Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77354
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何昊哲zh_TW
dc.contributor.advisorHao-Che Hoen
dc.contributor.author邱昱維zh_TW
dc.contributor.authorYu-Wei Chiuen
dc.date.accessioned2021-07-10T21:57:51Z-
dc.date.available2024-07-29-
dc.date.copyright2019-07-29-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1]. Adrian, R. J. (1986). Image shifting technique to resolve directional ambiguity in double-pulsed velocimetry. Applied optics, 25(21), 3855-3858.
[2]. Adrian, R. J. (1991). Particle-imaging techniques for experimental fluid mechanics. Annual review of fluid mechanics, 23(1), 261-304.
[3]. Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow & Metabolism, 21(10), 1133-1145.
[4]. Bandini, F., Jakobsen, J., Olesen, D., Reyna-Gutierrez, J. A., & Bauer-Gottwein, P. (2017). Measuring water level in rivers and lakes from lightweight Unmanned Aerial Vehicles. Journal of Hydrology, 548, 237-250.
[5]. Burch, J., & Tokarski, J. (1968). Production of multiple beam fringes from photographic scatterers. Optica Acta: International Journal of Optics, 15(2), 101-111.
[6]. Capart, H., Young, D., L, & Zech, Y. (2002). Voronoï imaging methods for the measurement of granular flows. Experiments in fluids, 32(1), 121-135.
[7]. Cebeci, T. (2012). Analysis of turbulent boundary layers (Vol. 15): Elsevier.
[8]. Coupland, J. M., & Halliwell, N. A. (1988). Particle image velocimetry: rapid transparency analysis using optical correlation. Applied optics, 27(10), 1919-1921.
[9]. Crosby, D., Breaker, L., & Gemmill, W. (1993). A proposed definition for vector correlation in geophysics: Theory and application. Journal of Atmospheric Oceanic Technology, 10(3), 355-367.
[10]. De Boer, P.-T., Kroese, D. P., Mannor, S., & Rubinstein, R. Y. (2005). A tutorial on the cross-entropy method. Annals of operations research, 134(1), 19-67.
[11]. Detert, M., & Weitbrecht, V. (2015). A low-cost airborne velocimetry system: proof of concept. Journal of Hydraulic Research, 53(4), 532-539.
[12]. Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul), 2121-2159.
[13]. Fujita, I., & Komura, S. (1994). Application of video image analysis for measurements of river-surface flows. Proceedings of Hydraulic Engineering, 38, 733-738.
[14]. Fujita, I., Muste, M., & Kruger, A. (1998). Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of Hydraulic Research, 36(3), 397-414.
[15]. Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological cybernetics, 36(4), 193-202.
[16]. Glorot, X., & Bengio, Y. (2010). Understanding the difficulty of training deep feedforward neural networks. Paper presented at the Proceedings of the thirteenth international conference on artificial intelligence and statistics.
[17]. Glorot, X., Bordes, A., & Bengio, Y. (2011). Deep sparse rectifier neural networks. Paper presented at the Proceedings of the fourteenth international conference on artificial intelligence and statistics.
[18]. Harpold, A., Mostaghimi, S., Vlachos, P. P., Brannan, K., & Dillaha, T. (2006). Stream discharge measurement using a large-scale particle image velocimetry (LSPIV) prototype. Transactions of the ASABE, 49(6), 1791-1805.
[19]. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. Paper presented at the Proceedings of the IEEE international conference on computer vision.
[20]. Hinton, G. E. (1986). Learning distributed representations of concepts. Paper presented at the Proceedings of the eighth annual conference of the cognitive science society.
[21]. Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal covariate shift.
[22]. Jähne, B. (1995). Digital Image Processing. Springer-Verlag.
[23]. Johnson, E. D., & Cowen, E. (2016). Remote monitoring of volumetric discharge employing bathymetry determined from surface turbulence metrics. Water Resources Research, 52(3), 2178-2193.
[24]. Kimura, I., & Takamori, T. (1987). Image processing of flow around a circular cylinder by using correlation technique. Paper presented at the Flow Visualization IV.
[25]. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
[26]. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. Paper presented at the Advances in neural information processing systems.
[27]. Landreth, C. C., & Adrian, R. J. (1988). Electrooptical image shifting for particle image velocimetry. Applied optics, 27(20), 4216-4220.
[28]. Le Coz, J., Hauet, A., Pierrefeu, G., Dramais, G., & Camenen, B. (2010). Performance of image-based velocimetry (LSPIV) applied to flash-flood discharge measurements in Mediterranean rivers. Journal of Hydrology, 394(1-2), 42-52.
[29]. LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324.
