Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77389
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳國慶zh_TW
dc.contributor.advisorKuo-Ching Chenen
dc.contributor.author李哲鋒zh_TW
dc.contributor.authorJe-Feng Lien
dc.date.accessioned2021-07-10T21:59:29Z-
dc.date.available2024-06-01-
dc.date.copyright2019-06-25-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1]https://www.iea.org/newsroom/news/2017/november/commentary-battery-production---who-wants-to-be-in-charge.html?fbclid=IwAR16XaDKjjcXVGWIfGQkpZZUxrwHCyoPRlo7hMO8EGVL9cYO4Gv1IBWRze8.
[2]J. Newman, K. E. Thomas-Alyea, Electrochemical Systems, Third ed., Wiley-Interscience, Berkeley (2004).
[3]R. J. Brodd, Batteries for Sustainability, Selected Entries from the Encyclopedia of Sustainability Science and Technology, Springer-Verlag, New York (2013).
[4]黃可龍,王兆翔,劉素琴,馬振基,鋰離子電池原理與技術 (2014).
[5]F. Larssona, B. E. Mellander, J. Electrochem. Soc., 161, A1611 (2014).
[6]C. F. Lopez, J. A. Jeevarajan, P. P. Mukherjee, J. Electrochem. Soc., 162, A2163 (2015).
[7]W. Zhao, G. Luo, C. Y. Wang, J. Electrochem Soc., 162, A207 (2014).
[8]N. E. Galushkin, N. N. Yazvinskaya, D. N. Galushkin, J. Electrochem. Soc., 165, A1303 (2018).
[9]Q. Wang, P. Ping, X. Zhao, G. Chu, J. Sun, C. Chen, J. Power Sources, 208, 210 (2012).
[10]R. Spotnitz, J. Franklin, J. Power Sources, 113, 81 (2003).
[11]https://news.samsung.com/global/infographic-galaxy-note7-what-we-discovered?fbclid=IwAR1vgFbEWhyE99SpYPLZpanlsDZfWgJmx5fo6SXmf7DjB5OCwjNmUGEBCc.
[12]K. Takei, Y. Kobayashi, H. Miyashiro, K. Kumea, N. Terada, T. Iwahori, T. Tanaka, J. Power Sources, 68, 427 (1997).
[13]Y. H. Chiang, W. Y. Sean, J. C. Ke, J. Power Sources, 196, 3921 (2011).
[14]P. T. Coman, E. C. Darcy, C. T. Veje, R. E. White, J. Electrochem. Soc., 164, A587 (2017).
[15]F. Larsson, J. Anderson, P. Andersson, B. Mellander, J. Electrochem. Soc., 163, A2854 (2016).
[16]D. Ouyang, J. Liu, M. Chen, J. Weng, J. Wang, J. Electrochem. Soc., 165, A2184 (2018).
[17]J. Belt, V. Utgikar, I. Bloom, J. Power Sources, 196, 10213 (2011).
[18]S. Käbitz, J. B. Gerschler, M. Ecker, Y. Yurdagel, B. Emmermacher, D. André,
T. Mitsch, D. U. Sauer, J. Power Sources, 239, 572 (2013).
[19]M. Ecker, N. Nieto, S. Käbitz, J. Schmalstieg, H. Blanke, A. Warnecke, D. U. Sauer, J. Power Sources, 248, 839 (2014).
[20]P. Keil, S. F. Schuster, J. Wilhelm, J. Travi, A. Hauser, R. C. Karl, A. Jossen, J. Electrochem. Soc., 163, A1872 (2016).
[21]S. S. Choi, H. S. Lim, J. Power Sources, 111, 130 (2002).
[22]J. Vetter, P. Novák, M. R. Wagner, C. Veit, K.-C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources, 147, 269 (2005).
[23]Y. Xie, J. Li, C. Yuan, J. Power Sources, 248, 172 (2014).
[24]R. Fu, S. Y. Choe, V. Agubra, J. Fergus, J. Power Sources, 278, 506 (2015).
[25]L. G. Lu, X. B. Han, J. Li, J. Hua, M. Ouyang, J. Power Sources, 226, 272 (2013).
[26]Y. Zheng, M. Ouyang, L. Lu, J. Li, J. Power Sources, 278, 287 (2015).
[27]Y. Zheng, W. Gao, M. Ouyang, L. Lu, L. Zhou, X. Han, J. Power Sources, 383, 50 (2018).
[28]R. Gogoana, M. B. Pinson, M. Z. Bazant, S. E. Sarma, J. Power Sources, 252, 8 (2014).
[29]W. Shi, X. Hu, C. Jin, J. Jiang, Y. Zhang, T. Yip, J. Power Sources, 313, 198 (2016).
[30]T. Yuan, X. Yu, R. Cai, Y. K. Zhou, Z. P. Shao, J. Power Sources, 195, 4997 (2010).
[31]B. Wu, V. Yufit, M. Marinescu, G. J. Offer, R. F. Martinez-Botas, N. P. Brandon, J. Power Sources, 243, 544 (2013).
[32]K. Chen, X. Li, J. Power Sources, 247, 961 (2014).
[33]M. Doyle, J. Newman, A. S. Gozdz, C. N. Schmutz, J.-M. Tarascon, J. Electrochem.Soc., 143, 1890 (1996).
[34]C. Y. Wang, V. Srinivasan, J. Power Sources, 110, 364 (2002).
[35]E. Martínez-Rosas, R. Vasquez-Medrano, A. Flores-Tlacuahuac, Comput. Chem. Eng., 35, 1937 (2011).
[36]A. Tourani, P. White, P. Ivey, J. Power Sources, 255, 360 (2014).
[37]D. Ren, K. Smith, D. Guo, X. Han, X. Feng, L. Lu, M. Ouyang, J. Li, J. Electrochem. Soc., 165, A2167 (2018).
[38]C. von Lüders, J. Keil, M. Webersberger, A. Jossen, J. Power Sources, 414, 41 (2019).
[39]M. Doyle, T. F. Fuller, J. Newman, J. Electrochem. Soc., 140, 1526 (1993).
[40]E. Prada, D. Di Domenico, Y. Creff, J. Bernard, V. Sauvant-Moynot, F. Huet, J. Electrochem. Soc., 159, A1508 (2012).
[41]Y. Ye, Y. Shi, A. A. O. Tay, J. Power Sources, 217, 509 (2012).
[42]L. Cai, Y. Dai, M. Nicholson, R. E. White, K. Jagannathan, G. Bhatia, J. Power Sources, 221, 191 (2013).
[43]J. Li, Y. Cheng, M. Jia, Y. Tang, Y. Lin, Z. Zhang, Y. Liu, J. Power Sources, 255, 130 (2014).
[44]H. Lundgren, P. Svens, H. Ekström, C. Tengstedt, J. Lindström, M. Behm, G. Lindbergh, J. Electrochem. Soc., 163, A309 (2016).
[45]M. F. Hasan, C.-F. Chen, C. E. Shaffer, P. P. Mukherjee, J. Electrochem. Soc., 162, A1382 (2015).
[46]G. Fan, K. Pan, G. L. Storti, M. Canova, J. Marcicki, X. G. Yang, J. Electrochem. Soc., 164, A252 (2017).
[47]M. Safari, C. Delacourt, J. Electrochem. Soc., 158, A562 (2011).
[48]L. O. Valøen, J. N. Reimers, J. Electrochem. Soc., 152, A882 (2005).
[49]M. Xu, Z. Zhang, X. Wang, L. Jia, L. Yang, J. Power Sources, 256, 233 (2014).
[50]G. Sikha, P. Ramadass, B. S. Haran, R. E. White, B. N. Popov, J. Power Sources, 122, 67 (2003).
[51]A. Farmann, W. Waag, A. Marongiu, D. U. Sauer, J. Power Sources, 281, 114 (2015).
[52]P. Guo, Z. Cheng, L. Yang, J. Power Sources, 412, 442 (2019).
[53]X. Li, Z. Wang, L. Zhang, C. Zou, D. D. Dorrell, J. Power Sources, 410–411, 106 (2019).
[54]Z. Ma, R. Yang, Z. Wang, Appl. Energy, 237, 836 (2019).
[55]X. G. Yang, Y. Leng, G. Zhang, S. Ge, C. Y. Wang, J. Power Sources, 360, 28 (2017).
[56]A. M. Bizeray, S. Zhao, S. R. Duncan, D. A. Howey, J. Power Sources, 296, 400 (2015).
[57]S. V. Erhard, P. J. Osswald, J. Wilhelm, A. Rheinfeld, S. Kosch, A. Jossen, J. Electrochem. Soc., 162, A2707 (2015).
[58]G. Ning, R. E. White, B. N. Popov, Electrochim. Acta, 51, 2012 (2006).
[59]P. Arora, M. Doyle, R. E. White, J. Electrochem. Soc., 146, 3543 (1999).
[60]J. Wang, P. Liu, J. Hicks-Garner, E. Sherman, S. Soukiazian, M. Verbrugge, H. Tataria, J. Musser, P. Finamore, J. Power Sources, 196, 3942 (2011).
