請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77343完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為 | zh_TW |
| dc.contributor.author | 謝偉誠 | zh_TW |
| dc.contributor.author | Wei-Cheng Hsieh | en |
| dc.date.accessioned | 2021-07-10T21:57:20Z | - |
| dc.date.available | 2024-07-31 | - |
| dc.date.copyright | 2019-08-01 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1-1] Alessandro Barenghi, Luca Breveglieri, Niccolò Izzo, and Gerardo Pelosi, “Software-only Reverse Engineering of Physical DRAM Mappings for Rowhammer Attacks,” in IEEE 3rd International Verification and Security Workshop (IVSW), pp. 19–24, Jul. 2018.
[1-2] H.J. Oh, J.Y. Kim, J.H. Kim, S.G. Park, D.H. Kim, S.E. Kim, D.S. Woo, Y.S. Lee, G.W. Ha, J.M. Park, N.J. Kang, H.J. Kim, Y.S. Hwang, B.Y. Kim, D.I. Kim, Y.S. Cho, J. K. Choi, B.H. Lee, S.B. Kim, M.H. Cho, Y.I. Kim, J. Choi, D.W. Shin, M.S. Shim, W. T. Choi, G.P. Lee, Y.J. Park, W.S. Lee and B.I. Ryu, “High-density low-power-operating DRAM device adopting 6F/sup 2/ cell scheme with novel S-RCAT structure on 80nm feature size and beyond,” in Proceedings of 35th European Solid-State Device Research Conference, pp. 177–180, Sep. 2005. [1-3] Kunta Yoshikawa, Hayato Kawasaki, Wataru Yoshida, Toru Irie, Katsunori Konishi, Kunihiro Nakano, Toshihiko Uto, Daisuke Adachi, Masanori Kanematsu, Hisashi Uzu, and Kenji Yamamoto, “Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%,” Nature Energy, vol. 2, pp. 1-8, Mar. 2017. [2-1] Moinuddin K. Qureshi, Dae-Hyun Kim, Samira Khan, Prashant J. Nair, and Onur Mutlu, “AVATAR: A Variable-Retention-Time (VRT) Aware Refresh for DRAM Systems,” in Annual IEEE/IFIP International Conference on Dependable Systems and Networks, pp. 427–437, Jun. 2015. [2-2] Kinam Kim, and Gitae Jeong, “Memory Technologies for sub-40nm Node,” in IEDM Tech. Dig., pp. 27–30, Dec. 2007. [2-3] Juergen W. Faul, and Dietmar Henke, “Transistor challenges – A DRAM perspective,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 237, pp. 228-234, Aug. 2005. [2-4] Sung-Young Lee, Se Geun Park, Samjin Hwang, Jaeeun Jeon, and Wonshik Lee, “New charge trapping phenomena in Recessed-Channel-Array-Transistor (RCAT) after Fowler-Nordheim stress,” in IEEE International Conference on Integrated Circuit Design and Technology and Tutorial, pp. 9-12, Jun. 2008. [2-5] J.Y. Kim, H.J. Oh, D.S. Woo, Y.S. Lee, D.H. Kim, S.E.Kim, G.W. Ha, H.J Kim, N.J. Kang, J.M. Park, Y.S. Hwang, D.I. Kim, B.J. Park, M. Huh, B.H. Lee, S.B. Kim, M.H. Cho, M.Y. Jung, Y.I. Kim, C. Jin, D.W. Shin, M.S. Shim, C.S. Lee, W.S. Lee, J.C. Park, G.Y. Jin, Y.J. Park, and Kinam Kim, “S-RCAT (sphere-shaped-recess-channel-array transistor) technology for 70nm DRAM feature size and beyond,” in Proc. Symp. VLSI Technol., pp. 34–35, Jun. 2005. [2-6] Dong-Su Lee, Young-Hyun Jun, and Bai-Sun Kong, “Simultaneous Reverse Body and Negative Word-Line Biasing Control Scheme for Leakage Reduction of DRAM,” Journal of Solid-State Circuits, vol. 46, pp. 2396-2405, Oct. 2011. [2-7] Satendra Kumar Gautam, Arvind Kumar, and Sanjeev Kumar Manhas, “Improvement of Row Hammering Using Metal Nanoparticles in DRAM—A Simulation Study,” Electron Device Letters, vol. 39, pp. 1286-1289, Sep. 2018. [2-8] Pierre C. Fazan, and Viju K. Mathews, “A highly manufacturable trench isolation process for deep submicron DRAMs,” in IEDM Tech. Dig., pp. 57–60, Dec. 1993. [2-9] T. Schloesser, F. Jakubowski, J. v. Kluge, A. Graham, S. Slesazeck, M. Popp, P. Baars, K. Muemmler, P. Moll, K. Wilson, A. Buerke, D. Koehler, J. Radecker, E. Erben, U. Zimmermann, T. Vorrath, B. Fischer, G. Aichmayr, R. Agaiby, W. Pamler, T. Schuster, W. Bergner, and W. Mueller, “6F2 buried wordline DRAM cell for 40nm and beyond,” in IEDM Tech. Dig., pp. 1–4, Dec. 2008. [2-10] Toru Toyabe, and Shojiro Asai, “Analytical models of threshold voltage and breakdown voltage of short-channel MOSFETs derived from two-dimensional analysis,” Journal of Solid-State Circuits, vol. 14, pp. 375-383, Apr. 1979. [3-1] M. Popovici, A. Belmonte, H. Oh, G. Potoms, J.Meersschaut, O. Richard, H. Hody, S. Van Elshocht, R. Delhougne, L. Goux, and G. Sankar Kar, “High-performance (EOT<0.4nm, Jg∼10−7 A/cm2) ALD-deposited RuSrTiO3 stack for next generations DRAM pillar capacitor,” in IEDM Tech. Dig., pp. 51–54, Dec. 2018. [3-2] Seong Keun Kim, Gyu‐Jin Choi, Sang Young Lee, Minha Seo, Sang Woon Lee, Jeong Hwan Han, Hyo‐Shin Ahn, Seungwu Han, and Cheol Seong Hwang, “Al‐Doped TiO2 Films with Ultralow Leakage Currents for Next Generation DRAM Capacitors,” Advanced Materials, vol. 20, pp. 1429-1435, Apr. 2008. [3-3] Hyunjin Lee, Dae-Young Kim, Bong-Ho Choi, Gyu-Seong Cho, Sung-Woong Chung, Wan-Soo Kim, Myoung-Sik Chang, Young-Sik Kim, Junki Kim, Tae-Kyun Kim, Hyung-Hwan Kim, Hae-Jung Lee, Han-Sang Song, Sung-Kye Park, Jin-Woong Kim, Sung-Joo Hong, and Sung-Wook Park, “Fully integrated and functioned 44nm DRAM technology for 1GB DRAM,” in Proc. Symp. VLSI Technol., pp. 86–87, Jun. 2008. [3-4] Steve Knebel, Uwe Schroeder, Dayu Zhou, Thomas Mikolajick, and Gunter Krautheim, “Conduction Mechanisms and Breakdown Characteristics of Al2O3-Doped ZrO2 High-k Dielectrics for Three-Dimensional Stacked Metal–Insulator–Metal Capacitors,” Transactions on Device and Materials Reliability, vol. 14, pp. 154-160, Mar. 2014. [3-5] Deok-Sin Kil, Han-Sang Song, Kee-Jeung Lee, Kwon Hong, Jin-Hyock Kim, Ki-Seon Park, Seung-Jin.Yeom, Jae-Sung Roh, Noh-Jung Kwak, Hyun-Chul Sohn, Jin-Woong Kim, and Sung-Wook Park, “Development of New TiN/ZrO2/Al2O3/ZrO2/TiN Capacitors Extendable to 45nm Generation DRAMs Replacing HfO2 Based Dielectrics,” in Proc. Symp. VLSI Technol., pp. 38-39, Jun. 2006. [3-6] Hyungjun Kim, Han-Bo-Ram Lee, and W.-J. Maeng, “Applications of atomic layer deposition to nanofabrication and emerging nanodevices,” Thin Solid Films, vol. 517, pp. 2563-2580, Feb. 2009. [3-7] Cheng-Ming Lin, Yen-Ting Chen, Cheng-Hang Lee, Hung-Chih Chang, Wei-Chiang Chang, Huan-Lin Chang, and C. W. Liu, “Voltage Linearity Improvement of HfO2-Based Metal–Insulator–Metal Capacitors with H2O Prepulse Treatment,” Journal of The Electrochemical Society, vol. 158, pp. H128-H131, 2011. [3-8] Steve Knebel, Dayu Zhou, Uwe Schroeder, Stefan Slesazeck, Milan Pešic, Rimoon Agaiby, Johannes Heitmann, and Thomas Mikolajick, “Reliability Comparison of ZrO2-Based DRAM High-k Dielectrics Under DC and AC Stress,” Transactions on Device and Materials Reliability, vol. 17, pp. 324-330, Jun. 2017. [3-9] W. Weinreich, R. Reiche, M. Lemberger, G. Jegert, J. Müller, L. Wilde, S. Teichert, J. Heitmann, E. Erben, L. Oberbeck, U. Schröder, A.J. Bauer, and H. Ryssel, “Impact of interface variations on J–V and C–V polarity asymmetry of MIM capacitors with amorphous and crystalline Zr(1−x)AlxO2 films,” Microelectronic Engineering, vol. 86, pp. 1826-1829, Jul.-Sep. 2009. [3-10] Woojin Jeon, Sijung Yoo, Hyo Kyeom Kim, Woongkyu Lee, Cheol Hyun An, Min Jung Chung, Cheol Jin Cho, Seong Keun Kim, and Cheol Seong Hwang, “Evaluating the Top Electrode Material for Achieving an Equivalent Oxide Thickness Smaller than 0.4 nm from an Al-Doped TiO2 Film,” Appl. Mater. Interfaces, pp. 21632-21637, Nov. 2014. [3-11] G. D. Wilk, R. M. Wallace, and J. M. Anthony, “High-κ gate dielectrics: Current status and materials properties considerations,” Journal of Applied Physics, vol. 89, pp. 5243-5275, May 2001. [3-12] O. Fursenko, J. Bauer, G. Lupina, P. Dudek, M. Lukosius, Ch. Wenger, and P. Zaumseil, “Optical properties and band gap characterization of high dielectric constant oxides,” Thin Solid Films, vol. 520, pp. 4532-4535, May 2012. [4-1] Kunta Yoshikawa, Wataru Yoshida, Toru Irie, Hayato Kawasaki, Katsunori Konishi, Hirotaka Ishibashi, Tsuyoshi Asatani, Daisuke Adachi, Masanori Kanematsu, Hisashi Uzu, and Kenji Yamamoto, “Exceeding conversion efficiency of 26% by heterojunction interdigitated back contact solar cell with thin film Si technology,” Solar Energy Materials and Solar Cells, vol. 173, pp. 37-42, Dec. 2017. [4-2] Evan Franklin, Kean Fong, Keith McIntosh, Andreas Fell, Andrew Blakers, Teng Kho, Daniel Walter, Da Wang, Ngwe Zin, Matthew Stocks, Er‐Chien Wang, Nicholas Grant, Yimao Wan, Yang Yang, Xueling Zhang, Zhiqiang Feng, and Pierre J. Verlinden, “Design, fabrication and characterisation of a 24.4% efficient interdigitated back contact solar cell,” Progress in Photovoltaics, vol. 24, pp. 411-427, Apr. 2016. [4-3] Mikio Taguchi, Akira Terakawa, Eiji Maruyama, and Makoto Tanaka, “Obtaining a Higher Voc in HIT Cells,” Progress in Photovoltaics, vol. 13, pp. 481-488, Sep. 2005. [4-4] Mikio Taguchi, Ayumu Yano, Satoshi Tohoda, Kenta Matsuyama, Yuya Nakamura, Takeshi Nishiwaki, Kazunori Fujita, and Eiji Maruyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer,” IEEE Journal of Photovoltaics, vol. 4, pp. 96-99, Jan. 2014. [4-5] Meijun Lu, Ujjwal Das, Stuart Bowden, Steven Hegedus, and Robert Birkmire, “Optimization of interdigitated back contact silicon heterojunction solar cells by two-dimensional numerical simulation,” in IEEE Photovoltaic Specialists Conference (PVSC), pp. 1475-1480, Jun. 2009. [4-6] M. Hermle, F. Granek, O. Schultz, and S. W. Glunz, “Analyzing the effects of front-surface fields on back-junction silicon solar cells using the charge-collection probability and the reciprocity theorem,” Journal of Applied Physics, vol. 103, pp. 054507-1-054507-7, Mar. 2008. [4-7] Filip Granek, Martin Hermle, Dominik M. Huljić, Oliver Schultz‐Wittmann and Stefan W. Glunz, “Enhanced lateral current transport via the front N+ diffused layer of n‐type high‐efficiency back‐junction back‐contact silicon solar cells,” Progress in Photovoltaics, vol. 17, pp. 47-56, Jan. 2009. [4-8] Zhan Shu, Ujjwal Das, John Allen, Robert Birkmire, and Steven Hegedus, “Experimental and simulated analysis of front versus all‐back‐contact silicon heterojunction solar cells: effect of interface and doped a‐Si:H layer defects,” Progress in Photovoltaics, vol. 23, pp. 78-93, Jan. 2015. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77343 | - |
| dc.description.abstract | 人工智慧、物聯網、自駕車都需要快速的運算效能,而運算的速度被動態隨機存取記憶體所影響,這驅動了動態隨機存取記憶體的需求成長以及持續的微縮。另外,由於全球暖化日益嚴重,屬於綠色能源的太陽能也被積極發展,目前全球各個團隊都試圖將太陽能電池的效率提高以降低單位電費售價。在本論文當中,將會對於動態隨機存取記憶體以及指叉式背電極異質接面太陽能電池進行深入的探討。
動態隨機存取記憶體的基本存取資料的架構為一個電晶體配上一個電容,其中電容用來做為資料的儲存,而電晶體用來控制資料的讀取。在論文中,對於凹槽通道存取電晶體的幾何結構、摻雜濃度進行模擬分析。隨著閘極的凹槽深度增加,電晶體的通道長度也跟著提升,透過增加閘極的凹槽深度可以避免傳統平面型電晶體會遇到的短通道效應。另外,透過三維模擬探討在元件前後施加材料對元件的效能影響,結果顯示藉由施加材料可以有效提升汲極電流。 為了有效保存資料,高電容值及低漏電的電容在動態隨機存取記憶體是被要求的。研究中使用原子層沉積技術成長高介電係數材料之電容,透過二氧化鋯作為主要提供電容值的材料,並在二氧化鋯中間成長一層氧化鋁做為漏電流之阻擋層,以此結構設計得到優異的電容表現。另外,藉由使用鉑做為電容的下電極,成功改善電容電壓特性曲線以及電流電壓特性曲線的非對稱性。最後,將二氧化鈦加入介電層當中,成功將電容等效厚度降至0.75 奈米。 指叉式背電極異質接面太陽能電池在效率上有著優良的表現,其背電極的設計可以增加吸光量,本質非晶矽之異質接面的使用可以增加開路電壓。本論文中使用三維Sentaurus TCAD模擬探討太陽能電池之幾何結構、摻雜濃度、表面複合速率對於太陽能電池之影響。透過在基板的正面施加額外的摻雜,太陽能電池的效率有顯著的提升。另外,藉由調控背電極之射極比率,可以達到載子蒐集的最佳化。最後,提出矩陣型之背電極,成功降低太陽能電池之效率對於射極比率的敏感度。 | zh_TW |
| dc.description.abstract | In this thesis, we will discuss dynamic random access memory (DRAM) and interdigitated back contact silicon heterojunction (IBC-SHJ) solar cells. The speed of computing is affected by DRAM which is main memory in the computer. Artificial intelligence (AI), internet of things (IoT) and autonomous car need high speed computing to achieve their function, and it becomes a driving force of DRAM scale down. In addition, solar power which is a kind of renewable energy is developed to solving the global warming problem, and many research teams try to increase the efficiency of solar cells to reduce the electricity price.
DRAM unit cell includes one transistor and one capacitor (1T1C). The data is stored by capacitor, and the function of transistor is control of both reading data and writing data. In this thesis, the geometry and doping concentration of recessed channel array transistor (RCAT) are investigated by Sentaurus TCAD simulation. The channel length of RCAT increases with increasing word line depth, and short channel effect can be overcome due to larger channel length. In addition, the influence of coverage material is investigated by 3D simulation, and the result shows that the drain current can be increased by coverage. High capacitance and low leakage current are required in DRAM to make sure data storage. In this thesis, atomic layer deposition (ALD) is used to fabricate high-k metal-insulator-metal (MIM) capacitors. ZrO2/Al2O3/ZrO2 (ZAZ) dielectric layers have been adopted due to large dielectric constant of ZrO2 and large band gap of Al2O3. Asymmetric J-V curve and C-V curve are improved by platinum bottom electrode. Finally, capacitance equivalent thickness (CET) is decreased to 0.75 nm by using titanium dioxide. Interdigitated back contact silicon heterojunction solar cells have the advantage of high conversion efficiency. The interdigitated back contact can reduce the front reflection, and the heterojunction with intrinsic thin layer can enhance the open-circuit voltage. In this thesis, the geometry, surface recombination rate and doping concentration of IBC-SHJ solar cells are investigated by 3D Sentaurus TCAD simulation. The additional front surface doping is adopted and reduces the influence of surface recombination. Furthermore, the emitter ratio of IBC-SHJ solar cells is optimized to increase the collection of carrier. Finally, we propose rectangular array back contact and successfully reduce the sensitivity of efficiency to emitter ratio. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:57:20Z (GMT). No. of bitstreams: 1 ntu-108-R06941048-1.pdf: 3022676 bytes, checksum: 773ef31c7c84c09691ef03482e1dd386 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 i
誌謝 iii 摘要 iv Abstract vi Contents viii List of Figures x List of Tables xiv Chapter 1 Introduction 1 1.1 Background and Motivation 1 1.2 Thesis Organization 3 1.3 Reference 5 Chapter 2 Simulation of Recessed Channel Array Transistor 6 2.1 Introduction 6 2.2 Simulation Structure 8 2.3 Geometry and Doping Concentration 10 2.3.1 Oxide Thickness 10 2.3.2 Word Line Depth 13 2.3.3 Substrate Doping 16 2.4 Coverage Material of Recessed Channel Array Transistor 19 2.6 Summary 23 2.7 Reference 24 Chapter 3 Fabrication of High-k MIM Capacitors 26 3.1 Introduction 26 3.1.1 DRAM Capacitors 26 3.1.2 Atomic Layer Deposition 27 3.2 Process Flow of TiN/ZAZ/TiN Capacitors 28 3.3 Titanium Nitride Electrode 29 3.4 Platinum Bottom Electrode 33 3.4.1 Platinum Top Electrode 33 3.4.2 Titanium Nitride Top Electrode 38 3.5 Titanium Dioxide 41 3.6 Summary 45 3.7 Reference 46 Chapter 4 Simulation of Interdigitated Back Contact Silicon Heterojunction Solar Cells 49 4.1 Introduction 49 4.2 Simulation Structure 50 4.3 Front Surface of IBC-SHJ Solar Cells 51 4.3.1 Front Surface Doping Concentration 51 4.3.2 Front Surface Recombination Velocity 53 4.4 Geometry of IBC-SHJ Solar Cells 57 4.4.1 Gap Ratio 57 4.4.2 Emitter Ratio 59 4.5 Rectangular Array Back Contact 62 4.6 Summary 66 4.7 Reference 68 Chapter 5 Summary and Future Work 70 5.1 Summary 70 5.2 Future Work 71 | - |
| dc.language.iso | en | - |
| dc.subject | 指叉式背電極異質接面太陽能電池 | zh_TW |
| dc.subject | 動態隨機存取記憶體 | zh_TW |
| dc.subject | 凹槽通道存取電晶體 | zh_TW |
| dc.subject | 高介電係數材料 | zh_TW |
| dc.subject | 原子層沉積 | zh_TW |
| dc.subject | 金屬-絕緣體-金屬電容 | zh_TW |
| dc.subject | dynamic random access memory | en |
| dc.subject | interdigitated back contact silicon heterojunction solar cells | en |
| dc.subject | metal-insulator-metal capacitors | en |
| dc.subject | atomic layer deposition | en |
| dc.subject | high-k material | en |
| dc.subject | recessed channel array transistor | en |
| dc.title | 動態隨機存取記憶體分析及指叉式背電極異質接面太陽能電池模擬 | zh_TW |
| dc.title | Analysis of Dynamic Random Access Memory and Simulation of Interdigitated Back Contact Silicon Heterojunction Solar Cells | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 張書通;林楚軒;林吉聰 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 動態隨機存取記憶體,凹槽通道存取電晶體,高介電係數材料,原子層沉積,金屬-絕緣體-金屬電容,指叉式背電極異質接面太陽能電池, | zh_TW |
| dc.subject.keyword | dynamic random access memory,recessed channel array transistor,high-k material,atomic layer deposition,metal-insulator-metal capacitors,interdigitated back contact silicon heterojunction solar cells, | en |
| dc.relation.page | 71 | - |
| dc.identifier.doi | 10.6342/NTU201902145 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-07-30 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 2.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
