Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77454
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張能復
dc.contributor.authorPei-Ying Hsiehen
dc.contributor.author謝佩穎zh_TW
dc.date.accessioned2021-07-10T22:02:45Z-
dc.date.available2021-07-10T22:02:45Z-
dc.date.copyright2018-10-31
dc.date.issued2018
dc.date.submitted2018-10-24
dc.identifier.citation英文部分
Alesii, G. (2003). Value at Risk in Real Option Analysis. Universit a degli Studi L'Aquila Facolt_a di EconomiaDip. di Sistemi ed Istituzioni per l'Economia.
Brogan, J., & Venkateswaran, S. R. (1992, May). Diverse choices for electric and hybrid motor vehicles: implications for national planners. In Stockholm, Sweden: Presented at the Urban Electric Vehicle Conference.
Brooks, C., & Persand, G. (2002). Model choice and value-at-risk performance. Financial Analysts Journal, 58(5), 87-97.
Chiu, C. L., Lee, M. C., & Hung, J. C. (2005). Estimation of value-at-risk under jump dynamics and asymmetric information. Applied Financial Economics, 15(15), 1095-1106.
Dann, T., & Wang, D. (1992). Volatile organic compound measurements in Canadian urban and rural areas: 1989-1990. Paper 92-75. In 85th Annual Meeting of Air and Waste Management Association, Kansas City, MO.
Elgowainy, A., Han, J., Cai, H., Wang, M., Forman, G. S., & DiVita, V. B. (2014). Energy efficiency and greenhouse gas emission intensity of petroleum products at US refineries. Environmental science & technology, 48(13), 7612-7624.
Engel, J., & Gizycki, M. (1999). Conservatism, accuracy and efficiency: comparing value-at-risk models. APRA.
EPA. (1996). Compilation of Air Pollutant Emission Factor. San Francisco: U.S. Environmental Protection Agency.
Forrester, J. W., & Senge, P. M. (1980). Tests for building confidence in system dynamics models. System dynamics, TIMS studies in management sciences, 14, 209-228.
Fuss, S., Szolgayová, J., Khabarov, N., & Obersteiner, M. (2012). Renewables and climate change mitigation: Irreversible energy investment under uncertainty and portfolio effects. Energy Policy, 40, 59-68.
Ghanadan, R., & Koomey, J. G. (2005). Using energy scenarios to explore alternative energy pathways in California. Energy Policy, 33(9), 1117-1142.
Haith, D. A. (1982). Environmental systems optimization.
Hendricks, D. (1996). Evaluation of value-at-risk models using historical data.
Huang, Y. C., & Lin, B. J. (2004). Value-at-risk analysis for Taiwan stock index futures: fat tails and conditional asymmetries in return innovations. Review of Quantitative Finance and Accounting, 22(2), 79-95.
Ioannou, A., Angus, A., & Brennan, F. (2017). Risk-based methods for sustainable energy system planning: A review. Renewable and Sustainable Energy Reviews, 74, 602-615.
IPCC. (2014). Fifth Assessment Report. Switzerland: United Nations Intergovernmental Panel on Climate Change.
Jäckel, P. (2002). Monte Carlo methods in finance. J. Wiley.
Kaiper, G. V. (2004). US Energy flow trends-2002. United States. Department of Energy.
Ke, W., Zhang, S., He, X., Wu, Y., & Hao, J. (2017). Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress. Applied energy, 188, 367-377.
Li, M., Zhang, X., & Li, G. (2016). A comparative assessment of battery and fuel cell electric vehicles using a well-to-wheel analysis. Energy, 94, 693-704.
Lopez, J. A. (1999). Methods for evaluating value-at-risk estimates. Economic review, 2, 3-17.
Matthew, G., Jr., Nuttall, W. J., Mestel, B., & Dooley, L. S. (2017). A dynamic simulation of low-carbon policy influences on endogenous electricity demand in an isolated island system. Energy Policy, 109, 121-131. doi:https://doi.org/10.1016/j.enpol.2017.06.060
McElroy, M. B. (2010). Energy: Perspectives, Problems, and Prospects. OUP USA.
Meadows, D. H. (2008). Thinking in systems: A primer. chelsea green publishing.
Murtishaw, S., Price, L., Masanet, E., Worrell, E., & Sahtaye, J. (2005). Development of energy balances for the state of California.
Onat, N. C., Kucukvar, M., & Tatari, O. (2015). Conventional, hybrid, plug-in hybrid or electric vehicles? State-based comparative carbon and energy footprint analysis in the United States. Applied Energy, 150, 36-49.
Onn, C. C., Mohd, N. S., Yuen, C. W., Loo, S. C., Koting, S., Rashid, A. F. A., ... & Yusoff, S. (2017). Greenhouse gas emissions associated with electric vehicle charging: The impact of electricity generation mix in a developing country. Transportation Research Part D: Transport and Environment.
Philippe, J. (2001). Value at risk: the new benchmark for managing financial risk. NY: McGraw-Hill Professional.
Robert, Q., & Enterprises, R. (1999). electric and hybrid vehicles: an overview of the benefits, challenges, and technologies, Technical Paper, June.
Sterman, J. D. (2000). Business dynamics: systems thinking and modeling for a complex world (No. HD30. 2 S7835 2000).
Struben, J., & Sterman, J. D. (2008). Transition challenges for alternative fuel vehicle and transportation systems. Environment and Planning B: Planning and Design, 35(6), 1070-1097.
Vithayasrichareon, P., & MacGill, I. F. (2012). A Monte Carlo based decision-support tool for assessing generation portfolios in future carbon constrained electricity industries. Energy policy, 41, 374-392.
Weijermars, R., Taylor, P., Bahn, O., Das, S. R., & Wei, Y. M. (2012). Review of models and actors in energy mix optimization–can leader visions and decisions align with optimum model strategies for our future energy systems?. Energy Strategy Reviews, 1(1), 5-18.
Wipplinger, E. (2007). Philippe Jorion: Value at Risk-The New Benchmark for Managing Financial Risk. Financial Markets and Portfolio Management, 21(3), 397.
Wu, Y., & Zhang, L. (2017). Can the development of electric vehicles reduce the emission of air pollutants and greenhouse gases in developing countries?. Transportation Research Part D: Transport and Environment, 51, 129-145.
Wu, Y., Wang, M. Q., Sharer, P. B., & Rousseau, A. (2006). Well-to-wheels results of energy use, greenhouse gas emissions, and criteria air pollutant emissions of selected vehicle/fuel systems (No. 2006-01-0377). SAE Technical Paper.
Zhang, X., Chen, X., & Zhang, X. (2018). The impact of exposure to air pollution on cognitive performance. Proceedings of the National Academy of Sciences. doi:10.1073/pnas.1809474115

中文部分:
中油. (2017). 永續報告書. 高雄市: 台灣中油股份有限公司.
交通部統計查詢網. (2018). 取自 https://stat.motc.gov.tw/
行政院. (2018).行政院空氣污染防制行動方案(紅害減半大作戰). 取自 https://www.ey.gov.tw/Page/448DE008087A1971/5638596f-c460-4a12-9e62-d623d34f67d1
李雲楓, 程家瑛, 鄭宗正. (2004年11月). 機車燃油經濟性影響因子研究. 機械工業, 頁 169-177.
政府資料開放平臺. (2018). 電力公司近三年每日尖峰備轉容量率. 取自 https://data.gov.tw/dataset/24945
胡明輝, 鄭宗正, 陳永勳, 曾美境. (2006). 機車年平均行駛里程調查統計分析. 2006台灣環境資源永續發展研討會, 台灣環境資源永續發展協會.
陳志寬. (2010). 應用系統動態模式 STELLA 模擬台灣交通運輸部門溫室氣體與空氣污染物之整合減量效益 (Doctoral dissertation, 國立台北科技大學).
景丰科技股份有限公司. (2018). 港區及其它非公路運輸移動源排放管理計畫. 台北: 行政院環保署.
楊朝仲, & 土木工程. (2007). 系統動力學: 思維與應用. 五南.
經濟部能源局. (2018),106 年全國電力資源供需報告.
臺電. (2018). 今日電力資訊 - 電力供需資訊. 取自 https://www.taipower.com.tw/tc/page.aspx?mid=206&cid=405&cchk=e1726094-d08c-431e-abee-05665ab1c974
臺電企劃處. (2017). 105年統計年報. 台北市: 臺灣電力公司.
臺電環境保護處. (2017). 火力發電廠空氣污染改善之績效指標. 台北市: 台灣電力公司.
環保署空保處. (2017). 線源排放量技術手冊. 台北市: 行政院環保署.
謝佩穎. (2005). 能源流分析應用於空污減量策略之探討. 臺灣大學環境工程學研究所學位論文, 1-133.
蘇振維, 張瓊文, 楊幼文, 陳柏君, 胡以琴, 溫蓓章, . . . 鍾佩儒. (2014). 車輛動態能源消耗與溫室氣體排放特性之研究—以機車為例. 台北: 交通部運輸研究所.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77454-
dc.description.abstract本研究建立系統動態評估模式- Regulated Emissions of Energy Flow in Scooter Model (REEFS),評估目前發展潛力最大的換電式普通重型電動機車的發展,對電力系統之衝擊與空污減量之成效。REEFS其優點為擴充彈性大、評估方法具有系統觀點可全面評估,透過情境分析可探討相關情境對政策目標之影響及衝擊,可作為政策擬定之參考依據。
本研究內容主要有三項:1.以系統動力學建立普通重型電動機車與普通重型燃油機車數量轉移子模式;2.建立換電式電動機車新增用電公式,以風險值(VaR value)及蒙地卡羅模擬(Monte Carlo method)評估換電式電動車對尖峰能源系統的衝擊及潛在效益;3.透過能源流分析建立電動機車與燃油機車之能源鏈空污減量評估公式及本土排放係數,考量能源轉換效率及能源轉型規劃、子模式之車輛轉型情境,探討其傳統空氣污染物(VOCs、SOx、NOx、TSP)及CO2e之逐年減量變化,並建立空污減量之系統動態評估模型(REEFS)。
能源流分析結果顯示,市區的普通重型電動機車(平均時速20km/hr)的排放係數較普通重型燃油機車減少92.2%的二氧化碳排放,99.99%的VOCs排放、98.2%NOx排放、18.8%SOx排放以及15.3%TSP排放。採用相同的燃料用油,若考慮電動機車的電力來自於燃油電廠,電動機車在台灣的能源流效率比燃油機車高58%。因此,在目前台灣的電力結構下,推動電動機車,可以達成節能減碳與空污減量。
若搭配能源局目前的能源轉型規劃,在2025年的電力結構下,電動機車相較於燃油機車傳統空污及CO2e排放的減量率皆將會提高。其中CO2e的減量率從現在的92.2%提高到93.7%、VOCs的減量率從現在的99.99%提高到100.00%、NOx的減量率從現在的98.2%提高到98.7%、SOx的減量率將會從現在的18.8%提高到57.9%、TSP的減量率從現在的15.3%提高到15.4%、總傳統空氣污染減量率可從95.6%提高到95.8%。
根據蒙地卡羅模擬結果,當換電式電動機車車輛數發展達到128萬輛時,在最差的情況下,電力系統滿足備轉容量率大於6%的機率只有69%,在95%的信賴區間下,其備轉容量率將會開始低於2.9%。但若考慮交換站中之電池的儲電能力,電力系統滿足備轉容量率大於6%的機率將高達92%,在95%的信賴區間下,隨著車輛數增加,當車輛數超過128萬輛時,其備轉容量率將會開始大於6 %。此研究結果顯示出車輛數與換電站數量的風險評估,可作為早期評估時之決策參考依據,並可應用於後續電力調整之政策評估參數。
推動電動車之政策將改變台灣能源與空污之結構。由於不同的熱機、燃料的成分將直接影響空污的排放特性,因此,當能源途徑改變時,其污染排放將有本質、及時空分布上的改變,是以本研究應用系統動力學與能源流分析,建立電動車與燃油車系統性比較架構之REEFS評估模式、提出換電式電動機車對於新增用電及尖峰用電系統的衝擊評估新公式,考量新增電力需求及換電站儲能系統對於尖峰負載的影響,透過參數之最佳機率密度分布、風險值、蒙地卡羅模擬、兩個極端情境、參數敏感度分析等分析方法,探討換電式電動機車發展對電力系統的可能影響,可提供系統性觀點之空污排放減量評估,本研究之方法論可供相關單位後續延伸應用參考。
以目前台灣的能源鏈結構,電動機車由於載具本身效率較高、考量上游的整體能源鏈,仍具有省能減碳之效益。車速的敏感度分析發現,低速(車速20 km/hr)的電動機車相較於燃油機車,排放的VOCs、SOx、NOx、TSP、CO2e皆具有排放減量效果。當平均車速為40km/hr時,電動機車相較於燃油機車,TSP、NOx、VOCs的減量率大致相同,分別減量14.8%、97.4%、99.98%,但SOx的能源鏈排放係數將增加136.2%,CO2e的減量率從92.2%降到76.8%。然而,若發電業的SOx排放係數降至100mg/kWh,則電動機車的 SOx 能源鏈排放係數將低於燃油機車的係數。
zh_TW
dc.description.abstractThis study proposes a new system dynamic model- Regulated Emissions of Energy Flow in Scooter Model (REEFS), and a formula to estimate the electricity demand from battery-swapping stations (BSSs) at peak hours, combining parameters of the number of battery-swapping electric scooters (NBSES) and the number of scooters served per BSS. REEFS is a novel decision-support analysis tool for assessing future impact on energy system and the reduction of air pollution with an increasing NBSES in Taiwan. The VaR (Value at Risk) values and Monte Carlo method are combined to assess key variables of NBSES and potential benefits. To explore changes of air pollution emission in the transition of electric scooters (ES) considering energy transition, this research establishes a localized dynamic system model (REEFS). The calculation of emission factors (EF) of criteria air pollutants and greenhouse gases for Heavy-duty Gasoline-powered Scooters (GSH) and Heavy-duty ES (ESH) is performed with energy flow analysis.
This study finds that the probability for the percentage of operating reserve (OR), R, beyond 6.0 percent is only 86.3% in the past four years. When NBSES reaches 1.28 million, the probability for R beyond 6.0 percent is down to 69.0% and R is 2.9% (95%CI) without considering the storage ability of BSSs. However, R could be higher than 6.0% (95%CI) if considering the storage ability of BSSs.
Compared with the GSH, the EFs of TSP, SOx, NOx, VOCs, and CO2e for ESH reduce by, respectively, 15.3%, 18.8%, 98.2%, 99.99%, and 92.2% per kilometre travelled at 20km/hr in the city according to results from the energy flow analysis in Taiwan,; if the average speed is 40km/hr, compared with the GSH, the EFs of TSP, SOx, NOx, VOCs, and CO2e for ESH reduce by, respectively, 14.8%, -136.2%, 97.4%, 99.98%, and 76.8% per kilometre travelled. Although the SOx EF for ESH increase by 136.2% of that for GSH, the rate of increment for ESH would be down to 22.2% in 2025. If the SOx emissions intensity of electricity reduces to 100 mg/kWh, the SOx EF for ESH will be lower than that for GSH in suburbs.
System dynamics and energy flow analysis can provide effective analysis about air pollution emissions for distinct mitigation scenarios and these findings are helpful to local authorities for air quality management.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T22:02:45Z (GMT). No. of bitstreams: 1
ntu-107-D00541007-1.pdf: 4127337 bytes, checksum: ea0eb8907415700cea5d5b0a3fc5b4ca (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致 謝 .............................i
摘 要 .............................ii
ABSTRACT.............................iv
目 錄 .............................vi
圖目錄 .............................ix
表目錄 .............................xiii
第1章 簡介.............................1
1.1 研究緣起 .............................1
1.1.1 台灣機車分類及其市場保有量、新登記數量之變化及趨勢.............................1
1.1.2 熱機、熱效率與污染排放特性.............................4
1.1.3 能源流分析.............................7
1.1.4 電動車、能源系統衝擊:風險值與蒙地卡羅模擬.............................13
1.1.5 系統動力學.............................14
1.2 研究目的.............................15
1.2.1 研究項目.............................18
1.2.2 研究主要貢獻與政策意涵.............................19
第2章 方法論與研究步驟.............................22
2.1 研究流程.............................22
2.2 子模式建模邏輯.............................24
2.2.1 普通重型電動機車車輛結構研究、影響市占率關鍵因素及車輛轉型子模式建立.............................24
2.2.2 以VaR、Monte Carlo method研究普通重型電動機車發展對於尖峰電力系統之衝擊.............................29
2.2.3 以能源流分析建立電動機車空污減量、減碳評估公式與本土排放
係數.............................33
2.3 情境設計及資料說明.............................43
2.3.1 電力系統衝擊評估:最差及最佳情境探討.............................43
2.3.2 能源流分析比較:目前與未來電力結構情境、逐年變化探討.............................43
2.4 建立REEFS動態評估模型.............................46
2.5 研究限制.............................64
第3章 結果與討論.............................66
3.1 電力系統之影響評估.............................66
3.1.1 情境1、2結果.............................69
3.1.2 敏感度分析(1):不同尖峰負載之分析年度對於風險值之影響.............................77
3.1.3 敏感度分析(2):交換站電池於尖峰時刻需充電比例對於電力系統可承受發展之最高車輛數之影響.............................83
3.2 能源流分析.............................84
3.2.1 情境1、2能源鏈排放係數比較.............................84
3.2.2 情境1敏感度分析(1):能源結構變化對效率提升之影響.............................93
3.2.3 情境1敏感度分析(2):市區平均車速20 km/hr或40 km/hr對於CAPs與CO2e減量、效率提升之影響.............................94
3.3 應用REEFS評估電動機車空污減量.............................100
3.3.1 情境3敏感度分析:平均車速20 km/hr或40 km/hr對於CAPs及
CO2e逐年減量效益之影響.............................103
3.3.2 情境3敏感度分析:平均車速20 km/hr及40 km/hr、policy factor為5及10對於CAPs及CO2e年排放量之影響.............................105
3.3.3 因果樹圖分析.............................109
第4章 結論與建議.............................115
4.1 能源流分析與應用REEFS評估電動機車之空污減量、減碳效果.............................116
4.2 電力系統衝擊評估分析.............................119
4.3 評估方法總整理.............................120
4.4 REEFS主要應用角色、功能及適用性.............................122
4.5 未來研究方向.............................123
參考文獻.............................126
附錄1. 機車定義.............................132
附錄2. 縮寫中英對照表.............................133
附錄3. REEFS sub-model 2.............................137
dc.language.isozh-TW
dc.title以系統動力學模式結合能源流分析評估台灣電動機車發展對空污減量及能源系統之衝擊zh_TW
dc.titleA system dynamic simulation for impacts of electric scooters development on air pollutions and energy system in Taiwanen
dc.typeThesis
dc.date.schoolyear107-1
dc.description.degree博士
dc.contributor.coadvisor吳光鐘,李世光
dc.contributor.oralexamcommittee楊鏡堂,林文印,余泰毅
dc.subject.keyword電動機車,能源流分析,系統動力學,風險值,蒙地卡羅模擬,zh_TW
dc.subject.keywordElectric scooters,Energy flow analysis,System dynamic,Value-at-risk,Monte Carlo method,en
dc.relation.page138
dc.identifier.doi10.6342/NTU201804243
dc.rights.note未授權
dc.date.accepted2018-10-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-D00541007-1.pdf
  目前未授權公開取用
4.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved