請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77367完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 何昊哲 | zh_TW |
| dc.contributor.advisor | Hao-Che Ho | en |
| dc.contributor.author | 宋晣禕 | zh_TW |
| dc.contributor.author | Chih-Yi Sung | en |
| dc.date.accessioned | 2021-07-10T21:58:28Z | - |
| dc.date.available | 2024-07-22 | - |
| dc.date.copyright | 2019-07-23 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Alexe, B., Deselaers, T., & Ferrari, V. (2012). Measuring the objectness of image windows. IEEE transactions on pattern analysis and machine intelligence, 34(11), 2189-2202.
2. Bengio, Y., Delalleau, O., & Roux, N. L. (2006). The curse of highly variable functions for local kernel machines. Paper presented at the Advances in neural information processing systems. 3. Bottou, L., & Bousquet, O. (2008). The tradeoffs of large scale learning. Paper presented at the Advances in neural information processing systems. 4. Boureau, Y.-L., Ponce, J., & LeCun, Y. (2010). A theoretical analysis of feature pooling in visual recognition. Paper presented at the Proceedings of the 27th international conference on machine learning (ICML-10). 5. Dalal, N., & Triggs, B. (2005, 2005-06-20). Histograms of Oriented Gradients for Human Detection. Paper presented at the International Conference on Computer Vision & Pattern Recognition (CVPR '05), San Diego, United States. 6. Duda, R. O., Hart, P. E., & Stork, D. G. (1973). Pattern classification and scene analysis (Vol. 3): Wiley New York. 7. Eggels, J., Unger, F., Weiss, M., Westerweel, J., Adrian, R., Friedrich, R., & Nieuwstadt, F. J. J. o. F. M. (1994). Fully developed turbulent pipe flow: a comparison between direct numerical simulation and experiment. 268, 175-210. 8. Fujita, I. (1997). Surface velocity measurement of river flow using video images of an oblique angle. Paper presented at the Proceedings of the 27th Congress of IAHR, San Francisco, CA, 1997. 9. Fujita, I., & Komura, S. (1994). Application of video image analysis for measurements of river-surface flows. Proceedings of Hydraulic Engineering, 38, 733-738. 10. Fujita, I., Muste, M., & Kruger, A. (1998). Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of hydraulic Research, 36(3), 397-414. 11. Girshick, R. (2015). Fast r-cnn. Paper presented at the Proceedings of the IEEE international conference on computer vision. 12. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. 13. Hauet, A., Kruger, A., Krajewski, W. F., Bradley, A., Muste, M., Creutin, J.-D., & Wilson, M. (2008). Experimental system for real-time discharge estimation using an image-based method. Journal of Hydrologic Engineering, 13(2), 105-110. 14. Huang, J., Rathod, V., Sun, C., Zhu, M., Korattikara, A., Fathi, A., . . . Guadarrama, S. (2017). Speed/accuracy trade-offs for modern convolutional object detectors. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. 15. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167. 16. Keane, R. D., & Adrian, R. J. (1990). Optimization of particle image velocimeters. I. Double pulsed systems. Measurement science and technology, 1(11), 1202. 17. Keane, R. D., & Adrian, R. J. (1992). Theory of cross-correlation analysis of PIV images. Applied scientific research, 49(3), 191-215. 18. Kim, Y., Muste, M., Hauet, A., Krajewski, W. F., Kruger, A., & Bradley, A. (2008). Stream discharge using mobile large‐scale particle image velocimetry: A proof of concept. Water resources research, 44(9). 19. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). ImageNet classification with deep convolutional neural networks. Paper presented at the Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1, Lake Tahoe, Nevada. 20. LeCun, Y., Bengio, Y., & Hinton, G. J. n. (2015). Deep learning. 521(7553), 436. 21. LeCun, Y., Boser, B. E., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W. E., & Jackel, L. D. (1990). Handwritten digit recognition with a back-propagation network. Paper presented at the Advances in neural information processing systems. 22. Lee, K., Ho, H.-C., Marian, M., & Wu, C.-H. (2014). Uncertainty in open channel discharge measurements acquired with StreamPro ADCP. Journal of hydrology, 509, 101-114. 23. Levesque, V. A., & Oberg, K. A. Computing discharge using the index velocity method. 24. Lowe, D. G. (2004). Distinctive Image Features from Scale-Invariant Keypoints. International journal of computer vision, 60(2), 91-110. Retrieved from https://doi.org/10.1023/B:VISI.0000029664.99615.94. doi:10.1023/b:Visi.0000029664.99615.94 25. Maas, H., Gruen, A., & Papantoniou, D. (1993). Particle tracking velocimetry in three-dimensional flows. Experiments in fluids, 15(2), 133-146. 26. McCulloch, W. S., & Pitts, W. J. T. b. o. m. b. (1943). A logical calculus of the ideas immanent in nervous activity. 5(4), 115-133. 27. Muste, M., Fujita, I., & Hauet, A. (2008). Large‐scale particle image velocimetry for measurements in riverine environments. Water resources research, 44(4). 28. Rantz, S. E. (1982). Measurement and computation of streamflow (Vol. 2175): US Department of the Interior, Geological Survey. 29. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. Paper presented at the Advances in neural information processing systems. 30. Rumelhart, D. E., Hinton, G. E., & Williams, R. J. J. C. m. (1988). Learning representations by back-propagating errors. 5(3), 1. 31. Schölkopf, B., Smola, A. J., & Bach, F. (2002). Learning with kernels: support vector machines, regularization, optimization, and beyond: MIT press. 32. Song, T., & Chiew, Y. (2001). Turbulence measurement in nonuniform open-channel flow using acoustic Doppler velocimeter (ADV). Journal of Engineering Mechanics, 127(3), 219-232. 33. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., . . . Rabinovich, A. (2015). Going deeper with convolutions. Paper presented at the Proceedings of the IEEE conference on computer vision and pattern recognition. 34. Tauro, F., Piscopia, R., & Grimaldi, S. (2017). Streamflow observations from cameras: Large‐scale particle image velocimetry or particle tracking velocimetry? Water resources research, 53(12), 10374-10394. 35. Thielicke, W., & Stamhuis, E. J. J. J. o. O. R. S. (2014). PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. 2. 36. Tzutalin, L. Git code (2015). In. 37. Westerweel, J., Dabiri, D., & Gharib, M. (1997). The effect of a discrete window offset on the accuracy of cross-correlation analysis of digital PIV recordings. Experiments in fluids, 23(1), 20-28. 38. Willert, C. E., & Gharib, M. (1991). Digital particle image velocimetry. Experiments in fluids, 10(4), 181-193. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77367 | - |
| dc.description.abstract | 從工程規劃設計的面向來看,水資源工程規劃所需要的設計資料都是極端事件下的水文資料,使用傳統方式量測極端事件的水文資料就現實面來看還存在許多問題需要被解決。近年來利用非接觸式的影像方法測量水流表面流速,已經是發展的主流研究方法。本研究以大尺度粒子影像測速(Large Scale Particle Image Velocimetry, LSPIV)的概念為基礎,發展一套以深度學習架構為核心的影像測速法,同時提出一個全新的分析流程與概念進行流速量測。前期以人工水槽進行實驗來擷取大量的影像特徵,然後建置水流特性的影像資料庫來藉此訓練區域卷積神經網路(Faster Region-Convolutional Neural Network, Faster R-CNN),同時使用都卜勒聲學儀器量測水槽流速來做為率定驗證的資料。透過Faster R-CNN網路辨識水流表面粒子並且加以定位,並且進行流速分析,將結果與LSPIV做比較,研究顯示利用Faster R-CNN得到的速度平均值高於LSPIV的速度平均值4%,且更加的接近透過聲學儀器量測的結果。本研究提出以深度學習架構為核心的方法成功地避免了LSPIV低估流速的問題,也解決CNN網路在流速定位上的不確定性,因此以Faster R-CNN網路為核心的影像測速可以有效避免人為介入所造成的不確定性,大大提高影像分析在水利應用的可能性。 | zh_TW |
| dc.description.abstract | There are lots of methods that can measure river discharge. It is a really important thing when allocating water resources. First of all, we need to obtain the depth-averaged velocity in the flow. Another common way is using LSPIV, which is image-based measurement. The advantage of this method is non-intrusive, that is, it doesn’t affect the surface velocity. It saves lots of time and have a high temporal resolution. However, many literatures mentioned that the velocity will be underestimated by using LSPIV. Because of the seeding density, illumination and set of interrogation area, these will affect the result. In recent years, the development of deep learning has made computer vision more powerful. Due to this reason, we apply the conception of convolution neural network for the surface flow measurement. Using Faster R-CNN (Faster Region-Convolutional Neural Networks) to detect and locate particles on water surface and caculate the water surface velocity. This method won’t be affected by illumination and no need to set interrogation area. In this paper, we compare the results of LSPIV and Faster R-CNN, and find out that the result of using Faster R-CNN is more close to ADV data. As mentioned above, we demonstrate that object detection with using deep learning in streamflow velocimetry is feasible. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:58:28Z (GMT). No. of bitstreams: 1 ntu-108-R06521318-1.pdf: 4818385 bytes, checksum: 5b20557d18d1581a056c51eb06af7636 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 III
誌謝 IV 摘要 V ABSTRACT VI 目錄 1 圖目錄 4 第一章 緒論 7 1.1 研究動機(Motivation) 7 1.2 論文架構(Structure of the thesis) 10 第二章 文獻回顧 11 2.1 粒子影像測速(Particle Image Velocimetry) 11 2.2 深度學習(Deep Learning) 12 2.3 卷積神經網路(Convolutional Neural Network) 14 2.4 物體偵測(Object Detection) 16 第三章 研究方法 18 3.1 實驗環境設置 18 3.1.1 水槽設計 18 3.1.2 粒子使用 19 3.1.3 電腦設備 20 3.1.4 都卜勒聲學測速儀 20 3.2 大尺度粒子影像測速 (LSPIV) 21 3.2.1 正射校正(Image Orthorectification) 21 3.2.2 影像前處理(Image Pre-processing) 22 3.2.3 交互相關法(Cross-correlation) 22 3.3 超快速區域卷積神經網路(Faster R-CNN) 24 3.3.1 區域提案網路(Region proposal network) 25 3.3.2 損失函數(Loss function) 25 3.3.3 感興趣區域池化(ROI Pooling) 27 第四章 影像資料庫建立 29 4.1 資料擴增(Data Augmentation) 29 4.1.1 濾波處理(Filter) 32 4.1.2 像素處理(Pixel processing) 34 4.1.3 雜訊處理(Noise processing) 37 4.2 網路架構(Network Structure) 39 4.3 參數設置(Parameters Setting) 41 4.4 訓練過程(Training) 42 第五章 研究成果 44 5.1 Faster R-CNN檢測結果 44 5.2 速度場結果 48 5.3 Faster R-CNN與LSPIV之比較 53 第六章 結論與建議 57 6.1 結論 57 6.2 建議 57 參考文獻 59 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 人工智慧 | zh_TW |
| dc.subject | 卷積神經網路 | zh_TW |
| dc.subject | 影像分析 | zh_TW |
| dc.subject | LSPIV | zh_TW |
| dc.subject | 流量量測 | zh_TW |
| dc.subject | LSPIV | en |
| dc.subject | AI | en |
| dc.subject | CNN | en |
| dc.subject | Image processing | en |
| dc.subject | Discharge measurement | en |
| dc.title | 利用更快速區域類神經網路於河川流速量測之研究 | zh_TW |
| dc.title | Estimation of Open-Channel Surface Velocity with Faster R-CNN | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 韓仁毓;朱佳仁 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 人工智慧,卷積神經網路,影像分析,LSPIV,流量量測, | zh_TW |
| dc.subject.keyword | AI,CNN,Image processing,LSPIV,Discharge measurement, | en |
| dc.relation.page | 61 | - |
| dc.identifier.doi | 10.6342/NTU201901591 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-07-17 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 土木工程學系 | - |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 4.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