[61]M. B. Pinson, M. Z. Bazant, J. Electrochem. Soc., 160, A243 (2013).
[62]J. Li, E. Murphy, J. Winnick, P. A. Kohl, J. Power Sources, 102, 302 (2001).
[63]P. H. L. Notten, J. H. G. Op het Veld, J. R. G. van Beek, J. Power Sources, 145, 89 (2005).
[64]S. S. Zhang, J. Power Sources, 161, 1385 (2006).
[65]J. F. Li, C. H. Lin, K. C. Chen, J. Electrochem. Soc., 165, A3634 (2018).
[66]M. Safari, M. Morcrette, A. Teyssot, C. Delacourt, J. Electrochem. Soc., 156, A145 (2009).
[67]H. Ekström, G. Lindbergh, J. Electrochem. Soc., 162, A1003 (2015).
[68]F. M. Kindermann, J. Keil, A. Frank, A. Jossen, J. Electrochem. Soc., 164, E287 (2017).
[69]A. A. Tahmasbi, T. Kadyk, M. H. Eikerling, J. Electrochem. Soc., 164, A1307 (2017).
[70]Z. Li, L. Lu, M. Ouyang, Y. Xiao, J. Power Sources, 196, 9757 (2011).
[71]D. Wang, Q. Miao, M. Pecht, J. Power Sources, 239, 253 (2013).
[72]S. Saxena, C. Hendricks, M. Pecht, J. Power Sources, 327, 394 (2016).
[73]Y. Gao, J. Jiang, C. Zhang, W. Zhang, Z. Ma, Y. Jiang, J. Power Sources, 356, 103 (2017).
[74]P. Ramadass, B. Haran, R. White, B. N. Popov, J. Power Sources, 123, 230 (2003).
[75]X. Han, M. Ouyang, L. Lu, J. Li, J. Power Sources, 268, 658 (2014).
[76]A. Cordoba-Arenas, S. Onori, Y. Guezennec, G. Rizzoni, J. Power Sources, 278, 473 (2015).
[77]S. Basu, K. S. Hariharan, S. M. Kolake, T. Song, T. Yeo, S. Doo, J. Electrochem. Soc., 163, A1286 (2016).
[78]J. Park, W. A. Appiah, S. Byun, D. Jin, M. H. Ryou, Y. M. Lee, J. Power Sources, 365, 257 (2017).
[79]M. Schimpe, M. E. von Kuepach, M. Naumann, H. C. Hesse, K. Smith, A. Jossen, J. Electrochem. Soc., 165, A181 (2018).
[80]李哲鋒,利用電化學法探討鋰離子電池連續充放電行為與溫度管理以及應力分析,國立台灣大學工學院應用力學研究所碩士論文(2015).
[81]J. F. Li, Y. S. Lin, C. H. Lin, K. C. Chen, J. Electrochem. Soc., 164, A2767 (2017).
[82]X. Lin, J. Park, L. Liu, Y. Lee, A. M. Sastry, W. Lu, J. Electrochem. Soc., 160, A1701 (2013).
[83]W. H. Woodford, Y. M. Chiang, W. C. Carter, J. Electrochem. Soc., 157, A1052 (2010).
[84]R. Deshpande, M. Verbrugge, Y.-T. Cheng, J. Wang, P. Liu, J. Electrochem. Soc., 159, A1730 (2012).
[85]M. Safari, C. Delacourt, J. Electrochem. Soc., 158, A1123 (2011).
[86]D. Anseán, M. González, J. C. Viera, V. M. García, C. Blanco, M. Valledor, J. Power Sources, 239, 9 (2013).
[87]G. Ning, B. Haran, B. N. Popov, J. Power Sources, 117, 160 (2003).
[88]X. Chen, W. Shen, T. T. Vo, Z. Cao, A. Kapoor, in Proc. IPEC, 230 (2012).
[89]F. Mwasilu, J. J. Justo, E. K. Kim, T. D. Do, J. W. Jung, Renew. and Sustain. Energy Rev., 34, 501 (2014).
[90]Y. Cui, C. Du, G. Yin, Y. Gao, L. Zhang, T. Guan, L. Yang, F. Wang, J. Power Sources, 279, 123 (2015).
[91]J. Wang, J. Purewal, P. Liu, J. Hicks-Garner, S. Soukazian, E. Sherman, A. Sorenson, L. Vu, H. Tataria, M. W. Verbrugge, J. Power Sources, 269, 937 (2014).
[92]S. Watanabe, M. Kinoshita, T. Hosokawa, K. Morigaki, K. Nakura, J. Power Sources, 260, 50 (2014).
[93]I. Buchberger, S. Seidlmayer, A. Pokharel, M. Piana, J. Hattendorff, P. Kudejova, R. Gilles, H. A. Gasteiger, J. Electrochem. Soc., 162, A2737 (2015).
[94]N. Yang, X. Zhang, B. Shang, G. Li, J. Power Sources, 306, 733 (2016).
[95]M. Dubarry, A. Devie, B. Y. Liaw, J. Power Sources, 321, 36 (2016).
[96]M. J. Brand, M. H. Hofmann, M. Steinhardt, S. F. Schuster, A. Jossen, J. Power Sources, 334, 202 (2016).
[97]A. Fill, S. Koch, A. Pott, K.-P. Birke, J. Power Sources, 407, 147 (2018).
[98]K. C. Chiu, C. H. Lin, S. F. Yeh, Y. H. Lin, K. C. Chen, J. Power Source, 251, 254 (2014).
[99]W. Fang, P. Ramadass, Z. Zhang, J. Power Sources, 248, 1090 (2014).
[100]T. Hatchard, D. MacNeil, A. Basu, J. Dahn, J. Electrochem. Soc., 148, A755 (2001).
[101]G. H. Kim, A. Pesaran, R. Spotnitz, J. Power Sources, 170, 476 (2007).
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77389-
dc.description.abstract由於鋰離子電池需求日益增加以及其產業鏈的崛起,與該電池相關的議題受到許多研究人員的重視。在實際操作的情況下,我們需要事先得知鋰離子電池的狀態,才能根據此狀態對電池進行適當的操控,因此在這許多的議題中,我們聚焦於鋰離子電池狀態之偵測與預測方法。本論文當中,我們探討四個鋰離子電池相關議題:第一為老化電池之飽電容量偵測,第二為電池容量散失預測,第三為並聯電池組之不匹配程度偵測,第四為不同儲存電量下電池之穿刺情形預測。
對於老化電池之飽電容量偵測而言,我們分別建立了虛擬負極開路電壓法與比值法,使我們得以僅須讓電池放出些許電量,即可針對不同材料組成的老化電池偵測得到飽電容量。
對於電池容量散失預測而言,我們開發了三、四參數模型與經驗模型。針對三、四參數模型,我們僅需要事先得知某一溫度下完整的容量散失曲線以及另一溫度下循環100次的容量散失,即可預測電池容量散失。我們以三參數模型預測不同循環條件下的電池容量散失,而以四參數模型預測不同材料組成之電池容量散失,以及老化電池的剩餘壽命預估。此外,我們利用四參數模型與經驗模型預測電池三階段之容量散失行為。
對於並聯電池組之不匹配程度偵測而言,我們以兩顆與三顆電池並聯為例,在不用確切得知電池組內個別電池之狀態下,我們僅透過並聯電池組之電壓降,即可偵測得到並聯電池組之不匹配程度。
對於不同儲存電量下電池之穿刺情形預測而言,我們發展短路電量圖形法以預測不同儲存電量下電池受鋼針穿刺時之短路電壓,並將此資訊代入穿刺模型中以得到溫度變化曲線。最後,我們提出電池安全性的改善方法。
zh_TW
dc.description.abstractAs the demand of Lithium-ion batteries (LIBs) increases and its associated industries become popular, studies regarding such batteries attract lots of attention. In real world applications, knowing the status of the battery is important, since appropriate control can only be done with a full understanding of the status of the battery. Therefore, among the many issues, we focus on developing the method for detecting and predicting the status of LIBs. In this work, we investigate on four major issues, which are: the detection of the full capacity of an aged LIB, the prediction of the capacity fade of an LIB, the detection of degree of mismatch in the parallel-connected batteries and the prediction of nail penetration of an LIB cell stored at different amount of charge.
Firstly, we develop the pseduo negative open circuit potential method and the ratio method, which could estimate the full capacity of aged LIBs with different battery chemistries by simply discharging the battery a little.
Secondly, we develop three- and four- parameter models and an empirical model. For the three- and four- parameter models, both require one complete capacity fade curve at one temperature and capacity fade over 100 cycles at another temperature. We use the three-parameter model to predict the capacity fade under different cyling conditions and the four-parameter model to predict the capacity fade of LIBs with different battery chemsties in addition the remainning life of an aged LIB. Furthermore, we also use the four-parameter model and the empirical model to predict the three-stage capacity fade behavior of LIBs.
Thirdly, take two and three batteries in parallel as example, we could detect the degree of mismatch of parallel-connected batteries without knowing the actual status of individual cells in the pack, based on the pack voltage drop.
Lastly, we develop the short-circuit amount of charge diagram to predict the short-circuit voltage of an LIB cell stored at different amount of charge. Additionally, we also provide a way to improve the safety of an LIB.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:59:29Z (GMT). No. of bitstreams: 1
ntu-108-D04543002-1.pdf: 23643079 bytes, checksum: 1097d7dffd4473628f2acd0460d143d9 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents致謝................................................................................................................i
摘要..............................................................................................................iii
Abstract....................................................................................................... iv
目錄............................................................................................................. vi
圖目錄........................................................................................................ viii
表格目錄.................................................................................................... xii
參數表....................................................................................................... xiv
第1章 緒論................................................................................................ 1
1-1 引言 1
1-2 研究動機 2
1-3 研究方法 3
1-4 論文架構 3
第2章 背景知識……………………………………………….………………… 4
2-1 名詞解釋 4
2-2 電池構件 5
2-3 安全性問題 5
2-4 老化問題 6
2-5 電池知識 7
第3章 理論基礎… …..8
3-1 預測方法建立 8
3-1.1 多孔電極模型 9
3-1.2 簡化電化學模型 13
3-1.3 雙向耦合 15
3-2 結果與討論 16
3-2.1 多孔電極模型與熱傳之雙向耦合驗證 16
3-2.2 定電壓充電模式探討 21
3-2.3 簡化電化學模型與多孔電極模型之比較 22
第4章 偵測一:老化電池之飽電容量偵測…………………………………. 25
4-1 偵測方法建立 26
4-1.1 虛擬負極開路電壓法 27
4-1.2 比值法 42
4-2 結果與討論 45
4-2.1 磷酸鋰鐵電池 46
4-2.2 鋰鈷氧電池 50
4-2.3 鋰鎳鈷錳電池 52
4-3 模型特點 56
第5章 預測一:電池容量散失預測 57
5-1預測方法建立 61
5-1.1 三參數模型 62
5-1.2 四參數模型 66
5-1.3 經驗模型 69
5-2結果與討論 71
5-2.1 三參數模型模擬結果 71
5-2.2 四參數模型模擬結果 81
5-2.3 容量散失三階段 91
5-3模型特點 95
第6章 偵測二: 並聯電池組之不匹配程度偵測 97
6-1 偵測方法建立 98
6-2 結果與討論 108
6-2.1 兩顆電池並聯 108
6-2.2 三顆電池並聯 112
6-3 模型特點 116
第7章 預測二: 不同儲存電量下電池之穿刺情形預測 117
7-1 預測方法建立 118
7-1.1 穿刺模型 119
7-1.2 短路電量圖形 121
7-2 結果與討論 127
7-2.1 放電曲線與穿刺模型驗證 128
7-2.2 短路電壓預測方法驗證 134
7-2.3 觸發熱失控範圍與現象探討 138
7-3 模型特點 144
第8章 研究價值…. 145
8-1 老化電池之飽電容量偵測 145
8-2 電池容量散失預測 146
8-3 並聯電池組之不匹配程度偵測 147
第9章 結論與未來工作 149
9-1 結論 149
9-2 未來工作 151
參考文獻................................................................................................................... 152
-
dc.language.isozh_TW-
dc.subject飽電容量zh_TW
dc.subject鋰離子電池zh_TW
dc.subject短路電壓zh_TW
dc.subject穿刺zh_TW
dc.subject不匹配程度zh_TW
dc.subject容量散失zh_TW
dc.subjectnail penetrationen
dc.subjectlithium-ion batteryen
dc.subjectfull capacityen
dc.subjectcapacity fadeen
dc.subjectdegree of mismatchen
dc.subjectshort-circuit voltageen
dc.title鋰離子電池狀態之偵測與預測方法zh_TW
dc.titleOn the Status Detection and Prediction for Lithium-Ion Batteriesen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree博士-
dc.contributor.oralexamcommittee郭志禹;陳洵毅;林揚善;林祺皓zh_TW
dc.contributor.oralexamcommittee;;;en
dc.subject.keyword鋰離子電池,飽電容量,容量散失,不匹配程度,穿刺,短路電壓,zh_TW
dc.subject.keywordlithium-ion battery,full capacity,capacity fade,degree of mismatch,nail penetration,short-circuit voltage,en
dc.relation.page158-
dc.identifier.doi10.6342/NTU201901007-
dc.rights.note未授權-
dc.date.accepted2019-06-24-
dc.contributor.author-college工學院-
dc.contributor.author-dept應用力學研究所-
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  未授權公開取用
23.09 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved