請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77479
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 賴喜美 | |
dc.contributor.author | Zhi-Hui Tu | en |
dc.contributor.author | 涂之惠 | zh_TW |
dc.date.accessioned | 2021-07-10T22:04:02Z | - |
dc.date.available | 2021-07-10T22:04:02Z | - |
dc.date.copyright | 2018-08-23 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-17 | |
dc.identifier.citation | 中華民國國家標準。2002。CNS 423 - N5006醬油。
中華民國國家標準。2004。CNS 14849 - N 6375酒類檢驗法。 中華民國國家標準。2004。CNS 14850 - N 6376酒類檢驗法 - 總酸度及揮發性酸度之測定。 中華民國國家標準。2004。CNS 14851 - N 6377酒類檢驗法 - 總酯之測定。 常常生活文創編輯部。2016。台灣醬油誌-風土與時間的美味指南。常常生活文創股份有限公司。 AACC. 1999. Approved method of American Association of Cereal Chemist. MN USA. Adachi, T., Kamiya, H., and Kosuge, T. 1964. Studies on the metobolic products of Bacillus subtilis. IV. Determination and mechanism of formation of tetramethylpyrazine. Journal of the Pharmaceutical Society of Japan84: 545-548. Arthur, C., and Pawliszyn, J. 1990. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Analytical chemistry 62: 2145-2148. Blank, I., and Fay, L. B. 1996. Formation of 4-Hydroxy-2,5-dimethyl-3or2H-furanone and 4-Hydroxy-2(or 5)-ethyl-5(or 2)-methyl-3(2H)-furanone through Maillard Reaction Based on Pentose Sugars. Journal of Agricultural and Food Chemistry44: 531-536. Breslin PASand Beauchamp GK.1997. Salt enhances flavour by suppressing bitterness. Nature 387-563. Cui, R.Y., Zheng, J., Wu, C.D., and Zhou, R.Q. 2014. Effect of different halophilic microbial fermentation patterns on the volatile compound profiles and sensory properties of soy sauce moromi. European Food Research and Technology 239(2): 321-331. Dietz, C., Sanz, J., and Camara, C. 2006. Recent developments in solid-phase microextraction coatings and related techniques. J Chromatogr A1103(2): 183-192. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., and Smith, F. 1956. Colorimetric Method for Determination of Sugars and Related Substances. Analytical chemistry28(3): 350-356. Dung N.T.P., Rombouts F.M.andNout M.J.R. 2007. Characteristics of some traditional Vietnamese starch-basedrice wine fermentation starters (men). Swiss Society of Food Science and Technology 40:130-135. Feng, Y., Cai, Y., Su, G., Zhao, H., Wang, C., and Zhao, M. 2014. Evaluation of aroma differences between high-salt liquid-state fermentation and low-salt solid-state fermentation soy sauces from China. Food Chem.145: 126-134. Feng, Y., Cai, Y., Sun-Waterhouse, D., Cui, C., Su, G., Lin, L., and Zhao, M. 2015. Approaches of aroma extraction dilution analysis (AEDA) for headspace solid phase microextraction and gas chromatography-olfactometry (HS-SPME-GC-O): Altering sample amount, diluting the sample or adjusting split ratio? Food Chem187: 44-52. Fukushima, D. 1981. Soy proteins for foods centering around soy sauce and tofu. Journal of the American Oil Chemists’ Society 58(3): 346-354. Fukushima, D. 1985. Fermented vegetable protein and related foods of Japan and China. Food Reviews International 1(1): 149-209. Fukushima, D. 2004. Industrialization of fermented soy sauce production centering around Japanese shoyu.Food science and technology-New York-Marcel Rekker: 1-88. Gao, X.L., Cui, C., Zhao, H.F., Zhao, M.M., Yang, L., and Ren, J.Y. 2010. Changes in volatile aroma compounds of traditional Chinese-type soy sauce during moromi fermentation and heat treatment. Food Science and Biotechnology19(4): 889-898. Heath H.B.and Reineccius G. 1986. Flavor chemistry and technology. Hoang, N. X., Ferng, S., Ting, C.H., Lu, Y.C., Yeh, Y.F., Lai, Y.R. and Hsu, C.K. 2018. Effect of initial 5 days fermentation under low salt condition on the quality of soy sauce. LWT92: 234-241. Hodge, J. E. 1953. Dehydrated foods, chemistry of browning reactions in model systems. journal of Agricultural and Food Chemistry 1(15): 928-943. Kaneko, S., Kumazawa, K., and Nishimura, O. 2013. Studies on the key aroma compounds in raw (unheated) and heated Japanese soy sauce. J Agric Food Chem 61(14): 3396-3402. Kataoka, H., Lord, H. L., and Pawliszyn, J. 2000. Applications of solid-phase microextraction in food analysis. Journal of Chromatography A, 880: 35–62. Koehler, P. E., Mason, M. E., and Newell, J. A. 1969. Formation of pyrazine compounds in sugar-amino acid model systems. journal of Agricultural and Food Chemistry17(2): 393-396. Kremer S, Mojet JandShimojo R. 2009. Salt reduction in foods using naturally brewed soy sauce.J Food Sci 74(6):S255–62. Lee, S. M., Seo, B. C., and Kim, Y.S. 2006. Volatile Compounds in Fermented and Acid‐hydrolyzed Soy Sauces. Food Chemistry and Toxicology 71: 146-156. Li, Y., Zhao, H., Zhao, M., and Cui, C. 2010. Relationships between antioxidant activity and quality indices of soy sauce: an application of multivariate analysis. International Journal of Food Science & Technology 45(1): 133-139. Lioe, H. N., Wada, K., Aoki, T., and Yasuda, M. 2007. Chemical and sensory characteristics of low molecular weight fractions obtained from three types of Japanese soy sauce (shoyu) – Koikuchi, tamari and shiro shoyu. Food Chemistry100(4): 1669-1677. Luh, B. S. 1995. Industrial production of soy sauce. Journal of industrial Microbiology14: 467-471. Marsh, A. J., Hill, C., Ross, R. P., and Cotter, P. D. 2014. Fermented beverages with health-promoting potential: Past and future perspectives. Trends in Food Science & Technology 38(2): 113-124. Martins, S. I. F. S., Jongen, W. M. F., and van Boekel, M. A. J. S. 2000. A review of Maillard reaction in food and implications to kinetic modelling. Trends in Food Science & Technology 11(9): 364-373. Nelson, N. 1944. Nelson-Somogyi modification colorimetric method for determination reducing sugar. J. Biol. Chem. 153: 375-380. Ohloff, G., and Flament, I. 1979. The Role of Heteroatomic Substances in the Aroma Compounds of Foodstuffs. Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products: 231-283. Reazin, G., Scales, H., and Andreasen, A. 1970. Mechanism of major congener formation in alcoholic grain fermentations. journal of Agricultural and Food Chemistry18(4): 585-589. Reineccius, G. 2016. Flavor Chemistry and Technology. Rizzi, G. P. 1999. The Strecker degradation and its contribution to food flavor. Flavor Chemistry: 335-343. Sasaki, M., Nunomura, N., and Matsudo, T. 1991. Biosynthesis of 4-hydroxy-2(or 5)- ethyl-5(or 2)-methyl-3(2H)-furanone by yeasts. journal of Agricultural and Food Chemistry 39: 934-938. Shibamoto, T. 1983. Heterocyclic compounds in browning and browning/nitrite model systems : Occurrence, formation mechanisms, flavor characteristics and mutagenic activity. Instrumental Analysis of Foods: 229-278. Steinkraus K.H. 1989. Industrialization of indigeneous fermented foods. Strauss, M. J., and Prinsloo, N. M. 2007. Real-time principal component analysis of in-line NIRspectroscopic data as applied to heterogeneous catalysis research. Applied Catalysis A:General 320: 16–23. van Boekel, M. A. J. S. 2006. Formation of flavour compounds in the Maillard reaction. Biotechnology Advances 24(2): 230-233. Wang, H. L., and Hesseltine, C. W. 1970. Sufu and lao-chao. journal of Agricultural and Food Chemistry 18(4): 572-575. Wei, Q.Z., Wang, H.B. and Lv, Z.J. 2013. Search for potentialmolecular indices for the fermentation progress of soy saucethrough dynamic changes of volatile compounds. Food ResearchInternational 53: 189–194. Weinsier RL. 1976. Overview: salt and the development of essential hypertension. PrevMed 5:7–14. Whiting, G. 1976. Organic acid metabolism of yeasts during fermentation of alcoholic beverages—A review. Journal of the Institute of Brewing 82(2): 84-92. Yan, L., Zhang, Y., Tao, W., Wang, L., and Wu, S. 2008. Rapid determination of volatile flavor components in soy sauce using head space solid-phase microextraction and gas chromatography-mass spectrometry. Chinese Journal of Chromatography 26(3): 285-291. Yokotsuka, T. 1986. Soy sauce biochemistry.Advances in food research30: 195-329. Zhang, Z., Yang, M., and Pawliszyn, J. 1994. Solid-phase microextraction. A solvent-free alternative for sample preparation. Analytical chemistry 66: 844-853. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77479 | - |
dc.description.abstract | 在一般醬油的製程中,鹽水發酵時間需6至8個月,於精製過程(refining step)中之高殺菌溫度(70-80°C)會造成劇烈梅納反應,使終產品顏色偏黑、風味過於濃郁。此外,發酵時使用高濃度鹽水會使醬油口味偏鹹。參考日本醬油產品特色以及製程,發現淡口醬油相較於常用的濃口醬油外觀顏色較淺、口味較清爽,這是由於兩種醬油的製程不同所致,淡口醬油其中一個關鍵製程為在壓榨醬醪之前添加米麴混合物,此方法對於改善醬油風味最有效率,這是由於不同發酵程度之米麴混合物可帶來不同風味。因此,本試驗選用甘酒作為米麴混合物,擬於醬油製作過程中,濃口醬醪壓榨步驟前添加,探討甘酒對生醬油於加熱過程中品質與風味之影響,亦期望藉由添加甘酒降低醬醪黏稠度以提高生醬油收率、降低鹽分含量並使其色澤呈紅褐色。試驗中,分別添加10%甘酒(發酵第3或5天)與3.5或5.5個月濃口醬醪共壓榨。添加甘酒於3.5及5.5個月醬醪可以分別提高醬汁收率1-2%及3-4%。並且於醬醪中添加10%甘酒可顯著性降低醬油鹽分含量。至於甘酒添加對醬油顏色的改變是有限的。由於應用淡口醬油添加米麴混合物的步驟,甘酒醬油風味物質中除了醇類以外其餘風味物質含量都不會超過未添加甘酒醬油,所以甘酒醬油的風味確實變得較清爽,不同於未添加者濃郁。另外,甘酒生醬油還原糖含量影響風味物質深遠,甘酒生醬油若還原糖含量高,則經過加熱後部分還原糖可提供醇類風味物質於甘酒醬油中。觀察PCA的結果,添加第3天甘酒於醬油中其特徵風味物質種類多樣化因此風味也較多元,有焦糖甜味的5-methylfurfural和furfural、果香味的ethyl butyrate和ethyl phenylacetate等,而添加第5天甘酒的特徵風味較單純,以提供酒香氣、麥香氣、甜味等的醇類為主,因此若希望添加甘酒後的醬油風味增添多一點焦糖香並帶有果香風味,則可以添加發酵程度較低的甘酒(發酵第3天),而若希望酒香氣比較多者,則可以考慮添加發酵時間較長的甘酒(發酵第5天)。 | zh_TW |
dc.description.abstract | In brine fermentation of normal soy sauce, the harvested koji is inoculated to a fermentation vessel held for 6-8 months. Then, the filtered raw soy sauce is heated to 70-80°C at refining step. Brine fermentation and refining steps results in a deep black color caused by intense Maillard reactions. Besides, a strong salty taste will be obtained in the Koikuchi shoyu when fermented with 22-25% (w/v) salt solution. In Japan, the Usukuchi shoyu has the characters of a lighter reddish brown color with milder flavor and aroma because of different shoyu making process. Adding a digestion mixture of rice koji before pressing is a key process and relatively efficiency to bring another flavors to soy sauce. The objectives of this study are obtaining a high-yield of filtered raw soy sauce, decreasing salt content and obtaining reddish brown color of Koikuchi shoyu by adding different fermentation times of rice Lao-Chao into moromi before pressing. The 10% rice Lao-Chao was added to aged moromi of Koikuchi shoyu and the mixture was pressed to get raw soy sauce. Moromi were fermented for 3.5 months (short fermented) or 5.5 months (long fermented) while rice Lao-Chao were fermented for 3 or 5 days. In this study, effects of adding rice Lao-Chao and heating on flavor of soy sauce were investigated. The yield of filtered raw soy sauce increased 1-2% while mixing rice Lao-Chao with short fermented moromi, and increased 3-4% with long fermented moromi. The addition of 10% rice Lao-Chao fermented significantly decreased the salt content in the final product.There is some limit for turning soy sauce color to reddish brown by adding rice Lao-Chao.The application of Usukuchi shoyu process byadding a rice koji can lead to milder flavor and aroma. Because almost all the flavor compounds are lower than their controls except alcohols. The reducing sugar contents in raw soy sauce with rice Lao-Chao are strongly related to flavor compouds after heating. If the soy sauces with rice Lao-Chao have higer reducing sugar contents, they will have higher alcohols. Looking at the result of PCA, adding rice Lao-Chao fermented for 3 days in soy sauce may lead to abundant flavor composition, like caramel with sweet flavor by 5-methylfurfural, furfural and fruity flavor by ethyl phenylacetate.The flavor will be simple when adding rice Lao-Chao fermented for 5 days in soy sauce. The characteristic of the soy sauces may have alcoholic, malty and sweet by alcohols. So if hoping caramel with sweet flavor, adding rice Lao-Chao fermented for 3 days in soy sauce. Or hoping slightly alcoholic flavor, adding rice Lao-Chao fermented for 5 days in soy sauce. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:04:02Z (GMT). No. of bitstreams: 1 ntu-107-R05b22048-1.pdf: 2935925 bytes, checksum: 014ca7e07ab4e2ab0d6dfe8c7a7d896d (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 中文摘要 IV
Abstract V 表目錄 IX 圖目錄 X 第一章、前言 1 第二章、文獻整理 2 2.1 甘酒/酒釀 2 2.2 醬油 2 2.2.1 醬油製程 2 2.2.2 台灣、日本地區醬油 4 2.2.3 台灣醬油分級 7 2.2.4 梅納反應 7 2.2.5 醬油風味物質形成機制 9 2.2.5.1 史特烈卡醛(Strecker aldehydes) 9 2.2.5.2 醇類(Alcohols) 10 2.2.5.3 有機酸(Organic acids) 12 2.2.5.4 酯類(Esters) 12 2.2.5.5 酚類(Phenolic Compounds) 12 2.2.5.6 雜環類(Heterocyclic compounds) 12 2.2.5.7 醬油中風味物質 16 2.3 固相微萃取(Solid-phase microextraction, SPME) 17 第三章材料與方法 20 3.1 實驗設計: 20 3.2 材料與化學試劑 21 3.2.2 化學試劑 21 3.2.3 樣品代號 22 3.3 樣品製備 23 3.3.1 生醬油製備 23 3.3.2 生醬油加熱處理 23 3.3.3 甘酒釀造 23 3.3.4 甘酒分析 24 3.4 一般成分分析 25 3.4.1 pH值 25 3.4.2 色度(Color) 25 3.4.3 酒精度(Alcohol %) 25 3.4.4 糖度(Brix %) 25 3.4.5 總氮(Total nitrogen) 25 3.4.6 胺基態氮(Amino nitrogen) 26 3.4.7 甲醛態氮(Formol nitrogen) 26 3.4.8 氨態氮(Ammonium nitrogen) 27 3.4.9 鹽度(NaCl content) 28 3.4.10 總酸(Total acids) 28 3.4.11 總可溶糖(Total sugar) 29 3.4.12 還原糖(Reducing sugar) 30 3.4.13 總固形物含量測定(Total solid content) 31 3.4.14 總酯(Total ester) 32 3.4.15 醬油壓榨收率(Yield) 33 3.5 風味物質分析 34 3.5.1 以固相微萃取萃取揮發性物質 34 3.5.2 氣相層析質譜儀 34 3.5.3 化合物辨認 34 3.5.4 風味物質含量計算 35 3.6 統計分析 37 第四章、結果與討論 38 4.1 實驗條件確認 38 4.1.2 甘酒發酵程度與混合比例 38 4.1.3 固相微萃取之醬油吸附體積 41 4.2甘酒添加對醬油影響 43 4.2.1 甘酒之成分分析結果 43 4.2.2 醬油之成分分析結果 44 4.2.3 風味物質分析 48 4.2.4 加熱後醬油之主成分分析 64 第五章、結論 67 第六章、參考資料 69 | |
dc.language.iso | zh-TW | |
dc.title | 醬醪與甘酒共壓榨對醬油風味與品質之改善 | zh_TW |
dc.title | Flavor and quality improvements of soy sauce by co-pressing of moromi and rice Lao-Chao | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 呂廷璋,邵貽沅,張永和 | |
dc.subject.keyword | 醬油,酒釀,甘酒醬油,固相微萃取, | zh_TW |
dc.subject.keyword | soy sauce,rice Lao-Chao,solid-phase microextraction (SPME), | en |
dc.relation.page | 72 | |
dc.identifier.doi | 10.6342/NTU201803792 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-08-17 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 生化科技學系 | zh_TW |
顯示於系所單位: | 生化科技學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05b22048-1.pdf 目前未授權公開取用 | 2.87 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。