikonen, R. (2004). Infantile spasms: therapy and outcome. J Child Neurol, 19(6), 401-404. doi:10.1177/088307380401900601 Rilstone, J. J., Coelho, F. M., Minassian, B. A., & Andrade, D. M. (2012). Dravet syndrome: seizure control and gait in adults with different SCN1A mutations. Epilepsia, 53(8), 1421-1428. doi:10.1111/j.1528-1167.2012.03583.x Rodrigue, K. M., & Raz, N. (2004). Shrinkage of the Entorhinal Cortex over Five Years Predicts Memory Performance in Healthy Adults. The Journal of Neuroscience, 24(4), 956. Roseti, C., van Vliet, E. A., Cifelli, P., Ruffolo, G., Baayen, J. C., Di Castro, M. A., . . . Palma, E. (2015). GABAA currents are decreased by IL-1beta in epileptogenic tissue of patients with temporal lobe epilepsy: implications for ictogenesis. Neurobiol Dis, 82, 311-320. doi:10.1016/j.nbd.2015.07.003 Roy, M. L., & Narahashi, T. (1992). Differential properties of tetrodotoxin-sensitive and tetrodotoxin-resistant sodium channels in rat dorsal root ganglion neurons. J Neurosci, 12(6), 2104-2111. Sakauchi, M., Oguni, H., Kato, I., Osawa, M., Hirose, S., Kaneko, S., . . . Fujiwara, T. (2011). Mortality in Dravet syndrome: search for risk factors in Japanese patients. Epilepsia, 52 Suppl 2, 50-54. doi:10.1111/j.1528-1167.2011.03002.x Savill, J., Dransfield, I., Gregory, C., & Haslett, C. (2002). A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol, 2(12), 965-975. doi:10.1038/nri957 Schutze, S., Ribes, S., Kaufmann, A., Manig, A., Scheffel, J., Redlich, S., . . . Nau, R. (2014). Higher mortality and impaired elimination of bacteria in aged mice after intracerebral infection with E. coli are associated with an age-related decline of microglia and macrophage functions. Oncotarget, 5(24), 12573-12592. doi:10.18632/oncotarget.2709 Shapiro, L. A., Wang, L., & Ribak, C. E. (2008). Rapid astrocyte and microglial activation following pilocarpine-induced seizures in rats. Epilepsia, 49 Suppl 2, 33-41. doi:10.1111/j.1528-1167.2008.01491.x Sierra, A., Encinas, J. M., Deudero, J. J., Chancey, J. H., Enikolopov, G., Overstreet-Wadiche, L. S., . . . Maletic-Savatic, M. (2010). Microglia shape adult hippocampal neurogenesis through apoptosis-coupled phagocytosis. Cell Stem Cell, 7(4), 483-495. doi:10.1016/j.stem.2010.08.014 Sierra, A., Gottfried-Blackmore, A. C., McEwen, B. S., & Bulloch, K. (2007). Microglia derived from aging mice exhibit an altered inflammatory profile. Glia, 55(4), 412-424. doi:10.1002/glia.20468 Sontheimer, H., Black, J. A., Ransom, B. R., & Waxman, S. G. (1992). Ion channels in spinal cord astrocytes in vitro. I. Transient expression of high levels of Na+ and K+ channels. J Neurophysiol, 68(4), 985-1000. doi:10.1152/jn.1992.68.4.985 Spittau, B. (2017). Aging Microglia-Phenotypes, Functions and Implications for Age-Related Neurodegenerative Diseases. Front Aging Neurosci, 9, 194. doi:10.3389/fnagi.2017.00194 Sun, H., Zhang, Y., Liu, X., Ma, X., Yang, Z., Qin, J., . . . Wu, X. (2010). Analysis of SCN1A mutation and parental origin in patients with Dravet syndrome. Journal Of Human Genetics, 55, 421. doi:10.1038/jhg.2010.39 https://www.nature.com/articles/jhg201039#supplementary-information Toledo-Aral, J. J., Moss, B. L., He, Z. J., Koszowski, A. G., Whisenand, T., Levinson, S. R., . . . Mandel, G. (1997). Identification of PN1, a predominant voltage-dependent sodium channel expressed principally in peripheral neurons. Proc Natl Acad Sci U S A, 94(4), 1527-1532. Town, T., Nikolic, V., & Tan, J. (2005). The microglial "activation" continuum: from innate to adaptive responses. J Neuroinflammation, 2, 24. doi:10.1186/1742-2094-2-24 Tsai, M. S., Lee, M. L., Chang, C. Y., Fan, H. H., Yu, I. S., Chen, Y. T., . . . Lin, S. W. (2015). Functional and structural deficits of the dentate gyrus network coincide with emerging spontaneous seizures in an Scn1a mutant Dravet Syndrome model during development. Neurobiol Dis, 77, 35-48. doi:10.1016/j.nbd.2015.02.010 Udeochu, J. C., Shea, J. M., & Villeda, S. A. (2016). Microglia communication: Parallels between aging and Alzheimer's disease. Clin Exp Neuroimmunol, 7(2), 114-125. doi:10.1111/cen3.12307 Vezzani, A., French, J., Bartfai, T., & Baram, T. Z. (2010). The role of inflammation in epilepsy. Nature Reviews Neurology, 7, 31. doi:10.1038/nrneurol.2010.178 https://www.nature.com/articles/nrneurol.2010.178#supplementary-information Vezzani, A., French, J., Bartfai, T., & Baram, T. Z. (2011). The role of inflammation in epilepsy. Nat Rev Neurol, 7(1), 31-40. doi:10.1038/nrneurol.2010.178 Wang, N., Mi, X., Gao, B., Gu, J., Wang, W., Zhang, Y., & Wang, X. (2015). Minocycline inhibits brain inflammation and attenuates spontaneous recurrent seizures following pilocarpine-induced status epilepticus. Neuroscience, 287, 144-156. doi:10.1016/j.neuroscience.2014.12.021 Wirrell, E. C., Laux, L., Donner, E., Jette, N., Knupp, K., Meskis, M. A., . . . Berg, A. T. (2017). Optimizing the Diagnosis and Management of Dravet Syndrome: Recommendations From a North American Consensus Panel. Pediatr Neurol, 68, 18-34.e13. doi:10.1016/j.pediatrneurol.2017.01.025 Wu, W. K., Li, G. R., Wong, H. P., Hui, M. K., Tai, E. K., Lam, E. K., . . . Cho, C. H. (2006). Involvement of Kv1.1 and Nav1.5 in proliferation of gastric epithelial cells. J Cell Physiol, 207(2), 437-444. doi:10.1002/jcp.20576 Wu, W. K., Li, G. R., Wong, T. M., Wang, J. Y., Yu, L., & Cho, C. H. (2008). Involvement of voltage-gated K+ and Na+ channels in gastric epithelial cell migration. Mol Cell Biochem, 308(1-2), 219-226. doi:10.1007/s11010-007-9631-2 Wu, Y. W., Sullivan, J., McDaniel, S. S., Meisler, M. H., Walsh, E. M., Li, S. X., & Kuzniewicz, M. W. (2015). Incidence of Dravet Syndrome in a US Population. Pediatrics, 136(5), e1310-1315. doi:10.1542/peds.2015-1807 Yang, F., Liu, Z. R., Chen, J., Zhang, S. J., Quan, Q. Y., Huang, Y. G., & Jiang, W. (2010). Roles of astrocytes and microglia in seizure-induced aberrant neurogenesis in the hippocampus of adult rats. J Neurosci Res, 88(3), 519-529. doi:10.1002/jnr.22224 Yankner, B. A., Lu, T., & Loerch, P. (2008). The Aging Brain. Annual Review of Pathology: Mechanisms of Disease, 3(1), 41-66. doi:10.1146/annurev.pathmechdis.2.010506.092044 Ye, L., Huang, Y., Zhao, L., Li, Y., Sun, L., Zhou, Y., . . . Zheng, J. C. (2013). IL-1beta and TNF-alpha induce neurotoxicity through glutamate production: a potential role for neuronal glutaminase. J Neurochem, 125(6), 897-908. doi:10.1111/jnc.12263 Yu, F. H., & Catterall, W. A. (2003). Overview of the voltage-gated sodium channel family. Genome Biology, 4(3), 207. doi:10.1186/gb-2003-4-3-207 Yu, F. H., Mantegazza, M., Westenbroek, R. E., Robbins, C. A., Kalume, F., Burton, K. A., . . . Catterall, W. A. (2006). Reduced sodium current in GABAergic interneurons in a mouse model of severe myoclonic epilepsy in infancy. Nat Neurosci, 9(9), 1142-1149. doi:10.1038/nn1754 Zhou, X., Luo, Y. C., Ji, W. J., Zhang, L., Dong, Y., Ge, L., . . . Li, Y. M. (2013). Modulation of mononuclear phagocyte inflammatory response by liposome-encapsulated voltage gated sodium channel inhibitor ameliorates myocardial ischemia/reperfusion injury in rats. PLoS One, 8(9), e74390. doi:10.1371/journal.pone.0074390 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77483 | - |
| dc.description.abstract | Dravet症候群是一種難治性癲癇,為嚴重的嬰幼兒肌陣攣性癲癇,具有延遲的精神和運動發育、自閉症與認知行為障礙等異常。癲癇發作通常伴隨著腦部發炎的症狀與微膠細胞的活化,而微膠細胞為中樞神經系統中的免疫細胞,不論是在發育中或是成熟的中樞神經系統,微膠細胞都會與神經有許多的連結與調控作用。過去的研究顯示微膠細胞會表達Scn1a基因編碼的第I型電壓門控鈉通道(Nav1.1)。而在Dravet症候群中,大多數病患都是屬於Scn1a基因突變,但Scn1a基因在微膠細胞中的作用仍是未知的。因此我們使用Scn1aE1099X基因轉殖小鼠建構了Dravet症候群的動物模型,在體外培養微膠細胞的方式探討Scn1a基因在微膠細胞上的角色。我們的結果首先發現在Nav1.1缺乏下,微膠細胞的存活率會顯著降低。在形態上則發現在靜態時,Nav1.1缺陷下的微膠細胞會呈現微活化的中間態形態,而不是正常的休息態分支結構。而在促炎細胞因子的表達上,發現在Scn1a的缺陷中,TNF-α、IL-1β和IL-6的mRNA表達均顯著的增加。同樣地,在Scn1a缺陷中,TNF-α和IL-6在細胞內和釋放的細胞外蛋白表現也都顯著增加。然而,抗炎性細胞因子TGF-β和IL-10以及指標基因Arg1的mRNA表達,在Scn1a缺陷中均顯著的降低。此外,我們也發現在Nav1.1缺陷微膠細胞的吞噬能力會減弱。另一方面,在LPS的刺激活化下,Nav1.1缺陷中微膠細胞的形態卻仍呈現微發炎活化的形態,而不是正常的變形蟲活化結構。此外,在LPS的刺激活化下,促炎細胞因子TNF-α、IL-1β和IL-6的mRNA表達在Scn1a缺陷中均顯著的減少。而在LPS刺激活化下的TNF-α和IL-6蛋白表現,以及在IL-4刺激活化下的抗炎細胞因子TGF-β和IL-10的mRNA表達與標誌物Arg1也都顯著的減少。這些結果顯示Scn1a突變體在靜態時會使微膠細胞傾向於更活化發炎的狀態,然而在給予刺激後卻呈現整體功能異常降低的現象,這些現象便可能造成Dravet症候群中異常的病理態,並且可能為癲癇發作的原因之一。 | zh_TW |
| dc.description.abstract | Dravet syndrome is a refractory seizure characterized by severe infant-onset myoclonic epilepsy, delayed psychomotor development and autism-spectrum behaviors. Patients with seizure attacks often follow by brain inflammation, leading to the activation of microglia cell. Microglia, CNS immune cell, have many communication and regulation with neuron in developing and adult CNS, and were observed to express the type I voltage-gated sodium channel (Nav1.1), which is encoded by the Scn1a gene. Loss-of-function mutation in Scn1a gene is the predominant molecular cause in most Dravet syndrome patients. However, the role of Scn1a gene in Microglia is unknown. Here, we constructed an animal model of Dravet syndrome with Scn1aE1099X knock-in (KI) allele transgenic mice, which exhibited epileptic discharges. Our results first show that Nav1.1 deficiency reduced the cell viability of microglia. At quiescence, the morphology of microglia under Nav1.1 deficiency showed an intermediate morphology, instead of normal branched structure, which showed a smaller cell size. The mRNA expression of pro-inflammatory cytokines, TNF-α, IL-1β and IL-6, were upregulated in Scn1a deficiency. Likewise, the intracellular and released extracellular protein level of TNF-α and IL-6 were upregulated in Scn1a deficiency. However, the mRNA expression of anti-inflammatory cytokines, TGF-β and IL-10, and the marker, Arg1, were downregulated in Scn1a deficiency. Furthermore, phagocytic function of microglia was reduced by deficit Nav1.1. On the other hand, the morphology of microglia under Nav1.1 deficiency still showed an intermediate morphology, instead of normal amoeboid activated structure which still showed a smaller cell size during LPS activation. Also, the mRNA expression of pro-inflammatory cytokines, TNF-α, IL-1β and IL-6, were downregulated in Scn1a deficiency during LPS activation. The protein level of TNF-α and IL-6 during LPS activation, and the mRNA expression of anti-inflammatory cytokines, TGF-β and IL-10, and the marker, Arg1 during IL-4 activation, were also all decreased. These results suggested that the Scn1a mutant drove microglia to a more inflamed state at quiescence, and attenuates the overall function of microglia after stimulation which led to an irregular pathology in Dravet syndrome and may be a cause of seizures. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T22:04:14Z (GMT). No. of bitstreams: 1 ntu-107-R05443014-1.pdf: 6772697 bytes, checksum: d974f9d957e8358ad9d987af52ea4d3d (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 III
Abstract V 圖目錄 VII 縮寫表 VIII 第一章 緒論(Introduction) 1 第一節 Dravet症候群(Dravet syndrome, DS) 1 第二節 電壓依賴型鈉離子通道(Voltage-gated sodium channel) 2 第三節 Dravet症候群之動物模型 4 第四節 微膠細胞(Microglia)在中樞神經系統(CNS)的角色 5 第五節 微膠細胞與癲癇疾病(Epilepsy)之關係 6 第六節 微膠細胞與電壓依賴型鈉離子通道 8 第七節 研究動機與目的 10 第二章 實驗材料與方法(Materials and Methods) 11 第一節 實驗動物 11 第二節 微膠細胞培養 11 第三節 細胞存活率分析(Cell viability assay) 12 第四節 微膠細胞的活化 13 第五節 免疫細胞螢光染色法(Immunocytochemistry) 13 第六節 即時聚合酶鏈鎖反應(Quantitative real time polymerase chain reaction, qPCR) 14 第七節 吞噬能力分析(Phagocytosis ability analysis) 14 第八節 酵素結合免疫吸附分析法(Enzyme-linked immunosorbent assay, ELISA) 15 第九節 微膠細胞型態分析(Analysis of microglia morphology) 15 第十節 統計分析 16 第三章 結果(Result) 17 第一節 Nav1.1表達在微膠細胞 17 第二節 Nav1.1缺陷改變靜態微膠細胞的存活率與型態特性 18 第三節 Scn1a缺陷改變靜態微膠細胞的發炎與抗發炎活化特性 19 第四節 Nav1.1缺陷影響微膠細胞的吞噬能力 21 第五節 Nav1.1缺陷影響受刺激微膠細胞的形態變化 21 第六節 Scn1a缺陷影響受刺激微膠細胞的發炎與抗發炎活化特性 23 第四章 討論(Discussion) 26 第一節 總述 26 第二節 鈉離子通道調控微膠細胞的生長 26 第三節 鈉離子通道參與在微膠細胞的發炎活化中 27 第四節 鈉離子通道參與在微膠細胞的抗發炎活化中 31 第五節 鈉離子通道影響微膠細胞的吞噬作用 32 第六節 未來展望 33 第五章 圖表(Figure) 35 參考文獻(Reference) 60 表一 免疫細胞螢光染色(Immunocytochemistry)使用之抗體 69 表二 即時聚合酶鏈鎖反應(qPCR)使用之primer 69 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 微膠細胞 | zh_TW |
| dc.subject | 促炎性活化態 | zh_TW |
| dc.subject | 抗炎性活化態 | zh_TW |
| dc.subject | 吞噬作用 | zh_TW |
| dc.subject | Scn1a | zh_TW |
| dc.subject | Nav1.1 | zh_TW |
| dc.subject | Dravet症候群 | zh_TW |
| dc.subject | Microglia | en |
| dc.subject | Dravet syndrome | en |
| dc.subject | Nav1.1 | en |
| dc.subject | Scn1a | en |
| dc.subject | phagocytosis | en |
| dc.subject | anti-inflammation | en |
| dc.subject | pro-inflammation | en |
| dc.title | Scn1a基因缺陷影響微膠細胞的功能與活化 | zh_TW |
| dc.title | The effect of Scn1a mutation on microglia function and activation | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 106-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 林琬琬;符文美;黃朝慶 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 微膠細胞,促炎性活化態,抗炎性活化態,吞噬作用,Scn1a,Nav1.1,Dravet症候群, | zh_TW |
| dc.subject.keyword | Microglia,pro-inflammation,anti-inflammation,phagocytosis,Scn1a,Nav1.1,Dravet syndrome, | en |
| dc.relation.page | 69 | - |
| dc.identifier.doi | 10.6342/NTU201803587 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2018-08-16 | - |
| dc.contributor.author-college | 醫學院 | - |
| dc.contributor.author-dept | 藥理學研究所 | - |
| 顯示於系所單位: | 藥理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-2.pdf 未授權公開取用 | 6.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