[30]. Makino, S., Kawabata, T., & Kido, K. i. (1983). Recognition of consonant based on the perceptron model. Paper presented at the ICASSP'83. IEEE International Conference on Acoustics, Speech, and Signal Processing.
[31]. Morgan, N., & Bourlard, H. (1990). Continuous speech recognition using multilayer perceptrons with hidden Markov models. Paper presented at the International conference on acoustics, speech, and signal processing.
[32]. Nobach, H., & Honkanen, M. (2005). Two-dimensional Gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry. Experiments in fluids, 38(4), 511-515.
[33]. Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural networks, 12(1), 145-151.
[34]. Rantz, S. E. (1982). Measurement and computation of streamflow (Vol. 2175): US Department of the Interior, Geological Survey.
[35]. Rosenblatt, F. (1958). The perceptron: a probabilistic model for information storage and organization in the brain. Psychological review, 65(6), 386.
[36]. Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv preprint arXiv:1609.04747.
[37]. Stamhuis, E. J. (2006). Basics and principles of particle image velocimetry (PIV) for mapping biogenic and biologically relevant flows. Aquatic Ecology, 40(4), 463-479.
[38]. Tauro, F., Pagano, C., Phamduy, P., Grimaldi, S., & Porfiri, M. (2015). Large-scale particle image velocimetry from an unmanned aerial vehicle. IEEE/ASME Transactions on Mechatronics, 20(6), 3269-3275.
[39]. Thielicke, W., & Stamhuis, E. J. (2014). PIVlab-towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB. Journal of Open Research Software, 2.
[40]. Watrous, R. L. (1987). Learning phonetic features using connectionist networks: An experiment in speech recognition. Paper presented at the in Proc. 1987 1st International Conference on Neural Networks.
[41]. Willert, C., & Kompenhans, J. (2018). PIV Analysis of Ludwig Prandtl’s Historic Flow Visualization Films.
[42]. Willert, C. E., & Gharib, M. (1991). Digital particle image velocimetry. Experiments in fluids, 10(4), 181-193.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77354-
dc.description.abstract河川流量資料是水利工程設計與水資源規劃中最關鍵的因子,近 20 年來使用非接觸式的方法量測水文資料已經獲得廣泛地應用,如大尺度粒子影像測速法(Large-Scale Particle Image Velocimetry, LSPIV)量測河道表面流速來估算流量的方法。然傳統粒子影像測速法所利用的圖像匹配法,僅考量圖像之強度分布的互相關性算法(Direct Cross-Correlation, DCC)作為匹配基準。就室內實驗而言,因為光照條件容易控制,使得該法可以獲得良好的速度場分布結果。但是在野外現場量測,因光照、陰影、粒子散佈、天然環境變數和人為條件均十分複雜且難以控制,使得拍攝的影像特徵不足,或是產生不可逆的雜訊,導致速度場的分析錯誤。因此以強度分布特徵作為影像辨識之判斷標準並無法適用於任何場域,特別是非接觸測量的方法要在現場應用來分析流量,勢必要開發一種可以考量亮度、幾何或是更抽象的特徵來進行辨識影像的方法提高速度場的量測精度。
卷積類神經網路(Convolutional Neural Network, CNN)其影像特徵擷取的準確度已遠超越傳統影像匹配法,是現今人工智慧影像辨識中應用最廣泛的技術。本研究利用 CNN 的特性,打造出適用於 LSPIV 應用場合的深度學習網路,來對散佈在水面上的粒子提取更多元的特徵進行影像辨識。本研究先以 Hamel-Oseen 渦流方程式產生兩種速度量級下的高密度、低密度,與背景擬真化之低密度三類影像基準集,分別模擬傳統室內實驗、疏鬆的顆粒分布與背景複雜的現場情況,並以向量相關係數來評估DCC和CNN在這些結果中的好壞。研究發現 CNN 對於背景亮度雜訊所造成的干擾抑制於 1%以內,在模擬現場情況的影像集中獲得了比DCC法還要穩健的表現。最後以 30 公尺長與 1 公尺寬的人造渠道進行實驗,使用聲學都普勒流速儀所量測的流速資料來評估 CNN 應用於LSPIV中之表現。結果顯示CNN與DCC法在流速量測表現極其接近,本研究證明CNN未來可以應用於現場的流速量測,同時為建立一套非接觸式流量量測儀建立基礎。
zh_TW
dc.description.abstractThe discharge of river is the most important information in the water resource planning. Recently, one of the non-contact measurement techniques, “Large-Scale Particle Image Velocimetry (LSPIV)”, is widely used in measuring the surface flow velocity and estimating the discharge in the field. Conventionally, the direct cross-correlation algorithm (DCC) used in LSPIV considers the correlation of pixel intensity in the interrogation area as the characteristic. However, the condition is usually complex and not controllable in the field. These unfavorable factors not only probably impact the intensity patterns of the images you get, but also directly raise the error in matching interrogation area when applied on field. Only taking the intensity as the matching feature is not really reliable, we really need to consider more geometric characteristics in our matching technique.
For the sake of improvement, in our research, we use “Convolutional Neural Network (CNN)”, which is very popular and powerful on the machine recognition and object detection, to take more characteristics on river surface into account, and build an appropriate deep learning network structure to extract and classify the features from the river surface. To validate the applicability of our method, we design three scenarios, which are high-density, low-density and low-density with non-uniform illuminated background, to simulate the most common circumstances of applying general PIV, LSPIV and field scene. Hence, we generate several particle image sets under those situations by using PIVlab. The particles on images are all based on the function of Lamb-Oseen Vortex rings, thus we have the true values of velocity field as our testing benchmarks, and use the vector correlation coefficient to check our results.
We found that CNN which mitigating the impact of illumination below 1% can have more stable, and reliable results on the image sets that simulating the filed than the DCC which are seriously affected. Moreover, by having a experiment on the indoor channel, we proof that LSPIV with CNN can truly be used in reality, and have the same performance on the velocity field and flow rate with DCC method.
en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:57:51Z (GMT). No. of bitstreams: 1
ntu-108-R06521325-1.pdf: 7344772 bytes, checksum: 45f974ffc36f28cde61361d3ce16c1ee (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員審定書 I
誌謝 II
摘要 III
ABSTRACT V
目錄 VII
圖目錄 X
表目錄 XII
第1章 緒論 1
1.1 研究動機與目的 1
1.2 文獻回顧 2
1.2.1 粒子影像測速法(Particle Image Velocimetry, PIV) 2
1.2.2 大尺度粒子影像測速法(Large-Scale PIV, LSPIV) 4
1.2.3 卷積類神經網路(Convolutional Neural Network, CNN) 5
第2章 研究方法 11
2.1 粒子影像測速法(PARTICLE IMAGE VELOCIMETRY, PIV) 11
2.2 互相關性(DIRECT CROSS-CORRELATION, DCC) 11
2.3 卷積類神經網路(CONVOLUTIONAL NEURAL NETWORK, CNN) 12
2.3.1 模式流程 12
2.3.2 資料前處理 12
2.3.3 模式架構 15
2.3.4 卷積層深度率定 23
2.4 子像素精度修正(SUB-PIXEL PRECISION) 23
2.4.1 高斯曲線擬合(Gaussian Interpolation, GI) 23
2.4.2 粒子平均移動法 (Particle Average Movement, PAM) 24
2.5 向量相關性(VECTOR CORRELATION COEFFICIENT, VCC) 28
2.6 流量推估 29
第3章 研究場域與案例概述 31
3.1 軟硬體開發環境概述 31
3.1.1 作業系統與程式語言 31
3.1.2 PIVlab 31
3.1.3 Tensorflow 32
3.1.4 硬體設備 33
3.2 模擬案例設計 33
3.2.1 影像大小與速度場 33
3.2.2 模擬粒子影像 35
3.3 渠道試驗設計 39
3.3.1 渠道系統介紹 39
3.3.2 ADV流速量測 40
3.3.3 LSPIV 表面流速測量 40
第4章 研究成果與討論 41
4.1 網路深度率定 41
4.2 DCC與CNN之結果差異分析 43
4.2.1 子圖像(IA)尺寸之影響 43
4.2.2 影像背景純淨度之影響 45
4.3 渠道試驗分析 51
4.3.1 ADV資料分析 51
4.3.2 LSPIV分析 52
第5章 結論與建議 56
5.1 結論 56
5.2 建議 57
參考文獻 59
-
dc.language.isozh_TW-
dc.title以卷積類神經網路應用於大尺度粒子影像測速之研究zh_TW
dc.titleThe Application of Convolutional Neural Network on Large-Scale Particle Image Velocimetryen
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee朱佳仁;韓仁毓zh_TW
dc.contributor.oralexamcommitteeChia-Ren Chu;Jen-Yu Hanen
dc.subject.keyword大尺度粒子影像測速法,深度學習,卷積類神經網路,流速測量,流量測量,zh_TW
dc.subject.keywordLSPIV,CNN,Hydrologic Measurements,Surface velocity,Discharge,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU201901865-
dc.rights.note未授權-
dc.date.accepted2019-07-24-
dc.contributor.author-college工學院-
dc.contributor.author-dept土木工程學系-
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
7.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved