請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77446
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳建甫 | |
dc.contributor.author | Tzu-Yu Chang | en |
dc.contributor.author | 張慈友 | zh_TW |
dc.date.accessioned | 2021-07-10T22:02:21Z | - |
dc.date.available | 2021-07-10T22:02:21Z | - |
dc.date.copyright | 2018-12-13 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-12-13 | |
dc.identifier.citation | [1] W. D. Nordhaus, 'To slow or not to slow: the economics of the greenhouse effect,' Econ. J. , vol. 101, no. 407, pp. 920-937, 1991.
[2] J. P. Painuly, 'Barriers to renewable energy penetration; a framework for analysis,' Renew. energy, vol. 24, no. 1, pp. 73-89, 2001. [3] T. I. Lee et al., 'High‐Power Density Piezoelectric Energy Harvesting Using Radially Strained Ultrathin Trigonal Tellurium Nanowire Assembly,' Adv. Mater. , vol. 25, no. 21, pp. 2920-2925, 2013. [4] G. Zhu et al., 'Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator,' Nano Lett. , vol. 13, no. 2, pp. 847-853, 2013. [5] J.-J. Feng et al., 'Novel Au− Ag hybrid device for electrochemical Se (R) R spectroscopy in a wide potential and spectral range,' Nano Lett. , vol. 9, no. 1, pp. 298-303, 2008. [6] J. J. Feng, U. Gernert, P. Hildebrandt, and I. M. Weidinger, 'Induced SER‐Activity in Nanostructured Ag–Silica–Au Supports via Long‐Range Plasmon Coupling,' Adv. Funct. Mater. , vol. 20, no. 12, pp. 1954-1961, 2010. [7] B. Wiley, Y. Sun, and Y. Xia, 'Synthesis of silver nanostructures with controlled shapes and properties,' Acc. Chem. Res. , vol. 40, no. 10, pp. 1067-1076, 2007. [8] Y. M. Fang et al., 'Facile electrochemical preparation of Ag nanothorns and their growth mechanism,' Chem. Eur. J. , vol. 16, no. 23, pp. 6766-6770, 2010. [9] R. Narayanan and M. A. El-Sayed, 'Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution,' Nano letters, vol. 4, no. 7, pp. 1343-1348, 2004. [10] C. Liu et al., 'Static electricity powered copper oxide nanowire microbicidal electroporation for water disinfection,' Nano Lett. , vol. 14, no. 10, pp. 5603-5608, 2014. [11] F.-R. Fan, Z.-Q. Tian, and Z. L. Wang, 'Flexible triboelectric generator,' Nano Lett. , vol. 1, no. 2, pp. 328-334, 2012. [12] G. Zhu, A. C. Wang, Y. Liu, Y. Zhou, and Z. L. Wang, 'Functional electrical stimulation by nanogenerator with 58 V output voltage,' Nano Lett. , vol. 12, no. 6, pp. 3086-3090, 2012. [13] Y. Feng et al., 'Self-powered electrostatic filter with enhanced photocatalytic degradation of formaldehyde based on built-in triboelectric nanogenerators,' ACS Nano, vol. 11, no. 12, pp. 12411-12418, 2017. [14] Z. L. Wang, J. Chen, and L. Lin, 'Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors,' Energy Environ. Sci. , vol. 8, no. 8, pp. 2250-2282, 2015. [15] Z. L. Wang, 'Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors,' ACS Nano, vol. 7, no. 11, pp. 9533-9557, 2013. [16] S. Wang, L. Lin, Y. Xie, Q. Jing, S. Niu, and Z. L. Wang, 'Sliding-triboelectric nanogenerators based on in-plane charge-separation mechanism,' Nano Lett. , vol. 13, no. 5, pp. 2226-2233, 2013. [17] Y. Yang et