Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77394
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡定平zh_TW
dc.contributor.advisorDin Ping Tsaien
dc.contributor.author陳沐谷zh_TW
dc.contributor.authorMu Ku Chenen
dc.date.accessioned2021-07-10T21:59:43Z-
dc.date.available2024-05-16-
dc.date.copyright2019-05-21-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation1.N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: generalized laws of reflection and refraction," Science 334, 333-337 (2011).
2.F. Aieta, P. Genevet, N. Yu, M. A. Kats, Z. Gaburro, and F. Capasso, "Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities," Nano Letters 12, 1702-1706 (2012).
3.S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, G.-Y. Guo, L. Zhou, and D. P. Tsai, "High-efficiency broadband anomalous reflection by gradient meta-surfaces," Nano Letters 12, 6223-6229 (2012).
4.P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, "Versatile polarization generation with an aluminum plasmonic metasurface," Nano Letters 17, 445-452 (2016).
5.W. T. Chen, P. Török, M. R. Foreman, C. Y. Liao, W.-Y. Tsai, P. R. Wu, and D. P. Tsai, "Integrated plasmonic metasurfaces for spectropolarimetry," Nanotechnology 27, 224002 (2016).
6.P. C. Wu, J.-W. Chen, C.-W. Yin, Y.-C. Lai, T. L. Chung, C. Y. Liao, B. H. Chen, K.-W. Lee, C.-J. Chuang, C.-M. Wang, and D. P. Tsai, "Visible metasurfaces for on-chip polarimetry," Acs Photonics 5, 2568-2573 (2017).
7.W. T. Chen, K.-Y. Yang, C.-M. Wang, Y.-W. Huang, G. Sun, I.-D. Chiang, C. Y. Liao, W.-L. Hsu, H. T. Lin, and S. Sun, "High-efficiency broadband meta-hologram with polarization-controlled dual images," Nano Letters 14, 225-230 (2013).
8.H. C. Wang, C. H. Chu, P. C. Wu, H. H. Hsiao, H. J. Wu, J. W. Chen, W. H. Lee, Y. C. Lai, Y. W. Huang, M. L. Tseng, S. W. Chang, and D. P. Tsai, "Ultrathin planar cavity metasurfaces," Small Methods 14, 1703920 (2018).
9.Y.-W. Huang, W. T. Chen, W.-Y. Tsai, P. C. Wu, C.-M. Wang, G. Sun, and D. P. Tsai, "Aluminum plasmonic multicolor meta-hologram," Nano Letters 15, 3122-3127 (2015).
10.Y.-W. Huang, H. W. H. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, H. A. Atwater, and D. P. Tsai, "Gate-tunable conducting oxide metasurfaces," Nano Letters 16, 5319-5325 (2016).
11.X. Chen, L. Huang, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, "Dual-polarity plasmonic metalens for visible light," Nature Communications 3, 1198 (2012).
12.O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, "Composite functional metasurfaces for multispectral achromatic optics," Nature Communications 8, 14992 (2017).
13.S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, T. Li, S. Zhu, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nature Communications 8, 187 (2017).
14.L. Huang, X. Chen, H. Mühlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, T. Zentgraf, and S. J. N. l. Zhang, "Dispersionless phase discontinuities for controlling light propagation," 12, 5750-5755 (2012).
15.H. H. Hsiao, Y. H. Chen, R. J. Lin, P. C. Wu, S. Wang, B. H. Chen, and D. P. Tsai, "Integrated resonant unit of metasurfaces for broadband efficiency and phase manipulation," Advanced Optical Materials 6, 1800031 (2018).
16.F. Aieta, P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberration-free ultrathin flat lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano letters 12, 4932-4936 (2012).
17.X. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, "Ultra-thin, planar, Babinet-inverted plasmonic metalenses," Light: Science & Applications 2, e72 (2013).
18.F. Aieta, M. A. Kats, P. Genevet, and F. Capasso, "Multiwavelength achromatic metasurfaces by dispersive phase compensation," Science 347, 1342-1345 (2015).
19.A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, "Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission," Nature Nanotechnology 10, 937-943 (2015).
20.A. Arbabi, Y. Horie, A. J. Ball, M. Bagheri, and A. Faraon, "Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays," Nature Communications 6, 7069 (2015).
21.O. Eisenbach, O. Avayu, R. Ditcovski, and T. Ellenbogen, "Metasurfaces based dual wavelength diffractive lenses," Optics express 23, 3928-3936 (2015).
22.M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, "Achromatic metasurface lens at telecommunication wavelengths," Nano letters 15, 5358-5362 (2015).
23.M. Pu, X. Li, X. Ma, Y. Wang, Z. Zhao, C. Wang, C. Hu, P. Gao, C. Huang, and H. Ren, "Catenary optics for achromatic generation of perfect optical angular momentum," Science Advances 1, e1500396 (2015).
24.S. Wang, X. Wang, Q. Kan, J. Ye, S. Feng, W. Sun, P. Han, S. Qu, and Y. Zhang, "Spin-selected focusing and imaging based on metasurface lens," Optics Express 23, 26434-26441 (2015).
25.Z. Zhao, M. Pu, H. Gao, J. Jin, X. Li, X. Ma, Y. Wang, P. Gao, and X. Luo, "Multispectral optical metasurfaces enabled by achromatic phase transition," Scientific Reports 5, 15781 (2015).
26.E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules," Optica 3, 628-633 (2016).
27.E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "High efficiency double-wavelength dielectric metasurface lenses with dichroic birefringent meta-atoms," Optics Express 24, 18468-18477 (2016).
28.J. Hu, C.-H. Liu, X. Ren, L. J. Lauhon, and T. W. Odom, "Plasmonic lattice lenses for multiwavelength achromatic focusing," ACS nano 10, 10275-10282 (2016).
29.M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, "Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging," Science 352, 1190-1194 (2016).
30.P. Wang, N. Mohammad, and R. Menon, "Chromatic-aberration-corrected diffractive lenses for ultra-broadband focusing," Scientific Reports 6, 21545 (2016).
31.E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, "Controlling the sign of chromatic dispersion in diffractive optics with dielectric metasurfaces," Optica 4, 625-632 (2017).
32.B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, C.-H. Kuan, and D. P. Tsai, "GaN metalens for pixel-level full-color routing at visible light," Nano Letters 17, 6345-6352 (2017).
33.W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, "Immersion meta-lenses at visible wavelengths for nanoscale imaging," Nano Letters 17, 3188-3194 (2017).
34.M. Khorasaninejad, Z. Shi, A. Y. Zhu, W.-T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, "Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion," Nano Letters 17, 1819-1824 (2017).
35.S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, J.-W. Chen, S.-H. Lu, J. Chen, B. Xu, C.-H. Kuan, and D. P. Tsai, "Broadband achromatic optical metasurface devices," Nature Communications 8, 187 (2017).
36.W. T. Chen, A. Y. Zhu, V. Sanjeev, M. Khorasaninejad, Z. Shi, E. Lee, and F. Capasso, "A broadband achromatic metalens for focusing and imaging in the visible," Nature Nanotechnology 13, 220–226 (2018).
37.S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, and J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu and D. P. Tsai, "A broadband achromatic metalens in the visible," Nature Nanotechnology 13, 227-232 (2018).
38.G. Lippmann, "Epreuves reversibles donnant la sensation du relief," Journal of Theoretical and Applied Physics 7, 821-825 (1908).
39.H. E. Ives, "Parallax panoramagrams made with a large diameter lens," Journal of the Optical Society of America 20, 332-342 (1930).
40.E. H. Adelson, J. Y. A. Wang, and M. Intelligence, "Single lens stereo with a plenoptic camera," IEEE Transactions on Pattern Analysis, 99-106 (1992).
41.R. Ng, M. Levoy, M. Brédif, G. Duval, M. Horowitz, and P. J. C. S. T. R. C. Hanrahan, "Light field photography with a hand-held plenoptic camera," Computer Science Technical Report 2, 1-11 (2005).
42.A. Lumsdaine and T. Georgiev, "Full resolution lightfield rendering," Indiana University and Adobe Systems, Tech. Rep 91, 92 (2008).
43.S. Zhu, A. Lai, K. Eaton, P. Jin, and L. Gao, "On the fundamental comparison between unfocused and focused light field cameras," Applied Optics 57, A1-A11 (2018).
44.J. Geng, "Structured-light 3D surface imaging: a tutorial," Advances in Optics and Photonics 3, 128-160 (2011).
45.S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, J.-H. Wang, R.-M. Lin, C.-H. Kuan, T. Li, Z. Wang, S. Zhu, and D. P. Tsai, "A broadband achromatic metalens in the visible," Nature Nanotechnology 13, 227 (2018).
46.W. T. Chen, A. Y. Zhu, J. Sisler, Y.-W. Huang, K. M. Yousef, E. Lee, C.-W. Qiu, and F. Capasso, "Broadband achromatic metasurface-refractive optics," Nano Letters 18, 7801-7808 (2018).
47.R. J. Lin, V.-C. Su, S. Wang, M. K. Chen, T. L. Chung, Y. H. Chen, H. Y. Kuo, J.-W. Chen, J. Chen, Y.-T. Huang, J.-H. Wang, C. H. Chu, P. C. Wu, T. Li, Z. Wang, S. Z. Zhu, and D. P. Tsai, "Achromatic metalens array for full-colour light-field imaging," Nature Nanotechnology 14, 227 (2019).
48.P. T. Gonzalez-Bellido, T. J. Wardill, and M. Juusola, "Compound eyes and retinal information processing in miniature dipteran species match their specific ecological demands," Proceedings of the National Academy of Sciences 108, 4224-4229 (2011).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77394-
dc.description.abstract成像與感測是探索環境最直接的途徑,本論文用消色差超穎透鏡作為媒介來實現全彩成像與距離感測,我們選用氮化鎵為基材,利用集成共振單元和相位補償公式設計並製作出於可見光波段工作的寬頻消色差超穎透鏡,並在實驗上証實消色差的功能、全彩成像和距離感測的實際應用。
我們將這個寬頻消色差超穎透鏡排列成60×60的陣列應用於光場成像,捕捉拍攝場景中所有物體的各自四維光線資訊,取得光場影像原始圖像資訊經由影像處理演算法重組訊息,可以實現數位對焦、多重深度全解析的影像,更進一步的於連續拍攝中,可以得到被拍攝物的深度和速度訊息。
最後我們擴展了消色差超穎透鏡的功能,用於產生結構光光源,可投射出聚焦的光點狀陣列用以感測距離,並將結構光與光場系統整合為一體,補足了光場成像系統需要足夠的光源環境以取得良好成像品質用以分析距離的限制條件,在微弱光源甚至黑暗環境中,我們的消色差超穎透鏡陣列轉換功能,變成結構光光學系統中負責投射結構光的光學元件,經由引入一道532奈米的雷射光照射在消色差超穎透鏡上,投射出聚焦光點陣列於場景中,再經由影像擷取得影像,經由影像處理分析光點與光點之間的分散程度,來判斷物體的實際深度距離。這個光場成像與結構光的整合系統可工作於任意環境光線條件下用來感測距離。
超穎透鏡有重量輕巧、體積微小、精度高、剛性強、低能耗、厚度極薄、易於電子電路和軟件集成、能直接用半導體製程與光感測器整合等優點,此工作為機器人視覺、自動駕駛車輛、車用感測、無人飛機偵測、量子光源和虛擬實境等等應用開拓了新的方向,讓未來光學設計能更加靈活且實用。
zh_TW
dc.description.abstractImaging and sensing are the most direct ways to explore the environment. In this paper, the achromatic metalens is used to achieve full color imaging and range sensing. The GaN based achromatic metalens working in visible is designed and fabricated and the achromatic property and the full color imaging are be demonstrated. We also show the light field imaging by the 60×60 achromatic metalens array which can capture the multi-dimensional information of the targets. By the imagine process, the ability to focus on arbitrary depth and all-in-focus images can be realized. Moreover, the depth information and speed information can detect. Finally, we demonstrated the new functionality of the achromatic metalens array which is structured light pattern generator to project the focused spots array. Here we combined the light field imaging system and structured light system in one optical setup by using only one achromatic metalens array which complemented each other's restrictions on lighting conditions. In the bright enough environment, the achromatic metalens array is an imaging component of the light field imaging system. In the dark environment, a 532 nm continuous wave laser was introduced to irradiate on the achromatic metalens array to project the focused spots array on the scene. This integrated system can be used to sense distance in all light conditions. The advantages of metalens are light weight, small size, accuracy, rigid and strong, low energy consumption, low profile configuration and easy electronics and software. This work opens up new directions for applications such as robot vision, autonomous vehicles, vehicle sensing, unmanned aircraft detection and virtual reality which makes future optical designs more practical.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:59:43Z (GMT). No. of bitstreams: 1
ntu-108-D04245001-1.pdf: 8681405 bytes, checksum: f8a79834c8c6cf0a8e68f9827c76df21 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents目錄
國立臺灣大學博士學位論文............................................................................. I
致謝................................................................................................II
摘要................................................................................................III
Abstract ...........................................................................................IV
目錄................................................................................................ V
圖目錄.............................................................................................. VII
表目錄.............................................................................................. XI
第 1 章 緒論......................................................................................... 1
1.1 前言............................................................................................. 1
1.2 超穎介面......................................................................................... 1
1.3 超穎透鏡......................................................................................... 4
1.4 光場成像簡介..................................................................................... 8
1.5 結構光簡介....................................................................................... 10
第 2 章 原理、設計、製作與量測........................................................................ 13
2.1 設計概念..........................................................................................13
2.2 消色差超穎透鏡設計動機............................................................................ 15
2.3 消色差超穎透鏡設計方法............................................................................ 16
2.4 消色差超穎透鏡樣品製備方法........................................................................ 21
2.5 製程設備詳細資料................................................................................. 23
2.6 基礎光學性質量測架設............................................................................. 23
2.7 量測設備詳細資料................................................................................. 27
第 3 章 可見光寬頻消色差超穎透鏡...................................................................... 28
3.1 實驗動機........................................................................................ 28
3.2 消色差超穎透鏡基礎光學分析與討論.................................................................. 29
3.3 消色差超穎透鏡實際成像結果........................................................................ 31
第 4 章 消色差超穎透鏡陣列光場成像.................................................................... 35
4.1 動機............................................................................................ 35
4.2 消色差超穎透鏡陣列基礎光學量測分析................................................................. 36
4.3 消色差超穎透鏡陣列之光場成像數位對焦............................................................... 39
4.4 消色差超穎透鏡陣列之光場成像深度估算與全解析影像.................................................... 43
第 5 章 距離感測之光場成像與結構光系統................................................................. 47
5.1 動機............................................................................................ 47
5.2 消色差超穎透鏡之結構光投影........................................................................ 48
5.3 消色差超穎透鏡陣列距離感測系統之原型............................................................... 52
5.4 光場成像系統之距離感測結果........................................................................ 54
5.5 結構光系統之距離感測結果.......................................................................... 58
第 6 章 結論與展望.................................................................................... 61
文獻..................................................................................................62
-
dc.language.isozh_TW-
dc.title寬頻消色差超穎透鏡於成像及感測之應用zh_TW
dc.titleBroadband Achromatic Metalens for Imaging and Sensingen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee任貽鈞;嚴大任;廖駿偉;藍永強zh_TW
dc.contributor.oralexamcommitteeYi-Jun Jen;Ta-Jen Yen;Jiunn-Woei Liaw;Yung Chiang Lanen
dc.subject.keyword超穎介面,超穎透鏡,消色差,氮化鎵,光場成像,結構光,距離感測,zh_TW
dc.subject.keywordMetasurface,Metalens,Achromatic,GaN,Light field imaging,Structured light,Range sensing,en
dc.relation.page65-
dc.identifier.doi10.6342/NTU201900736-
dc.rights.note未授權-
dc.date.accepted2019-05-15-
dc.contributor.author-college理學院-
dc.contributor.author-dept應用物理研究所-
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
8.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved