請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77359
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李慧梅 | zh_TW |
dc.contributor.author | 吳振嘉 | zh_TW |
dc.contributor.author | ZHEN-JIA WU | en |
dc.date.accessioned | 2021-07-10T21:58:06Z | - |
dc.date.available | 2024-07-26 | - |
dc.date.copyright | 2019-07-26 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | 1.A.J. Maira , K.L. Yeung , J. Soria , J.M. Coronado , C. Belver , C.Y. Lee , V. Augugliaro, “Gas-phase photo-oxidation of toluene using nanometer-size TiO2 catalysts,” Applied Catalysis B: Environmental,29 327-336(2001).
2.Aydin Berenjian, Natalie Chan and Hoda Jafarizadeh Malmiri, “Volatile Organic Compounds Removal Methods: A Review”, American Journal of Biochemistry and Biotechnology, 8 (4), 220-229,(2012). 3.Aymen Amine Assadi , Abdelkrim Bouzaza , Smail Merabet, Dominique Wolbert,“Modeling and simulation of VOCs removal by nonthermal plasma discharge with photocatalysis in a continuous reactor: Synergetic effect and mass transfer”, Chemical Engineering Journal , 119–127(2014). 4.Ao, C. H., S. C. Lee, J. Z. Yu and J. H. Xu, “Photodegradation of formaldehyde by photocatalyst TiO2: effects on the presences of NO, SO2 and VOCs,” Applied Catalysis B-Environmental, 54(1), 41-50 (2004). 5.Asahi, R. and T. Morikawa, “Nitrogen complex species and its chemical nature in TiO2 for visible-light sensitized photocatalysis”,Chemical Physics, 339, 57–63 (2007). 6.Amandeep Kaur , Ahmad Umar , William A. Anderson , Sushil Kumar Kansal, “Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination”, Journal of Photochemistry & Photobiology A: Chemistry,360 34-43(2018). 7.Avila, P., A. Bahamonde, J. Blanco, B. Sanchez, A. I. Cardona and M. Romero, “Gas-phase photo-assisted mineralization of volatile organic compounds by monolithic titania catalysts,” Applied Catalysis B-Environmental, 17(1-2), 75-88 (1998). 8.Bernstein, J. A., N. Alexis, H. Bacchus, I. L. Bernstein, P. Fritz, E. Horner, N. Li, S. Mason, A. Nel, J. Oullette, K. Reijula, T. Reponen, J. Seltzer, A. Smith and S. M. Tarlo, "The health effects of nonindustrial indoor air pollution." Journal of Allergy and Clinical Immunology, 121(3), 585-591 (2008). 9.Brooks, B. O., G. M. Utter, J. A. Debroy and R. D. Schimke, "Indoor Air-Pollution - an Edifice Complex." Journal of Toxicology-Clinical Toxicology, 29(3), 315-374 (1991). 10.Cheng, M., I. E. Galbally, S.B. Molloy, P. W. Selleck, M. D. Keywood, S. J. Lawson, J. C. Powell, R. W. Gillett and E. Dunne, “Factors controlling volatile organic compounds in dwellings in Melbourne, Australia,” Indoor air, 26(2), 219-230 (2016). 11.Chang, C. P., J.N. Chen and M.C. Lu, “Heterogeneous photocatalytic oxidation of acetone for air purification by near UV-irradiated titanium dioxide,” Journal of Environmental Science and Health Part A – Toxic/Hazardous Substances & Environmental Engineering, 38, 1131-1143 (2003). 12.Choi, W., A. Termin, and M. R. Hoffmann, “The Role of Metal Ion Dopants in Quantum-Sized TiO2: Correlation between Photoreactivity and Charge Carrier Recombination Dynamics,” J. Phys. Chem., 98, 13669-13679 (1994). 13.Davide Spanua,Sandro Recchiab,Shiva Mohajernia, Patrik Schmuki,Marco Altomare, “Site-selective Pt dewetting on WO3-coated TiO2 nanotube arrays: An electron transfer cascade-based H2 evolution photocatalyst”, Applied Catalysis B: Environmental, 237 198-205(2018). 14.Dandan Yu, Jie Bai*, Haiou Liang, “Chunping L, Electrospinning, solvothermal, and self-assembly synthesis of recyclable and renewable AgBreTiO2/CNFs with excellent visible-light responsive photocatalysis”, Journal of Alloys and Compounds,683 329-328(2016). 15.Dai, K., D. P. Li, L. H. Lu, Q. Liu, C. H. Liang, J. L. Lv, G. P. Zhu, “Plasmonic TiO2/AgBr/Ag ternary composite nanosphere with heterojunction structure for advanced visible light photocatalyst” ,Applied Surface Science, 314, 864-871 (2014). 16.Deveau, P. A., F. Arsac, P. X. Thivel, C. Ferronato, F. Delpech, J. M. Chovelon, P. Kaluzny and C. Monnet, “Different methods in TiO2 photodegradation mechanism studies : Gaseous and TiO2-adsorbed phases,” Journal of Hazardous Materials, 144, 692–697 (2007). 17.Demirel, G., Ö. Özden, T. Döğeroğlu and E.O. Gaga, “Personal exposure of primary school children to BTEX, NO2 and ozone in Eskişehir, Turkey: relationship with indoor/outdoor concentrations and risk assessment,” Sci. Total Environ., 473, 537–548 (2014). 18.Devi, L. G. and R. Kavitha, “A review on plasmonic metal TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system,” Applied Surface Science, 601-622 (2016). 19.Dhada, I., M. Sharma and P. K. Nagar, “Quantification and human health risk assessment of by-products of photo catalytic oxidation of ethylbenzene, xylene and toluene in indoor air of analytical laboratories,” Journal of Hazardous Materials, 316, 1-10 (2016). 20.Dibble, L. A. and G. B. Raupp,“Fluidized-bed photocatalytic oxidation of trichloroethylene in contaminated airstreams” ,Environmental Science & Technology, 26(3), 492-495 (1992). 21. Dong Haoa, Zhenming Yanga, Chunhai Jianga, Jinsong Zhanga, “Synergistic photocatalytic effect of TiO2 coatings and p-type semiconductive SiC foam supports for degradation of organic contaminant”, Applied Catalysis B: Environmental,144 196-202(2014). 22. Donya Farhanian, Fariborz Haghighat, “Photocatalytic oxidation air cleaner: Identification and quantification of by-products,” Building and Environment,72 34-43(2014). 23.Dunne, E., W. Kirstine, I. E. Galbally, J. Powell, P. Selleck and S. Lawson, “A study of gaseous indoor air quality for a Melbourne home” ,Clean Air & Environ. Qual., 40(3), 45-51 (2006). 24.Durme, J. V., J. Dewulf, W. Sysmans, C. Leys and H. V. Langenhove, “Abatement and degradation pathways of toluene in indoor air by positive corona discharge”, Chemosphere, 68, 1821–1829 (2007). 25.Frankcombe, T. J. and S. C. Smith, “OH-Initiated Oxidation of Toluene. 1. Quantum Chemistry Investigation of the Reaction Path,” Phys. Chem. A, 111(19), 3686–3690 (2007). 26.Fogler, H. S., “Elements of chemical reaction engineering,” 3rd Ed., Prentice Hall International, Inc., New Jersey, USA (1999). 27.Fox, M. A. and M. T. Dulay, "Heterogeneous Photocatalysis." Chemical Reviews, 93(1), 341-357 (1993). 28.Gratzel, M., "Photoelectrochemical cells," Nature, 414, 338-344 (2001). 29.Guo, H., S.C. Lee, W.M. Li and J.J. Cao, “Source characterization of BTEX in indoor microenvironments in Hong Kong,” Atmos. Environ., 37 (1), 73–82 (2003). 30.Guo, T., Z. Bai, C. Wu and Tan Zhu, “Influence of relative humidity on the photocatalytic oxidation (PCO) of toluene by TiO2 loaded on activated carbon fibers: PCO rate and intermediates accumulation,” Applied Catalysis B: Environmental, 79, 171–178 (2008). 31.Ha-Rim An et al, “ Advanced nanoporous TiO2 photocatalysts by hydrogen plasma for efficient solar-light photocatalytic application”, Scientific Reports,29683(2016). 32.Haiou Liang , Chunping Li , Jie Bai, Junzhong Wang, Shan A, Liping Guo, Dandan Yu, “Fabrication of visible-light-responsed calcium metasilicate-supported Ag–AgX/TiO2 (X = Cl, Br, I) composites and their photocatalytic properties”, Advanced Powder Technology,26 1005-1012(2015). 33.Hager, S., R. Bauer and G. Kudielka, “Photocatalytic oxidation of gaseous chlorinated organics over titanium dioxide,” Chemosphere, 41(8), 1219-1225 (2000). 34.Hashimoto, K., K. Wasada, M. Osaki, E. Shono, K. Adachi, N. Toukai, H. Kominami and Y. Kera, “Photocatalytic oxidation of nitrogen oxide over titania–zeolite composite catalyst to remove nitrogen oxides in the atmosphere,” Applied Catalysis B: Environmental, 30(3-4), 429-436 (2001). 35.Hinwood, A. L., H. N. Berko, D. Farrar, I. E. Galbally and I. A. Weeks, “Volatile organic compounds in selected micro-environments,” Chemosphere, 63(3), 421-429 (2006). 36.H.William Prengle, Charles E. Mauk, “New Technology: Ozone/UV Chemical Oxidation Waste-water Process for Metal Complexes, Organic Species and Disinfection,” Chem. Engng Svmp. Ser., Wat. 178, 228-244(1978). 37.I. Dobrosz-Go´mez , M.A´.Go´mez-Garcı´a , S.M. Lo´pez Zamora , E. GilPavas , J. Bojarska d,e , M. Kozanecki , J.M. Rynkowski d, “Transition metal loaded TiO2 for phenol photo-degradation,” Comptes Rendus Chimie,18 1170-1182(2015). 38.Jones, A. P., “Indoor air quality and health, “Atmospheric Environment, 33, 4535-4564 (1999). 39.Kabir, E. and K. H. Kim, “An investigation on hazardous and odorous pollutant emission during cooking activities,” Journal of Hazardous Materials, 188(1), 443-454(2011). 40.Keller, V. and F. Garin, “Photocatalytic behavior of a new composite ternary system: WO3/SiC-TiO2. Effect of the coupling of semiconductors and oxides in photocatalytic oxidation of methylethylketone in the gas phase,” Catalysis Communications, 4(8), 377-383 (2003) 41.Ku, Y., C. M. Ma and Y. S. Shen, “Decomposition of gaseous trichloroethylene in a photoreactor with TiO2-coated nonwoven fiber textile,” Applied Catalysis B: Environmental, 34(3), 181-190 (2001). 42.Kyrklund, T., P. Kjellstrand. K. Haglid, “Brain lipid changes in rats exposed to xylene and toluene,” toxicology, 45(2), 123-133 (1987). 43.L.Gomathi Devi, R. Kavitha, “A review on plasmonic metal–TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system”, Applied Surface Science,360 601-622(2016). 44.Lee, S.C., W. M. Li and L. Y. Chan, "Indoor air quality at restaurants with different styles of cooking in metropolitan Hong Kong." Science of the Total Environment, 279(1-3), 181-193 (2001). 45.Legan, R.W., ”Ultraviolet-light takes on cpi role,” Chemical Engineering, 89(2), 95-100 (1982) 46.Lewandowski, M. and D. F. Ollis, “Extension of a two-site transient kinetic model of TiO2 deactivation during photocatalytic oxidation of aromatics: concentration variations and catalyst regeneration studies,” Applied Catalysis B-Environmental, 45(3), 223-238 (2003). 47.Lexuan Zhong,Fariborz Haghighat,“Photocatalytic air cleaners and materials technologies Abilities and limitations,”Building and Environment,91 191-203(2015). 48.Lexuan Zhong ,Fariborz Haghighat , Partice Blondeau , Janusz Kozinski, “Modeling and physical interpretation of photocatalytic oxidation efficiency in indoor air applications,” Building and Environment,45 2689-2697(2010). 49.Li, X. Z., Li, F. B. and Xie, Y. B., “Photocatalytic oxidation using lanthanide ion-doped titanium dioxide catalysts for water and wastewater treatment.” Trends in Water Pollution Research, 31-74 (2005). 50.Liang, H., C. P. Li, J. Bai, J. Z. Wang. A. Shan. L. P. Guo and D. Yu, “Fabrication of visible-light-responsed calcium metasilicate-supported Ag–AgX/TiO2 (X = Cl, Br, I) composites and their photocatalytic properties,” Advanced Powder Technology, 26(3), 1005-1012 (2015). 51.Lian Gao, Qinghong Zhang, “EFFECTS OF AMORPHOUS CONTENTS AND PARTICLE SIZE ON THE PHOTOCATALYTIC PROPERTIES OF TiO2 NANOPARTICLES,” Scripta mater, 44 1195–1198(2001). 52.Liu, Y., C. Xie, H. Li., H. Chen., Y. Liao and D. Zeng, ” Low bias photoelectrocatalytic (PEC) performance for organic vapour degradation using TiO2/WO3 nanocomposite,” Applied Catalysis B: Environmental, 102(1-2), 157-162 (2011). 53.Liu, X. X., D. Zhang, B. Guo, Y. Qu, Ge Tian, H. J. Yue and S. H. Feng., “Recyclable and visible light sensitive Ag–AgBr/TiO2: Surface adsorption and photodegradation of MO”, Applied Surface Science, 353, 913-923 (2015). 54.L. Gomathi Devi , R. Kavitha, “A review on plasmonic metal–TiO2 composite for generation, trapping, storing and dynamic vectorial transfer of photogenerated electrons across the Schottky junction in a photocatalytic system”, Applied Surface Science ,601–622(2016). 55.Luo, Y. and D.F. Ollis, “Heterogeneous photocatalytic oxidation of trichloroethylene and toluene mixtures in air: kinetic promotion and inhibition, time-dependent catalyst activity,” Journal of Catalysis, 163, 1-11 (1996). 56.Irokawa, Y., T. Morikawa, K. Aoki, S. Kosaka, T. Ohwaki and Y. Taga, “Photodegradation of toluene over TiO2−xNx under visible light irradiation,”Phys. Chem., 8, 1116-1121 (2006). 57.Izabela, D. G., M.Á. Gómez-García, S.M. López Zamora, E. GilPavasc, J. Bojarska, M. Kozanecki and J.M. Rynkowski, “Transition metal loaded TiO2 for phenol photo-degradation,” Comptes Rendus Chimie, 18(10), 1170-1182 (2015). 58.Jian Wang, Julian R.G. Evans, “Drying behaviour of droplets of mixed powder suspensions”, Journal of the European Ceramic Society, 3123–3131(2016). 59.Jinlong Zhang, Yongmei Wu, Mingyang Xing, Sajjad Ahmed Khan Leghari and Shamaila Sajjad, “Development of modified N doped TiO2 photocatalyst with metals, nonmetals and metal oxides”, Energy & Environmental Science review,(2010). 60. Juan Zhao, Xudong Yang, “Photocatalytic oxidation for indoor air puri&cation: a literature review”, Building and Environment,38 645-654(2003). 61.Meng Ni, Michael K.H. Leung, Dennis Y.C. Leung, K. Sumathy, “ A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production”, Renewable and Sustainable Energy Reviews,11 401-425(2007). 62.M.E. Borges, M. Sierra , J. Méndez-Ramos, P. Acosta-Mora , J.C. Ruiz-Morales ,P. Esparza , “Solar degradation of contaminants in water: TiO2 solar photocatalysis assisted by up-degradation luminescent materials”, Solar Energy Materials & Solar Cells, 194–201(2016). 63. Mills, A., R. H. Davies and D. Worsley, “Water purification by semiconductor photocatalysis” ,Chemical Society Reviews, 22(6), 417-425 (1993). 64.Mills, A. and LeHunte, S., “An overview of semiconductor photocatalysis”, Journal of Photochemistry and Photobiology A-chemistry, 108(1), 1-35 (1997). 65.Minggui Wanga , Huan Zhang, Huali Zu , Zhengrong Zhang , Jie Han, “Construction of TiO2/CdS heterojunction photocatslysts with enhanced visible light activity” ,Applied Surface Science,455 729-735(2018). 66.Mo, J. H., Y. P. Zhang, Q. J. Xu, J. J. Lamson and R. Y. Zhao, “Photocatalytic purification of volatile organic compounds in indoor air: A literature review” ,Atmospheric Environment, 43(14), 2229-2246 (2009). 67.Mo, J., Y. Zhang, Q. Xu, Y. Zhu, J. J. Lamson and R. Zhao, “Determination and risk assessment of by-products resulting from photocatalytic oxidation of toluene” , Applied Catalysis B: Environmental, 89, 570–576 (2009). 68.Mo, J., Y. P. Zhang, Q. J. Xu, “Effect of water vapor on the by-products and decomposition rate of ppb-level toluene by photocatalytic oxidation”, Applied Catalysis B: Environmental, 132-133, 212-218 (2013). 69.Nicolas Keller, Elodie Barraud, Florence Bosc, David Edwards, Valerie Keller, “ On the modification of photocatalysts for improving visible light and UV degradation of gas-phase toluene over TiO2”, Applied Catalysis B: Environmental, 423–430(2007). 70.Nøjgaard, J. K., K. B. Christensen and P. Wolkoff, "The effect on human eye blink frequency of exposure to limonene oxidation products and methacrolein." Toxicology letters, 156(2), 241-251 (2005). 71.Obee, T. N. and R. T. Brown, “TiO2 photocatalysis for indoor air applications effects of humidity and trace contaminant levels on the oxidation rates of formaldehyde, toluene, and 1,3-butadiene,” Environmental Science & Technology, 29(5), 1223-1231 (1995). 72.Obee, T. N., “Photooxidation of Sub-Parts-per-Million Toluene and Formaldehyde Levels on Titania Using a Glass-Plate Reactor,” Environ. Sci. Technol, 30(12), 3578-3584 (1996). 73.Obee, T. N. and S. O. Hay, “Effects of moisture and temperature on the photooxidation of ethylene on titania,” Environmental Science & Technology, 31(7), 2034-2038 (1997). 74.Ohno, T., F. Tanigawa, K. Fujihara. S. Izumi and M. Matsumura, “Photocatalytic oxidation of water on TiO2-coated WO3 particles by visible light using Iron(III) ions as electron acceptor,” Journal of Photochemistry and Photobiology A: Chemistry, 118(1), 41-44 (1989). 75.Okamoto K., Y. Yamamoto, H. Tanaka, M. Tanaka and A. Itaya, “Heterogeneous photocatalytic decomposition of phenol over TiO2 powder,” Bulletin of the Chamical Society of Japan, 58(7), 2015-2022 (1985). 76.Peral, J. and D. F. Ollis, “Heterogeneous photocatalytic oxidation of gas-phase organics for air purification: Acetone, 1-butanol, butyraldehyde, formaldehyde, and m-xylene oxidation,” Journal of Catalysis, 136(2), 554-565 (1992). 77.Perry, R. H., D. W. Green and J. O. Maloney, Perry’s chemcal engineers’ handbook 7th ed. McGraw-Hill, New York (1997). 78.Pichat, P. , “Photocatalytic Degradation of Pollutants in Water and Air: Basic Concepts and Applications,” In: Tarr, M.A., Ed. “Chemical Degradation Methods for Wastes and Pollutants Environmental and Industrial Applications”,Marcel Dekker,Inc., New York, U.S.A., 77-120 (2003). 79.Pierre Pichat,“Some views about indoor air photocatalytic treatment using TiO2: Conceptualization of humidity effects, active oxygen species, problem of C1–C3 carbonyl pollutants”, Applied Catalysis B: Environmental,99 428-434(2010). 80.Q.L. Yu , H.J.H. Brouwers,” Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study,” Applied Catalysis B: Environmental,92 454-461(2009). 81.Rodgman, A., and T. A. Perfetti, “The chemical components of tobacco and tobacco smoke, ”1st Ed., CRC Press, Boca Raton, Florida, USA(2008). 82.Sammy W. Verbruggen, “TiO2 photocatalysis for the degradation of pollutants in gas phase:From morphological design to plasmonic enhancement, ” Journal of Photochemistry and Photobiology C:Photochemistry Reviews,24 64-82(2015). 83.Sari, D. K., S. Kuwahara. Y. Tsukamoto, H. Hori, N. Kunugita, K. Arashidani, H. Fujimaki and F. Sasaki, “Effect of prolonged exposure to low concentrations of formaldehyde on the corticotropin releasing hormone neurons in the hypothalamus and adrenocorticotropic hormone cells in the pituitary gland in female mice”, Vol. 1013, No. 1, pp. 107-116 (2004). 84. Sang Bum Kima, Sung Chang Hong , “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst”, Applied Catalysis B: Environmental,35 305-315(2002). 85.Schwarzenbach, R. P., P. M. Gschwend and D. M. Imboden, Environment Organic Chemistry, John Wiley & Sons, New York, 1993. 86.Sclafani, A., L. Palmisano, M. Schiavello, “Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion,” J. Phys. Chem., 94(2), 829-832 (1990). 87.Sclafani, A. and J. M. Herrmann, “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions,” J. Phys. Chem., 100(32), 13655-13661 (1996). 88.Serpone, N. and E. Pelizzetti, “photocatalysis fundamentals and applications serpone, ”1st Ed., John Wiley & Sons, New York, USA (1989). 89.Shang, J., Y. Du and Z. Xu, “Photocatalytic oxidation of heptane in the gas-phase over TiO2,” Chemosphere, 46(1), 93-99 (2002). 90.Shaobin Wang , H.M. Ang, Moses O. Tade,“Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art,”Environment International,33 694-705(2007). 91.Sleiman, M., P. Conchon, C. Ferronato and J. M. Chovelon, “Photocatalytic oxidation of toluene at indoor air levels (ppbv): Towards a better assessment of degradation, reaction intermediates and mineralization”, Applied Catalysis B: Environmental, 86(3-4), 159-165 (2009). 92.Sihui Zhan , Yang Yanga,b, Xichao Gaoa, Hongbing Yua, Shanshan Yanga, Dandan Zhua, Yi Li, “Rapid degradation of toxic toluene using novel mesoporous SiO2 doped TiO2 nanofibers”, Catalysis Today,225 10–17(2014). 93.So, W. W., K. J. Kim and Sang-Jin Moon, “Photo-production of hydrogen over the CdS–TiO2 nano-composite particulate films treated with TiCl4,” International Journal of Hydrogen Energy, 29(3), 229-234 (2004). 94.Sobana, N., K. Selvam, M. Swaminathan, “Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2,” Separation and Purification Technology, 62(3), 648-653 (2008). 95.Sui, Y., C. Su, X. Yang, J. Hu and X. Lin, “Ag-AgBr nanoparticles loaded on TiO2 nanofibers as an efficient heterostructured photocatalyst driven by visible light,” Journal of Molecular Catalysis A: Chemical, 410, 226–234 (2015). 96.Takeuchi, M., J. Deguchi, S. Sakai and M. Anpo, “Effect of H2O vapor addition on the photocatalytic oxidation of ethanol, acetaldehyde and acetic acid in the gas phase on TiO2 semiconductor powders”, Applied Catalysis B-Environmental, 96(1-2), 218-223 (2010). 97.The-Vinh Nguyen, SungSik Kim, O-Bong Yang, “Water decomposition on TiO2–SiO2 and RuS2/TiO2–SiO2 photocatalysts: the effect of electronic characteristics”, Catalysis Communications,5 59-62(2004). 98.Verbruggen, S. W., “TiO2 photocatalysis for the degradation of pollutants in gas phase: From morphological design to plasmonic enhancement”, Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 24, 64-82 (2015). 99.K. Vinodgopal, Ulick Stafford, Kimberly A. Gray, and Prashant V. Kamat, “Electrochemically Assisted Photocatalysis. 2. The Role of Oxygen and Reaction Intermediates in the Degradation of 4-Chlorophenol on Immobilized TiO2 Particulate Films”, The Journal of Physical Chemistry,98 (27)6797-6803(1994). 100.Wan K. Jo, Hyun J. Kang, “Photocatalytic performance of cylindrical reactor inserted with UV light-emitting-diodes for purification of low-level toxic volatile organic compounds”, Applied Surface Science,259 657-663(2012). 101.Wang, K. H., H. H. Tsai and Y. H. Hsieh, “The kinetics of photocatalytic degradation of trichloroethylene in gas phase over TiO2 supported on glass bead”, Applied Catalysis B-Environmental, 17(4), 313-320 (1998). 102.Wang, Q. Y., R. C. Jin, M. Zhang and S. M. Gao, “Solvothermal preparation of Fe-doped TiO2 nanotube arrays for enhancement in visible light induced photoelectrochemical performance”,Journal of Alloys and Compounds, 690, 139-144 (2016). 103.Weschler, C. J., A. T. Hodgson and J. D. Wooley, “Indoor chemistry ozone, volatile organic compounds, and carpets”, Environmental Science & Technology, 26(12), 2371-2377 (1992). 104.Wei-Ming Hou and Young Ku, “Decomposition of Gaseous Isopropanol by UV/TiO2 Process with Applying Bias Potential in a Polymer Electrolyte Cell”, 14th Asia Pacific Confederation of Chemical Engineering Congress,(2012). 105.Xu, W. Z., D. Raftery and J. S. Francisco, “Effect of irradiation sources and oxygen concentration on the photocatalytic oxidation of 2-propanol and acetone studied by in situ FTIR”, Journal of Physical Chemistry B, 107(19), 4537-4544 (2003). 106.Xiaoping Wang, Teik-Thye Lim, “Highly efficient and stable AgeAgBr/TiO2 composites for destruction of Escherichia coli under visible light irradiation”, Water research, (2013). 107.Yuan Liu, Changsheng Xie, Huayao Li, Hao Chen, Yichuan Liao, Dawen Zeng, “Low bias photoelectrocatalytic (PEC) performance for organic vapour degradation using TiO2/WO3 nanocomposite”, Applied Catalysis B: Environmental, 157–162(2011). 108.Yujie Sui, Chunyan Su, Xudong Yang, Jianglei Hu, Xuejiao Lin, “Ag-AgBr nanoparticles loaded on TiO2 nanofibers as an efficient heterostructured photocatalyst driven by visible light”, Journal of Molecular Catalysis A: Chemical,410 226-234(2015). 109.Yang, R., Y. Zhang, Q. Xu and J. Mo, “A mass transfer based method for measuring the reaction coefficients of a photocatalyst”, Atmospheric Environment, 41(6), 1221-1229 (2007). 110.Yang, H., X. Y. Li, Q. D. Zhao, G. H. Chen and C. L. Raston, “Role of Hydroxyl Radicals and Mechanism of Escherichia coli Inactivation on Ag/AgBr/TiO2 Nanotube Array Electrode under Visible Light Irradiation”, Environ. Sci. Technol., 46(7), 4042–4050 (2012). 111.Yanhui Zhanga, Zi-Rong Tanga, Xianzhi Fua, Yi-Jun Xua, “Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase” Applied Catalysis B: Environmental, 106 445–452(2011). 112.Yasar, S., E. Yildirim., M. Koklu., E. Gursoy., M. Celik. and U. C. Yuksel, “A case of reversible cardiomyopathy associated with acute toluene exposure”,Turkish Journal of Emergency Medicine, 16(3), 123-125 (2016). 113.Yongmei Wu a , Jinlong Zhang a,b, *, Ling Xiao a , Feng Chen, “Properties of carbon and iron modified TiO2 photocatalyst synthesized at low temperature and photodegradation of acid orange 7 under visible light”, Applied Surface Science, 4260–4268(2010). 114.Yi-Hsing Lin, Ting-Ke Tseng, Hsin Chu, “Photo-catalytic degradation of dimethyl disulfide on S and metal-ions co-doped TiO2 under visible-light irradiation”, Applied Catalysis A: General,469 221-228(2016). 115.Yingying Qi , Baoxin Li , Furong Xiu, “ Effect of aggregated silver nanoparticles on luminol chemiluminescence system and its analytical application”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy,128 76-81(2014). 116.Yu, H., K. Zhang and C. Rossi, “Experimental study of the photocatalytic degradation of formaldehyde in indoor air using a nano-particulate titanium dioxide photocatalyst,” Indoor and Built Environment, 16(6), 529-537 (2007). 117.Zhang L,Cheng H,Zong R,Zhu Y.J.Phys.Chem.C,113,2368,(2009). 118.Zhang, Y. J., W. Yan, Y. P. Wu and Z. H. Wang, “Synthesis of TiO2 nanotubes coupled with CdS nanoparticles and production of hydrogen by photocatalytic water decomposition,” Materials Letters, 62(23), 3846-3848 (2008). 119.Zhang, Y., Z. R. Tang, X. Z. Fu and Y. J. Xu, “Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase,” Applied Catalysis B: Environmental, 106(3-4), 445-452 (2011). 120.勞動部,勞工作業環境空氣中有害物容許濃度標準. 121.李俊賢,“負載銀二氧化鈦光觸媒分散及其光催化反應之研究”,國立清華大學化學工程研究所,碩士論文,2004。 122.吳怡亭,“使用內照明蜂巢式反應器進行低濃度揮發性有機物的移除”,國立台灣大學化學工程學研究所,博士論文,2014。 123.林冠沂,“利用蜂巢狀光觸媒處理甲醛之研究”,國立台灣大學環境工程學研究所,碩士論文,2013。 124.余國賓,“以紫外光/臭氧程序增進光觸媒對室內揮發性有機物去除效率之研究” ,國立台灣大學環境工程學研究所,博士論文,2006。 125.陳佑誠,“以紫外光/二氧化鈦程序處理氣相苯及丙酮之研究”,國立台灣大學環境工程研究所,碩士論文,2009。 126.周文傑,“燃燒金紙與拜鄉所產生氣態污染物及飛灰中金屬成分之分布”,國立成功大學環境工程學系,碩士論文,2007。 127.郭柏成,“應用真空濺鍍法製備複合型奈米TiO2/ITO薄膜光觸媒之丙酮分解研究”,國立中山大學環境工程研究所,碩士論文,2010。 128.洪安傑,“以蜂巢狀光觸媒載體處理室內生物源揮發性有機物之研究”,國立台灣大學環境工程學研究所,碩士論文,2012。 129.賴明俊,“以紫外光/臭氧程序增進光觸媒對室內揮發性有機物三氯乙烯去除效率之研究”,國立台灣大學環境工程學研究所,碩士論文,2009。 130.謝哲隆、白崢鈺,“UVA、UVC 及 UVLED 結合 Ag/TiO2光觸媒光催化甲苯反應動力”,工業污染防治 第123期,2012。 131.高濂、鄭珊、張青紅著/陳憲偉校訂,“奈米光觸媒”,五南圖書公司,2004。 132.朱永法,“光觸媒” 化學工業出版社,2015。 | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77359 | - |
dc.description.abstract | 目前室內揮發性有機物處理主要以光催化(Photo Catalysis Oxidation,PCO)處理,然而仍存在有礦化率不足的問題,近年有相關文獻指出光電催化確實能增加礦化率及增加降解率,因為反應的一些中間產物毒性更高,反而造成對室內人員的健康危害。另外,目前光催化處理仍以紫外光為主,對於在室內環境應用,仍有安全疑慮。本研究將以光電共同催化(Photoelectrocatalysis Oxidation,PEC)技術,提昇室內揮發性有機物降解率。另外,並結合TiO2 、Ag/AgBr/TiO2 光觸媒,Ag/AgBr/TiO2除紫外光以外,也具可見光吸收能力,可提升揮發性有機物礦化率,降低危害性中間產物的產生,並提供對人體健康較安全方法。本研究方法利用新型光電催化反應器加上TiO2與Ag/AgBr/TiO2光觸媒做揮發性有機物甲苯降解,另外再分析TiO2與Ag/AgBr/TiO2光觸媒表面性能分析。本研究固定因子條件用10ppmv甲苯濃度作為固定進流濃度,變因條件為電壓、光波長(254nm及420nm波長)、相對濕度及氣體流量。實驗依據文獻參考使用高反應效率比例(139.2%Ag/AgBr/TiO2)配置Ag/AgBr/TiO2與一般P25二氧化鈦來進行光催化與光電催化降解室內VOCs甲苯比較,結果發現改質Ag/AgBr/TiO2在流速0.7LPM停留時間8秒、相對濕度30%,單純紫外光照射下有效率降解率高達99.28%,而可見光外加電壓0.4V則為98.44%,而一般P25停留時間8秒、相對濕度30%、最高降解效率則達到35.18%,外加電壓0.4伏特條件下,最高降解效率則達到44.04%,一般P25在紫外光外加1伏特電壓處理時則最高降解率在71.72%,實驗結果證明可見光光電催化與改質光觸媒共同處理室內空氣汙染VOCs具有未來之發展潛力。 | zh_TW |
dc.description.abstract | The main indoor volatile organic compounds present in the photocatalytic process (Photo Catalysis Oxidation, PCO) process , but there is still the problem of inadequate mineralization rate in recent years, relevant literature noted photoelectrocatalysis can really increase the rate of mineralization and increase the degradation rate , because higher intermediate toxicity , but the cause of the person in the room health hazard. In addition , there is still UV photocatalytic treatment mainly for use in an indoor environment , there are safety concerns. This study will be co- catalytic photovoltaic (Photoelectrocatalysis Oxidation, PEC) technology to enhance indoor volatile organic compounds mineralization . In addition, combined with TiO2, Ag / AgBr / TiO2 photocatalyst, Ag / AgBr / TiO2 in addition to ultraviolet light, and a visible light absorption capability, volatile organic compounds to enhance the rate of mineralization, reduce produce harmful intermediate products, and to provide the human body health safer method. In this study, using a new method of photoelectric catalytic reactor coupled with TiO2 and Ag / AgBr / TiO2 photocatalyst do toluene degradation of volatile organic compounds, in addition to the analysis of TiO2 and Ag / AgBr / TiO2 photocatalyst surface properties analysis. In this study, factor conditions fixed by 10ppm concentration of toluene as a fixed inflow concentration change due to voltage conditions, the optical wavelength (254nm and 420nm wavelength), relative humidity and gas flow. Experimental basis References to use high reaction efficiency ratio (139.2% Ag / AgBr / TiO2) configuration Ag / AgBr / TiO2 and general P25 titanium dioxide photocatalytic and photoelectric catalytic degradation of indoor VOCs toluene comparison found that the modified Ag / AgBr / TiO2 flow rate 0.7LPM residence time 8 seconds, 30% relative humidity, ultraviolet light alone at rate degradation efficiency 99.28%, while the visible light applied voltage was 0.4V 98.44%, while in general the residence time 8 seconds P25, relative humidity 30% the maximum degradation efficiency reached 35.18%, plus a 0.4 V voltage conditions, the maximum degradation efficiency reached 44.04%, while general P25 1 volt in the UV treatment is applied at the maximum degradation rate of 71.72%, experimental results show that the visible and Photoelectrocatalytic modified photocatalyst together on indoor air pollution VOCs have the potential for future development. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:58:06Z (GMT). No. of bitstreams: 1 ntu-108-R03541133-1.pdf: 5082954 bytes, checksum: a36a385262e50c492e46313f8402bf98 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 摘要……………………………………………..………………....…………………Ⅱ
Abstract…………………………………………..…………………………………...III 目錄…………………………………………………………………………………..IV 圖目錄……………………………………………………………………………….VII 表目錄………………………………………………………………………………..XI 符號說明………… …………………………………………………………………XII 第一章 緒論 1 1-1 研究緣起…………………………………………………………1 1-2 研究目的…………………………………………………………3 1-3 研究內容與方法………………...……………………………….6 1-4 實驗架構…………………………………………………………7 第二章 文獻回顧…………………………………………………..…………8 2-1 揮發性有機物之定義、種類、來源與健康影響………………8 2-1-1 揮發性有機物之定義與種類……………………………8 2-1-2 室內揮發性有機物來源…………...…………………….9 2-1-3 室內揮發性有機物對人體健康的影響………………..11 2.2 光觸媒催化反應………………………………………………..12 2-2-1 光催化(PCO)反應原理………………………………...12 2-3 光觸媒催化反應去除VOCs之相關研究………………......... 18 2-3-1 光催化反應速率之影響因子……………………….….18 2-4 光觸媒效率改善方法…………………………………………...27 2-5 光觸媒光電催化技術研究……………………………………...32 2-6 新型Ag/AgBr/TiO2改質光觸媒………………………………..34 第三章 實驗設備與方法 40 3-1 實驗材料製備及儀器設備……………………………………..40 3-1-1 實驗材料……………………………………………….40 3-1-2 儀器設備……………………………………………….41 3-2 實驗系統………………………………………………………..42 3-2-1 實驗系統……………………………………………….42 3-2-2 空氣供應系統………………………………………….43 3-2-3 濕度控制系統………………………………………….43 3-2-4 揮發性有機氣體滲透系統…………………………….43 3-3 實驗材料製備…………………………………………………..47 3-3-1 Ag/AgBr/TiO2配置披覆方式………………………….47 3-3-2 光電反應器設計……………………………………….48 3-4 採樣與分析……………………………………………………..54 3-5 實驗條件因子…………………………………………………..58 3-6 實驗程序……………………………………………………….59 3-7 實驗計算方法………………………………………………….60 第四章 結果與討論 61 4-1 甲苯固定流速濃度穩定時間…………………………………..61 4-2 電壓對光觸媒反應之影響……………………………………..61 4-2-1 TiO2在紫外光光電催化處理最佳範圍……………….61 4-2-2 Ag/AgBr/TiO2可見光光電催化處理最佳電壓範圍….63 4-3 光觸媒光催化與光電催化結果………………………………..64 4-3-1 TiO2光電催化結果…………………………………….64 4-3-2 Ag/AgBr/TiO2紫外光為光源光催化………………….70 4-3-3 Ag/AgBr/TiO2可見光為光源光電催化……………….75 4-3-3-1 Ag/AgBr/TiO2未照紫外光前處理之情形…....75 4-3-3-2 Ag/AgBr/TiO2可見光光電催化………….….. 77 4-4 結果數據整……………………………………………………..82 4-4-1 TiO2紫外光光催化與光電催化降解率……………….82 4-4-2 Ag/AgBr/TiO2紫外光光催化降解率………………….84 4-4-3 Ag/AgBr/TiO2可見光光催化與光電催化降解率…….85 4-5 光觸媒催化多次循環之降解率………………………………..87 4-5-1 Ag/AgBr/TiO2紫外光多次循環降解率………………………..87 4-5-2 Ag/AgBr/TiO2可見光光電催化多次循環降解率…….88 4-5-3 TiO2紫外光光電催化多次循環降解率……………….88 4-6 光觸媒性能分析………………………………………………..89 4-6-1 FIB-SEM分析結果…………………………………….89 4-6-2 EDS分析結果………………………………………….91 4-6-3 光觸媒比表面積分析……………………….……...…..92 4-1-4 XPS分析…………………………...…………………..93 4-1-5 UV-Visble分析…………………………………………94 4-7 Ag/AgBr/TiO2與TiO2光電催化能源效益計算……………….95 第五章 結論與建議 96 5-1 結論……………………………………………………………..96 5-2 建議……………………………………………………………..97 參考文獻……………………………………………………..……………..…..98 附錄………………………………………………………………………...….114 | - |
dc.language.iso | zh_TW | - |
dc.title | 室內揮發性有機物甲苯光電催化處理之研究 | zh_TW |
dc.title | Photoelectrocatalytic Oxidation of Volatile Organic Compounds Toluene in Indoor Environment | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 黃小林;余國賓 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | 光電共同催化,Ag/AgBr/TiO2,揮發性有機物,甲苯,室內空氣品質, | zh_TW |
dc.subject.keyword | Photoelectrocatalysis,Ag/AgBr/TiO2,VOCs,Toluene,Indoor air quality, | en |
dc.relation.page | 114 | - |
dc.identifier.doi | 10.6342/NTU201901682 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-07-23 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 4.96 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。