al., 'Human skin based triboelectric nanogenerators for harvesting biomechanical energy and as self-powered active tactile sensor system,' ACS 31 Nano, vol. 7, no. 10, pp. 9213-9222, 2013. [18] H. Baytekin, A. Patashinski, M. Branicki, B. Baytekin, S. Soh, and B. A. Grzybowski, 'The mosaic of surface charge in contact electrification,' Science, vol. 333, no. 6040, pp. 308-312, 2011. [19] R. G. Horn, D. Smith, and A. Grabbe, 'Contact electrification induced by monolayer modification of a surface and relation to acid–base interactions,' Nature, vol. 366, no. 6454, pp. 442, 1993. [20] R. G. Horn and D. T. Smith, 'Contact electrification and adhesion between dissimilar materials,' Science, vol. 256, no. 5055, pp. 362-364, 1992. [21] L. S. McCarty and G. M. Whitesides, 'Electrostatic charging due to separation of ions at interfaces: contact electrification of ionic electrets,' Angew. Chem. , vol. 47, no. 12, pp. 2188-2207, 2008. [22] S. Wang, L. Lin, and Z. L. Wang, 'Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics,' Nano Lett. , vol. 12, no. 12, pp. 6339-6346, 2012. [23] S. Niu et al., 'Theoretical study of contact-mode triboelectric nanogenerators as an effective power source,' Energy Environ. Sci. , vol. 6, no. 12, pp. 3576-3583, 2013. [24] G. Zhu et al., 'Triboelectric-generator-driven pulse electrodeposition for micropatterning,' Nano Lett. , vol. 12, no. 9, pp. 4960-4965, 2012. [25] X.-S. Zhang et al., 'Frequency-multiplication high-output triboelectric nanogenerator for sustainably powering biomedical microsystems,' Nano Lett. , vol. 13, no. 3, pp. 1168-1172, 2013. [26] L. Lin et al., 'Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging,' ACS Nano, vol. 7, no. 9, pp. 8266-8274, 2013. [27] S. Niu et al., 'Theory of sliding‐mode triboelectric nanogenerators,' Adv. Mater. , vol. 25, no. 43, pp. 6184-6193, 2013. [28] Y. Xie et al., 'Rotary triboelectric nanogenerator based on a hybridized mechanism for harvesting wind energy,' ACS Nano, vol. 7, no. 8, pp. 7119-7125, 2013. [29] Y. Xie et al., 'Multi-layered disk triboelectric nanogenerator for harvesting hydropower,' Nano Energy, vol. 6, pp. 129-136, 2014. [30] Y. S. Zhou et al., 'Nanometer Resolution Self‐Powered Static and Dynamic Motion Sensor Based on Micro‐Grated Triboelectrification,' Adv. Mater. , vol. 26, no. 11, pp. 1719-1724, 2014. [31] Q. Jing et al., 'Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions,' Nano Energy, vol. 10, pp. 305-312, 2014. [32] G. Zhu et al., 'Linear-grating triboelectric generator based on sliding electrification,' Nano letters, vol. 13, no. 5, pp. 2282-2289, 2013. [33] Y. Yang et al., 'Single-electrode-based sliding triboelectric nanogenerator for self-powered displacement vector sensor system,' ACS Nano, vol. 7, no. 8, pp. 7342-7351, 2013. [34] Y. Yang et al., 'Triboelectric nanogenerator for harvesting wind energy and as self-powered wind vector sensor system,' ACS Nano, vol. 7, no. 10, pp. 9461-9468, 2013. [35] H. Zhang et al., 'Single-electrode-based rotating triboelectric nanogenerator for 32 harvesting energy from tires,' ACS Nano, vol. 8, no. 1, pp. 680-689, 2013. [36] Q. Liang et al., 'Highly transparent triboelectric nanogenerator for harvesting water-related energy reinforced by antireflection coating,' Sci. Rep. , vol. 5, pp. 9080, 2015. [37] P. Bai et al., 'Transparent and flexible barcode based on sliding electrification for self-powered identification systems,' Nano Energy, vol. 12, pp. 278-286, 2015. [38] Y. Yang, Y. S. Zhou, H. Zhang, Y. Liu, S. Lee, and Z. L. Wang, 'A Single‐Electrode Based Triboelectric Nanogenerator as Self‐Powered Tracking System,' Adv. Mater. , vol. 25, no. 45, pp. 6594-6601, 2013. [39] T. Ackermann and L. Söder, 'Wind energy technology and current status: a review,' J. Renew. Sustain. Energy rev. , vol. 4, no. 4, pp. 315-374, 2000. [40] S. Solomon, G.-K. Plattner, R. Knutti, and P. Friedlingstein, 'Irreversible climate change due to carbon dioxide emissions,' Proc. Natl. Acad. Sci. U.S.A. , vol. 106, no. 6, pp. 1704-1709, 2009. [41] C. Sun, J. Luo, L. Wu, and J. Zhang, 'Self-ordered anodic alumina with continuously tunable pore intervals from 410 to 530 nm,' ACS Appl. Mater. Interfaces, vol. 2, no. 5, pp. 1299-1302, 2010. [42] Y. Zi, H. Guo, Z. Wen, M.-H. Yeh, C. Hu, and Z. L. Wang, 'Harvesting low-frequency (< 5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator,' ACS Nano, vol. 10, no. 4, pp. 4797-4805, 2016. [43] G. Lalor, A. Mullane, and M. O'Malley, 'Frequency control and wind turbine technologies,' IEEE Trans. Power Syst. , vol. 20, no. 4, pp. 1905-1913, 2005. [44] https://goo.gl/2rgqFW | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77446 | - |
dc.description.abstract | 本研究中成功開發出結合曲柄連桿結構用於收集風能之摩擦奈米發電機,藉由風力推動結合風車之曲柄連桿,使與其連接之滑塊於滑動軌道上產生前後週期性運動,因而使滑塊上之鍍鋁(Aluminum, Al)摩擦層與軌道上固定於電極上的鐵氟龍(Polytetrafluoroethylene, PTFE)層產生交互橫向滑動,因而產生電能。研究中並將鋁電極製造成光柵形狀來達到一次運動可產生複數個輸出之加乘效果,此外,鐵氟龍層表面也奈米化形成奈米線結構,增加其與鋁電極接觸之表面積來有效增加發電效能。曲柄連桿設計則達到風扇轉軸每轉動一圈,能夠使得鋁摩擦極滑塊於軌道上有風扇兩倍半徑的運動距離,並且矩形柱狀滑塊設計,使其四周能結合矩形滑動軌道,達到一次運動有四個面摩擦輸出電能之效果。
研究乘過證實此奈米發電機能夠產生最大開路電壓 60 V、最大短路電流 7 µA和最大瞬時作功 7 mW,可有效驅動商業用 LED 等小型電子元件。此外,在不同之風速環境下,此奈米發電機會產生不同之輸出電流值(在風速 1.1 m/s 到 10.4 m/s之間可產生 0.25 µA 到 2.2 µA 的電流值),故此裝置亦可做為一般環境下之風速感測器。預期本研究成果將可結合其他環境相關檢測設備,達到戶外自供電檢測站之目的。 | zh_TW |
dc.description.abstract | In this study, a triboelectric nanogenerator with a crank structure for harvesting wind energy was successfully developed. The wind-driven crank combined windmill is used to cause the slider connected thereto generate periodic motion on the sliding track. Thus, the aluminized friction layer on the slider and the Teflon layer fixed on the electrode on the track alternately slide laterally to generate electricity. In the research, the aluminum electrode is fabricated into a grating shape to achieve a single motion, which can produce multiple outputs. In addition, the surface of the PTFE layer is fabricated to form a nanowire structure, increasing the surface area in contact with the aluminum electrode to effectively increase power generation. The crank design achieves one revolution of the fan shaft, which enables the slider to have double-radius movement distance on the track.
Moreover, the rectangular column slider is designed to be combined with a rectangular sliding track, so single movement of the slider would rub four surfaces to get four times of outputs. The research proves that this nanogenerator can generate maximum open circuit voltage of 60 V, maximum short-circuit current of 7 µA, and maximum instantaneous work of 7 mW, which can effectively drive small electronic components such as commercial LEDs. In addition, the generator will produce different output current (current values of 0.25 µA to 2.2 µA can be generated when wind speeds of 1.1 m/s to 10.4 m/s), so the device can be used as a sensitive wind speed sensor. It is expected that this research can be combined with other environmentally relevant testing equipment and electrical sensors to achieve the purpose of an outdoor self-powered testing station. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T22:02:21Z (GMT). No. of bitstreams: 1 ntu-107-R05543083-1.pdf: 3229444 bytes, checksum: c1773ac0d34b601efc2dacafdc643dc0 (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 總目錄
口試委員會審定書 誌謝 ...... i 中文摘要 ...... ii ABSTRACT ...... iii 總目錄....... iv 表目錄 ...... vi 圖目錄 ...... vii 第一章 緒論...... 1 1.1 研究背景 ...... 1 1.1.1 可再生能源的重要 ...... 1 1.1.2 風力發電 ...... 2 1.1.3 自供電系統 ...... 2 1.1.4 奈米材料 ...... 2 1.1.5 摩擦奈米發電機 ...... 3 1.1.5.1 摩擦奈米發電機的性質 ...... 4 1.1.5.2 摩擦奈米發電機的運作模式 ...... 4 1.2 研究動機與目的 ...... 9 1.2.1 奈米發電機的發展及便利性 ...... 9 1.2.2 可再生能源之開發–風能 ...... 10 第二章 實驗流程與方法 ...... 10 2.1 實驗材料與設備 ...... 11 2.1.1 材料選用 ...... 11 2.1.2 儀器設備. ...... 11 2.2 實驗流程 ...... 12 2.2.1 整體實驗架構. ...... 12 2.2.2 齒輪箱及滑桿的製作. ...... 12 2.2.3 摩擦奈米發電機的製作. ...... 12 2.2.4 陽極氧化鋁及PTFE 奈米線表面結構的製作. ..... 14 2.2.5 摩擦奈米發電機工作機制. ...... 15 第三章 實驗結果與討論 ...... 18 3.1 摩擦奈米發電機之輸出 ...... 18 3.2 選定之實驗參數 ...... 19 3.2.1 柵狀電極之設計可行性 ...... 19 3.2.2 曲柄連桿及齒輪箱之設計 ...... 22 3.2.3 不同頻率之測試 ...... 24 3.3 自供電風速感測器 ...... 27 第四章 結論...... 29 REFERENCE ...... 30 | |
dc.language.iso | zh-TW | |
dc.title | 風能驅動之滑桿式摩擦式奈米發電機 | zh_TW |
dc.title | Wind Energy Driven Sliding Rod Type triboelectric Nanogenerators | en |
dc.type | Thesis | |
dc.date.schoolyear | 107-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林宗宏 | |
dc.contributor.oralexamcommittee | 周逸儒,余政儒,蔡欣怡 | |
dc.subject.keyword | 摩擦,奈米發電機,風能,曲柄連桿,柵狀電極,自供電,風速感測器, | zh_TW |
dc.subject.keyword | triboelectric,nanogenerators,crank,grating electrode,self-powered,sensor, | en |
dc.relation.page | 32 | |
dc.identifier.doi | 10.6342/NTU201804342 | |
dc.rights.note | 未授權 | |
dc.date.accepted | 2018-12-13 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 應用力學研究所 | zh_TW |
顯示於系所單位: | 應用力學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-R05543083-1.pdf 目前未授權公開取用 | 3.15 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。