請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77472
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 劉懷勝(Hwai-Shen Liu) | |
dc.contributor.author | Hsiu-Ling Chen | en |
dc.contributor.author | 陳秀綾 | zh_TW |
dc.date.accessioned | 2021-07-10T22:03:39Z | - |
dc.date.available | 2021-07-10T22:03:39Z | - |
dc.date.copyright | 2018-08-23 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-18 | |
dc.identifier.citation | Lade, H., Kadam, A., Paul, D., & Govindwar, S. (2015). Decolorization and Biodegradation of Textile Azo Dye Disperse Red 78 by Providencia rettgeri Strain HSL1. Prog. Commun. Sci, 1, 7-11.
Lanfranconi, M. P., & Alvarez, H. M. (2016). Functional divergence of HBHA from Mycobacterium tuberculosis and its evolutionary relationship with TadA from Rhodococcus opacus. Biochimie, 127, 241-248. Lang, S., & Philp, J. C. (1998). Surface-active lipids in rhodococci. Antonie van leeuwenhoek, 74(1-3), 59-70. Larkin, M. J., Kulakov, L. A., & Allen, C. C. (2005). Biodegradation and Rhodococcus– masters of catabolic versatility. Current opinion in Biotechnology, 16(3), 282-290. Law, K.L., Morét-Ferguson, S., Maximenko, N.A., Proskurowski, G., Peacock, E.E., Hafner, J., Reddy, C.M. (2010). Plastic accumulation in the North Atlantic subtropical gyre. Science, 329 (5996), 1185-1188. Leahy, J. G., & Colwell, R. R. (1990). Microbial degradation of hydrocarbons in the environment. Microbiological reviews, 54(3), 305-315. Lee, J., Hong, S., Song, Y.K., Hong, S.H., Jang, Y.C., Jang, M., Heo, N.W., Han, G.M., Lee, M.J., Kang, D., Shim, W.J. (2013). Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. Marine Pollution Bulletin, 77 (1), 349-354. Lee, M., Kim, M. K., Singleton, I., Goodfellow, M., & Lee, S. T. (2006). Enhancedbiodegradation of diesel oil by a newly identified Rhodococcus baikonurensis EN3 in the presence of mycolic acid. Journal of applied microbiology, 100(2), 325-333. Liu, C. W., & Liu, H. S. (2011). Rhodococcus erythropolis strain NTU-1 efficientlydegrades and traps diesel and crude oil in batch and fed-batch bioreactors. Process Biochemistry, 46(1), 202-209. Liu, C., Wang, K., Jiang, J. H., Liu, W. J., & Wang, J. Y. (2015). A novel bioflocculant produced by a salt-tolerant, alkaliphilic and biofilm-forming strain Bacillus agaradhaerens C9 and its application in harvesting Chlorella minutissima UTEX2341. Biochemical engineering journal, 93, 166-172. Liu, G., Zhou, J., Ji, Q., Wang, J., Jin, R., & Lv, H. (2013). Accelerated removal of Sudan dye by Shewanella oneidensis MR-1 in the presence of quinones and humic acids. World Journal of Microbiology and Biotechnology, 29(9), 1723-1730. Lusher, A. L., Burke, A., O’Connor, I., & Officer, R. (2014). Microplastic pollution in the Northeast Atlantic Ocean: validated and opportunistic sampling. Marine pollution bulletin, 88(1-2), 325-333. Ly, M. H., Naïtali-Bouchez, M., Meylheuc, T., Bellon-Fontaine, M. N., Le, T. M., Belin, J. M., & Waché, Y. (2006). Importance of bacterial surface properties to control the stability of emulsions. International journal of food microbiology, 112(1), 26-34. Malik, A., Sakamoto, M., Ono, T., & Kakii, K. (2003). Coaggregation between Acinetobacter johnsonii S35 and Microbacterium esteraromaticum strains isolated from sewage activated sludge. Journal of bioscience and bioengineering, 96(1), 10-15. Martínková, L., Uhnáková, B., Pátek, M., Nešvera, J., & Křen, V. (2009). Biodegradation potential of the genus Rhodococcus. Environment International, 35(1), 162-177. Mastrangelo, G., Fadda, E., & Marzia, V. (1996). Polycyclic aromatic hydrocarbons and cancer in man. Environmental health perspectives, 104(11), 1166. Mathalon, A., & Hill, P. (2014). Microplastic fibers in the intertidal ecosystem surrounding Halifax Harbor, Nova Scotia. Marine pollution bulletin, 81(1), 69-79. McKenna, E. J., & Kallio, R. E. (1971). Microbial metabolism of the isoprenoid alkane pristane. Proceedings of the National Academy of Sciences, 68(7), 1552-1554. McLeod, M. P., Warren, R. L., Hsiao, W. W., Araki, N., Myhre, M., Fernandes, C., & Dosanjh, M. (2006). The complete genome of Rhodococcus sp. RHA1 provides insights into a catabolic powerhouse. Proceedings of the National Academy of Sciences, 103(42), 15582-15587. Mikolasch, A., Klenk, H. P., & Schauer, F. (2009). Degradation of the multiple branched alkane 2, 6, 10, 14-tetramethyl-pentadecane (pristane) in Rhodococcus ruber and Mycobacterium neoaurum. International Biodeterioration & Biodegradation, 63(2), 201-207. Moore, C. J., Moore, S. L., Leecaster, M. K., & Weisberg, S. B. (2001). A comparison of plastic and plankton in the North Pacific central gyre. Marine pollution bulletin, 42(12), 1297-1300. Morgan, P., & Watkinson, R. J. (1994). Biodegradation of components of petroleum. In Biochemistry of microbial degradation (pp. 1-31). Springer, Dordrecht. Mulligan, C. N. (2005). Environmental applications for biosurfactants. Environmental Pollution, 133, 183-198. Murray, F., & Cowie, P. R. (2011). Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Marine pollution bulletin, 62(6), 1207-1217. Nel, H. A., & Froneman, P. W. (2015). A quantitative analysis of microplastic pollution along the south-eastern coastline of South Africa. Marine pollution bulletin, 101(1), 274-279. Neu, T. R. (1996). Significance of bacterial surface-active compounds in interaction of bacteria with interfaces. Microbiological reviews, 60(1), 151. Niescher, S., Wray, V., Lang, S., Kaschabek, S. R., & Schlömann, M. (2006). Identification and structural characterisation of novel trehalose dinocardiomycolates from n-alkane-grown Rhodococcus opacus 1CP. Applied microbiology and biotechnology, 70(5), 605-611. Nobre, C. R., Santana, M. F. M., Maluf, A., Cortez, F. S., Cesar, A., Pereira, C. D. S., & Turra, A. (2015). Assessment of microplastic toxicity to embryonic development of the sea urchin Lytechinus variegatus (Echinodermata: Echinoidea). Marine pollution bulletin, 92(1-2), 99-104. Obbard, R. W., Sadri, S., Wong, Y. Q., Khitun, A. A., Baker, I., & Thompson, R. C. (2014). Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth's Future, 2(6), 315-320. Olofsson, A. C., Zita, A., & Hermansson, M. (1998). Floc stability and adhesion of green-fluorescent-protein-marked bacteria to flocs in activated sludge. Microbiology, 144(2), 519-528. Osborn, A. M., & Stojkovic, S. (2014). Marine microbes in the Plastic Age. Microbiology Australia, 35(4), 207-210. Paço, A., Duarte, K., da Costa, J. P., Santos, P. S., Pereira, R., Pereira, M. E., Freitas, A. C., Duarte, A. C.& Rocha-Santos, T. A. (2017). Biodegradation of polyethylene microplastics by the marine fungus Zalerion maritimum. Science of the Total Environment, 586, 10-15. Pan, H., Feng, J., Cerniglia, C. E., & Chen, H. (2011). Effects of Orange II and Sudan III azo dyes and their metabolites on Staphylococcus aureus. Journal of industrial microbiology & biotechnology, 38(10), 1729-1738. Pant, P., & Pant, S. (2010). A review: Advances in microbial remediation of trichloroethylene (TCE). Journal of Environmental Sciences, 22(1), 116-126. Peng, F., Liu, Z., Wang, L., & Shao, Z. (2007). An oil‐degrading bacterium: Rhodococcus erythropolis strain 3C‐9 and its biosurfactants. Journal of applied microbiology, 102(6), 1603-1611. Perni, S., Preedy, E. C., & Prokopovich, P. (2014). Success and failure of colloidal approaches in adhesion of microorganisms to surfaces. Advances in colloid and interface science, 206, 265-274. Pham, C. K., Ramirez-Llodra, E., Alt, C. H., Amaro, T., Bergmann, M., Canals, M., Company, J. B., Davies, J., Duineveld, G., Galgani, F., Howell, K. L. & Huvenne, V. A. (2014). Marine litter distribution and density in European seas, from the shelves to deep basins. PloS one, 9(4), e95839. Pirnik, M. P., Atlas, R. T., & Bartha, R. (1974). Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. Journal of bacteriology, 119(3), 868-878. PlasticsEurope (2015). Plastics - the Facts 2014/2015: An analysis of European plastics production, demand and waste data. Plastic Europe. PlasticsEurope (2017). Plastics - the Facts 2017: An analysis of European plastics production, demand and waste data. Plastic Europe. Ratledge, C. (1988). Products of hydrocarbon-microorganism interaction. In Biodeterioration 7 (pp. 219-236). Springer, Dordrecht. Reisser, J., Shaw, J., Wilcox, C., Hardesty, B. D., Proietti, M., Thums, M., & Pattiaratchi, C. (2013). Marine plastic pollution in waters around Australia: characteristics, concentrations, and pathways. PloS one, 8(11), e80466. Robinson, T., McMullan, G., Marchant, R., & Nigam, P. (2001). Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresource technology, 77(3), 247-255. Rodrigues, C. J., & de Carvalho, C. C. (2015). Rhodococcus erythropolis cells adapt their fatty acid composition during biofilm formation on metallic and non-metallic surfaces. FEMS microbiology ecology, 91(12). Rojo, F. (2009). Degradation of alkanes by bacteria. Environmental microbiology,11(10), 2477-2490. Rontani, J. F., Bertrand, J. C., Blanc, F., & Giusti, G. (1986). Gas chromatography and gas chromatography/mass spectrometry applied to the determination of a new pathway of pristane degradation by a marine mixed bacterial population. Marine chemistry, 18(1), 9-16. Rosenberg, E., & Ron, E. Z. (1999). High-and low-molecular-mass microbial surfactants. Applied microbiology and biotechnology, 52(2), 154-162. Ryan, P. G., Moore, C. J., van Franeker, J. A., & Moloney, C. L. (2009). Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1526), 1999-2012. Samanta, S. K., Singh, O. V., & Jain, R. K. (2002). Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. TRENDS in Biotechnology, 20(6), 243-248. Sannasi, P., Kader, J., Othman, O., & Salmijah, S. (2009). Physical growth and biomass characterization of bacterial cells exposed to Cd (II), Cr (VI), Cu (II), Ni (II), and Pb (II). Journal of Environmental Research and Development, 4(1). Saratale, R. G., Saratale, G. D., Chang, J. S., & Govindwar, S. P. (2011). Bacterial decolorization and degradation of azo dyes: a review. Journal of the Taiwan Institute of Chemical Engineers, 42(1), 138-157. Sayavedra‐Soto, L. A., Chang, W. N., Lin, T. K., Ho, C. L., & Liu, H. S. (2006). Alkane Utilization by Rhodococcus Strain NTU‐1 Alone and in Its Natural Association with Bacillus fusiformis L‐1 and Ochrobactrum sp. Biotechnology progress, 22(5), 1368-1373. Schmidt, H. & Schulz, G. (1881). Uber benzidin (~-di-amidodiphenyl). Ann. Chem. Liebigs, 207, 320. Setälä, O., Fleming-Lehtinen, V., & Lehtiniemi, M. (2014). Ingestion and transfer of microplastics in the planktonic food web. Environmental pollution, 185, 77-83. Sheng, X., Ting, Y. P., & Pehkonen, S. O. (2008). The influence of ionic strength,nutrients and pH on bacterial adhesion to metals. Journal of Colloid and Interface Science, 321(2), 256-264. Souza, E. C., Vessoni-Penna, T. C., & de Souza Oliveira, R. P. (2014). Biosurfactant- enhanced hydrocarbon bioremediation: an overview. International biodeterioration & biodegradation, 89, 88-94. Sun, X., Li, Q., Zhu, M., Liang, J., Zheng, S., & Zhao, Y. (2017). Ingestion of microplastics by natural zooplankton groups in the northern South China Sea. Marine pollution bulletin, 115(1-2), 217-224. Tago, Y., & Aida, K. (1977). Exocellular mucopolysaccharide closely related to bacterial floc formation. Applied and environmental microbiology, 34(3), 308-314. Takeda, M., Kurane, R., Koizumi, J. I., & Nakamura, I. (1991). A protein bioflocculant produced by Rhodococcus erythropolis. Agricultural and biological chemistry, 55(10), 2663-2664. Tanabe, S. (1988). PCB problems in the future: foresight from current knowledge. Environmental pollution, 50(1-2), 5-28. Tarasova, E. V., Grishko, V. V., & Ivshina, I. B. (2017). Cell adaptations of Rhodococcus rhodochrous IEGM 66 to betulin biotransformation. Process Biochemistry, 52, 1-9. Tezuka, Y. (1969). Cation-dependent flocculation in a Flavobacterium species 3 predominant in activated sludge. Applied microbiology, 17(2), 222-226. Thamhesl, M., Apfelthaler, E., Schwartz-Zimmermann, H. E., Kunz-Vekiru, E., Krska, R., Kneifel, W., & Moll, W. D. (2015). Rhodococcus erythropolis MTHt3 biotransforms ergopeptines to lysergic acid. BMC microbiology, 15(1), 73. Thompson, R. C., Moore, C. J., Vom Saal, F. S., & Swan, S. H. (2009). Plastics, the environment and human health: current consensus and future trends. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1526), 2153-2166. Trellu, C., Mousset, E., Pechaud, Y., Huguenot, D., Van Hullebusch, E. D., Esposito, G., & Oturan, M. A. (2016). Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. Journal of hazardous materials, 306, 149-174. Ulrici, W. (2000). Contaminated soil areas, different countries and contaminants,monitoring of contaminants. Biotechnology: Environmental Processes II, 11, 5-41. United Nations Environment Programme (2001). The Stockholm Convention on Persistent Organic Pollutants. (UNEP, Nairobi) Van Beilen, J. B., & Funhoff, E. G. (2007). Alkane hydroxylases involved in microbial alkane degradation. Applied microbiology and biotechnology, 74(1), 13-21. Van Cauwenberghe, L., Vanreusel, A., Mees, J., & Janssen, C. R. (2013). Microplastic pollution in deep-sea sediments. Environmental Pollution, 182, 495-499. Van der Oost, R., Beyer, J., & Vermeulen, N. P. (2003). Fish bioaccumulation and biomarkers in environmental risk assessment: a review. Environmental toxicology and pharmacology, 13(2), 57-149. Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and molecular biology reviews, 67(4), 503-549. Van Loosdrecht, M. C., Norde, W., Lyklema, J., & Zehnder, A. J. (1990). Hydrophobic and electrostatic parameters in bacterial adhesion. Aquatic sciences, 52(1), 103-114. Vandermeersch, G., Van Cauwenberghe, L., Janssen, C. R., Marques, A., Granby, K., Fait, G., Kotterman, M. J. J., Diogène, J., Bekaert, K., Robbens, J. & Devriese, L. (2015). A critical view on microplastic quantification in aquatic organisms. Environmental research, 143, 46-55. Varjani, S. J. (2017). Microbial degradation of petroleum hydrocarbons. Bioresource technology, 223, 277-286. Varjani, S. J., & Upasani, V. N. (2016). Biodegradation of petroleum hydrocarbons by oleophilic strain of Pseudomonas aeruginosa NCIM 5514. Bioresource technology, 222, 195-201. Varjani, S. J. (2014). Hydrocarbon degrading and biosurfactants (bio-emulsifiers)producing bacteria from petroleum oil wells. (Doctoral dissertation, Ph. D. thesis, Kadi Sarva Vishwavidyalaya, Gandhinagar, India). Vidali, M. (2001). Bioremediation. an overview. Pure and Applied Chemistry, 73(7), 1163-1172. Volkering, F., Breure, A. M., & Rulkens, W. H. (1997). Microbiological aspects of surfactant use for biological soil remediation. Biodegradation, 8(6), 401-417. Von Moos, N., Burkhardt-Holm, P., & Köhler, A. (2012). Uptake and effects of microplastics on cells and tissue of the blue mussel Mytilus edulis L. after an experimental exposure. Environmental science & technology, 46(20), 11327-11335. Watkinson, R. J., & Morgan, P. (1991). Physiology of aliphatic hydrocarbon-degrading microorganisms. In Physiology of Biodegradative Microorganisms (pp. 79-92). Springer, Dordrecht. Watts, A. J., Urbina, M. A., Corr, S., Lewis, C., & Galloway, T. S. (2015). Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environmental science & technology, 49(24), 14597-14604. Wentzel, A., Ellingsen, T. E., Kotlar, H. K., Zotchev, S. B., & Throne-Holst, M. (2007). Bacterial metabolism of long-chain n-alkanes. Applied microbiology and biotechnology, 76(6), 1209-1221. Whyte, L. G., Slagman, S. J., Pietrantonio, F., Bourbonniere, L., Koval, S. F., Lawrence, J. R., Inniss, W. E. & Greer, C. W. (1999). Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Applied and environmental microbiology, 65(7), 2961-2968. Wiącek, A. E. (2007). Electrokinetic properties of n-tetradecane/lecithin solution emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 293(1-3), 20-27. Wright, S. L., Thompson, R. C., & Galloway, T. S. (2013). The physical impacts of microplastics on marine organisms: a review. Environmental pollution, 178, 483-492. Wyness, A., Paterson, D. M., Defew, E., Stutter, M., & Avery, L. (2018). The role of zeta potential in the adhesion of E. coli to suspended intertidal sediments. Water research, 142, 159-166. Yao, Z., Li, J., Xie, H., & Yu, C. (2012). Review on remediation technologies of soil contaminated by heavy metals. Procedia Environmental Sciences, 16, 722-729. Zettler, E. R., Mincer, T. J., & Amaral-Zettler, L. A. (2013). Life in the “plastisphere”: microbial communities on plastic marine debris. Environmental science & technology, 47(13), 7137-7146. Zhang, C., Chen, X., Wang, J., & Tan, L. (2017). Toxic effects of microplastic on marine microalgae Skeletonema costatum: interactions between microplastic and algae. Environmental pollution, 220, 1282-1288. Zhang, H., Ma, D., Qiu, R., Tang, Y., & Du, C. (2017). Non-thermal plasma technology for organic contaminated soil remediation: A review. Chemical Engineering Journal, 313, 157-170. Zhao, S., Zhu, L., Wang, T., & Li, D. (2014). Suspended microplastics in the surface water of the Yangtze Estuary System, China: first observations on occurrence, d istribution. Marine pollution bulletin, 86(1-2), 562-568. Zopf, W. (1891). Über Ausscheidung von Fettfarbstoffen Lipochromen seitens gewisser Spaltpilze. 林詩凱. (2005). 利用混合菌株 (TN-4) 與單一菌株 (Rhodococcus erythropolis NTU-1) 處理正十六烷之研究. 臺灣大學化學工程學研究所碩士論文. 張緯農. (2003). 利用混合菌株 (TN-4) 處理異十九烷之硏究.臺灣大學化學工程學 研究所碩士論文. 張緯農. (2009). Rhodococcus erythropois 對碳氫化合物生物降解與其細胞聚集現象 之研究. 臺灣大學化學工程學研究所博士論文. 張蘭英, 劉娜, & 孫立波. (2007). 現代環境微生物技術. 梁茂實. (2007). 微生物生物復育時細胞聚集與氫離子釋放的應用. 臺灣大學化學工程學研究所碩士論文. 劉志文. (2007). 微生物生物復育過程中細胞聚集現象之研究. 臺灣大學化學工程 學研究所碩士論文. 劉志文. (2011). Rhodococcus erythropolis NTU-1 菌株對石油污染物之生物降解及 生物吸附現象之應用. 臺灣大學化學工程學研究所博士論文. 盧曉鳳. (2000). 油品之生物分解: 煉油廠廢水之實際應用. 臺灣大學化學工程學研 究所碩士論文. 謝惠敏. (2011). 利用 Rhodococcus erythropolis NTU-1 細胞聚集現象移除正十六 烷 . 臺灣大學化學工程學研究所碩士論文 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77472 | - |
dc.description.abstract | 本實驗的研究目的主要在於探討利用細胞結塊的方式快速、大量地移除水中疏水性汙染物。
本實驗分別使用Rhodococcus erythropolis NTU-1以及未知的微生物NTU-X進行疏水性汙染物移除實驗,所用的兩種疏水性汙染物則為可溶於其他疏水性有機化合物的Sudan I(蘇丹紅)和不易溶於其他疏水性有機化合物的聚乙烯塑膠微粒。 在Sudan I移除實驗中發現,NTU-1和NTU-X皆能在短時間內移除大量的Sudan I:在700 ppm Sudan I的條件下,3天內,90%以上的Sudan I能被移除。移除Sudan I主要是藉由細胞聚集包覆Sudan I再將含有高濃度Sudan I的細胞結塊以物理法撈除,而非利用生物降解分解Sudan I,故能在短時間內移除大量汙染物。 在塑膠微粒移除實驗中,NTU-1和NTU-X也能在短時間內移除大量的塑膠微粒,且對不同粒徑的塑膠微粒也都具有良好的移除效果:700 ppm PE塑膠微粒的條件下,3天內,80%以上的PE塑膠微粒可被移除。其移除原理也是利用細胞聚集包覆PE塑膠微粒再將含有高濃度PE塑膠微粒的細胞結塊以物理法撈除。 利用NTU-1和NTU-X在正十六烷的環境下生長會產生細胞結塊的特性來移除水中疏水性汙染物,結合了物理移除及生物移除法之優點,能在短時間內移除高濃度之汙染物,此法為移除水中疏水性汙染物提供一個相當具競爭及發展性之移除方法。 | zh_TW |
dc.description.abstract | This thesis focused on utilizing biofloccule formation of R. erythropolis NTU-1 and NTU-X to removal of hydrophobic pollutants in aqueous systems.
In this study, two different kinds of hydrophobic pollutants were chosen. Sudan I, a kind of diazo dye, was used to represent oil-soluble hydrophobic pollutants in aqueous solutions. On the other hand, PE microplastics were selected to represent oil-insoluble hydrophobic pollutants in aqueous solutions. Results showed that both NTU-1 and NTU-X could rapidly remove high concentrations of containments. At least 90% Sudan I and 80% PE microplastics at the concentration of 700 ppm could be removed in 3 days. The main mechanism of removal of hydrophobic compounds is the aggregation of containments and cells, and followed subsequently physical separation. The utilizing of NTU-1 and NTU-X provided a perspective technique that had advantages of both physical and biological methods for remediation of removing hydrophobic compounds in aqueous systems. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:03:39Z (GMT). No. of bitstreams: 1 ntu-107-R05524059-1.pdf: 4390776 bytes, checksum: f2a3bfaace262aae85a6ffd139dbbd36 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 摘要…….. I
Abstract.... II 表目錄….. VI 圖目錄….. VII 第一章 緒論 1 1.1 前言 1 1.2 研究目的及論文綱要 2 第二章 文獻回顧 3 2.1 疏水性化合物簡介及其對環境和生態之影響 3 2.1.1 石油碳氫化合物(Petroleum Hydrocarbons, PHCs) 3 2.1.2 多環芳香烴(Polycyclic Aromatic Hydrocarbons, PAHs) 4 2.1.3 多氯聯苯(Polychlorinated Biphenyl, PCBs) 6 2.1.4 疏水性偶氮染料(Azo dye) 7 2.2 處理疏水性汙染物之方法 8 2.3 塑膠微粒介紹和其對環境、生物之影響 11 2.3.1 塑膠微粒介紹 11 2.3.2 塑膠微粒對生物之影響 19 2.4 微生物攝取疏水性碳源之模式 29 2.5 微生物烷類之代謝途徑 34 2.5.1 直鏈烷之氧化機制 34 2.5.2 支鏈烷之氧化機制 37 2.6 實驗菌株Rhodococcus erythropolis介紹 42 2.6.1 Rhodococcus 菌屬簡介 42 2.6.2 Rhodococcus erythropolis之特性及應用 46 2.7 微生物之細胞聚集現象 51 第三章 實驗材料與方法 54 3.1 實驗菌株 54 3.1.1 Rhodococcus erythropolis NTU-1 54 3.1.2 NTU-X 56 3.2 培養基組成與配製 57 3.2.1 液態礦物培養基 57 3.2.2 菌株活化培養基 59 3.2.3 菌株保存培養基 60 3.2.4 菌株篩選培養基 61 3.2.5 計數平板培養基 62 3.3 實驗方法 63 3.3.1 菌株的活化及生長曲線 63 3.3.2 礦物培養基菌液製作 63 3.3.3 Sudan I(蘇丹紅)之移除實驗 64 3.3.4 塑膠微粒之移除實驗 67 3.3.5 分離、篩選、純化NTU-X 70 3.4 實驗藥品與器材 71 3.4.1 實驗藥品 71 3.4.2 實驗儀器 72 第四章 結果與討論 73 4.1 利用NTU-1移除水中Sudan I之汙染 74 4.1.1 NTU-1在含有Sudan I的培養基之生長趨勢 74 4.1.2 NTU-1對不同濃度Sudan I之移除實驗 83 4.2 利用NTU-X移除水中Sudan I之汙染 90 4.2.1 NTU-X在含有Sudan I的培養基之生長趨勢 90 4.2.2 NTU-X對不同濃度Sudan I之移除實驗 96 4.2.3 NTU-X在不同初始培養基pH值之Sudan I移除實驗 102 4.3 NTU-1、NTU-X和其他微生物於Sudan I移除實驗之比較 108 4.4 利用NTU-1移除水中塑膠微粒之汙染 111 4.4.1 NTU-1對不同粒徑塑膠微粒之復育實驗 112 4.4.2 NTU-1對不同濃度塑膠微粒之復育實驗 119 4.5 利用NTU-X移除水中塑膠微粒之汙染 124 4.5.1 NTU-X對不同粒徑塑膠微粒之移除實驗 124 4.5.2 NTU-X對不同濃度粒徑塑膠微粒之復育實驗 132 4.6 NTU-1、NTU-X與其他微生物於塑膠微粒移除實驗之比較 136 第五章 總結 140 參考文獻 143 附錄1 生長曲線 166 附錄2 校正曲線 167 | |
dc.language.iso | zh-TW | |
dc.title | 利用微生物細胞聚集現象移除水中疏水性汙染物 | zh_TW |
dc.title | Removal of Hydrophobic Pollutants in Aqueous Solutions by Microorganism Aggregation | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 江佳穎(Chia-Ying Chiang),鄭玉佳(Yu-Chia Cheng) | |
dc.subject.keyword | NTU-1,NTU-X,疏水性汙染物,Sudan I,聚乙烯塑膠微粒,復育方法, | zh_TW |
dc.subject.keyword | NTU-1,NTU-X,hydrophobic pollutants,Sudan I,microplastics,remediation, | en |
dc.relation.page | 169 | |
dc.identifier.doi | 10.6342/NTU201802552 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-08-18 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 化學工程學研究所 | zh_TW |
顯示於系所單位: | 化學工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05524059-1.pdf 目前未授權公開取用 | 4.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。