Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
  • 幫助
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77338
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林?輝zh_TW
dc.contributor.advisorFeng-Huei Linen
dc.contributor.author許呈亦zh_TW
dc.contributor.authorCheng-Yi Hsuen
dc.date.accessioned2021-07-10T21:57:06Z-
dc.date.available2024-07-31-
dc.date.copyright2019-07-31-
dc.date.issued2019-
dc.date.submitted2002-01-01-
dc.identifier.citation[1] Dietz R, Burger L, Merkel K, Schimrigk K. Malignant gliomas—Glioblastoma multiforme and astrocytoma III–IV with extracranial metastases. Acta neurochirurgica. 1981;57:99-105.
[2] Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee SU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pacific journal of cancer prevention: APJCP. 2017;18:3.
[3] Adamson C, Kanu OO, Mehta AI, Di C, Lin N, Mattox AK, et al. Glioblastoma multiforme: a review of where we have been and where we are going. Expert opinion on investigational drugs. 2009;18:1061-83.
[4] Goodenberger ML, Jenkins RB. Genetics of adult glioma. Cancer Genetics. 2012;205:613-21.
[5] Schneider T, Mawrin C, Scherlach C, Skalej M, Firsching R. Gliomas in adults. Deutsches Ärzteblatt International. 2010;107:799.
[6] Ostrom QT, Gittleman H, Farah P, Ondracek A, Chen Y, Wolinsky Y, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro-oncology. 2013;15:ii1-ii56.
[7] Mehta AI, Linninger A, Lesniak MS, Engelhard HH. Current status of intratumoral therapy for glioblastoma. Journal of neuro-oncology. 2015;125:1-7.
[8] Bastiancich C, Danhier P, Préat V, Danhier F. Anticancer drug-loaded hydrogels as drug delivery systems for the local treatment of glioblastoma. Journal of Controlled Release. 2016;243:29-42.
[9] Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, Vazquez-Ramos C, Mahato D, Tavanaiepour D, et al. Advances in brain tumor surgery for glioblastoma in adults. Brain sciences. 2017;7:166.
[10] Gallego O. Nonsurgical treatment of recurrent glioblastoma. Current oncology. 2015;22:e273.
[11] Wesolowski J, Rajdev P, Mukherji S. Temozolomide (Temodar). American journal of neuroradiology. 2010;31:1383-4.
[12] Bobola MS, Alnoor M, Chen JYS, Kolstoe DD, Silbergeld DL, Rostomily RC, et al. O6-methylguanine-DNA methyltransferase activity is associated with response to alkylating agent therapy and with MGMT promoter methylation in glioblastoma and anaplastic glioma. BBA Clinical. 2015;3:1-10.
[13] Zhang J, FG Stevens M, D Bradshaw T. Temozolomide: mechanisms of action, repair and resistance. Current molecular pharmacology. 2012;5:102-14.
[14] Mehta A, Bandyopadhyay B. Frequency-shaped and observer-based discrete-time sliding mode control: Springer; 2015.
[15] Liang H-KT, Lai X-S, Wei M-F, Lu S-H, Wen W-F, Kuo S-H, et al. Intratumoral injection of thermogelling and sustained-release carboplatin-loaded hydrogel simplifies the administration and remains the synergistic effect with radiotherapy for mice gliomas. Biomaterials. 2018;151:38-52.
[16] Lu C-T, Zhao Y-Z, Wong HL, Cai J, Peng L, Tian X-Q. Current approaches to enhance CNS delivery of drugs across the brain barriers. International journal of nanomedicine. 2014;9:2241.
[17] Bader RA, Putnam DA. Engineering polymer systems for improved drug delivery: John Wiley & Sons; 2014.
[18] Ene CI, Nerva JD, Morton RP, Barkley AS, Barber JK, Ko AL, et al. Safety and efficacy of carmustine (BCNU) wafers for metastatic brain tumors. Surgical neurology international. 2016;7:S295.
[19] Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. Journal of advanced research. 2015;6:105-21.
[20] Lin C-C, Metters AT. Hydrogels in controlled release formulations: network design and mathematical modeling. Advanced drug delivery reviews. 2006;58:1379-408.
[21] Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nature reviews Drug discovery. 2005;4:307.
[22] Fortin D, Morin P-A, Belzile F, Mathieu D, Paré F-M. Intra-arterial carboplatin as a salvage strategy in the treatment of recurrent glioblastoma multiforme. Journal of neuro-oncology. 2014;119:397-403.
[23] van der Vijgh WJ. Clinical pharmacokinetics of carboplatin. Clinical pharmacokinetics. 1991;21:242-61.
[24] Kuduk-Jaworska J, Jański JJ, Roszak S. Comparative study of hydrolytic and electron-driven processes in carboplatin biotransformation. Journal of Inorganic Biochemistry. 2017;170:148-59.
[25] Hay RW, Miller S. Reactions of platinum (II) anticancer drugs. Kinetics of acid hydrolysis of cis-diammine (cyclobutane-1, 1-dicarboxylato) platinum (II)“Carboplatin”. Polyhedron. 1998;17:2337-43.
[26] Sousa GFd, Wlodarczyk SR, Monteiro G. Carboplatin: molecular mechanisms of action associated with chemoresistance. Brazilian Journal of Pharmaceutical Sciences. 2014;50:693-701.
[27] Wilson GD, Bentzen SM, Harari PM. Biologic basis for combining drugs with radiation. Seminars in radiation oncology: Elsevier; 2006. p. 2-9.
[28] Rezaee M, Hunting DJ, Sanche L. New insights into the mechanism underlying the synergistic action of ionizing radiation with platinum chemotherapeutic drugs: the role of low-energy electrons. International Journal of Radiation Oncology* Biology* Physics. 2013;87:847-53.
[29] Bobyk L, Edouard M, Deman P, Rousseau J, Adam J-F, Ravanat J-L, et al. Intracerebral delivery of carboplatin in combination with either 6 MV photons or monoenergetic synchrotron X-rays are equally efficacious for treatment of the F98 rat glioma. Journal of Experimental & Clinical Cancer Research. 2012;31:78.
[30] Shi M, Fortin D, Sanche L, Paquette B. Convection-enhancement delivery of platinum-based drugs and Lipoplatin TM to optimize the concomitant effect with radiotherapy in F98 glioma rat model. Investigational new drugs. 2015;33:555-63.
[31] Yang W, Huo T, Barth RF, Gupta N, Weldon M, Grecula JC, et al. Convection enhanced delivery of carboplatin in combination with radiotherapy for the treatment of brain tumors. Journal of neuro-oncology. 2011;101:379-90.
[32] Bai S, Nguyen TL, Mulvaney P, Wang D. Using hydrogels to accommodate hydrophobic nanoparticles in aqueous media via solvent exchange. Advanced Materials. 2010;22:3247-50.
[33] Phaechamud T, Mahadlek J. Solvent exchange-induced in situ forming gel comprising ethyl cellulose-antimicrobial drugs. International journal of pharmaceutics. 2015;494:381-92.
[34] Nguyen KT, West JL. Photopolymerizable hydrogels for tissue engineering applications. Biomaterials. 2002;23:4307-14.
[35] Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta biomaterialia. 2012;8:1838-48.
[36] Karaca N, Temel G, Balta DK, Aydin M, Arsu N. Preparation of hydrogels by photopolymerization of acrylates in the presence of Type I and one-component Type II photoinitiators. Journal of Photochemistry and Photobiology A: Chemistry. 2010;209:1-6.
[37] George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. Journal of controlled release. 2006;114:1-14.
[38] Cheng Y-H, Yang S-H, Su W-Y, Chen Y-C, Yang K-C, Cheng WT-K, et al. Thermosensitive chitosan–gelatin–glycerol phosphate hydrogels as a cell carrier for nucleus pulposus regeneration: an in vitro study. Tissue Engineering Part A. 2009;16:695-703.
[39] Ta HT, Dass CR, Dunstan DE. Injectable chitosan hydrogels for localised cancer therapy. Journal of Controlled Release. 2008;126:205-16.
[40] Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Advanced drug delivery reviews. 2010;62:83-99.
[41] Zhou HY, Jiang LJ, Cao PP, Li JB, Chen XG. Glycerophosphate-based chitosan thermosensitive hydrogels and their biomedical applications. Carbohydrate polymers. 2015;117:524-36.
[42] Ruel-Gariepy E, Leclair G, Hildgen P, Gupta A, Leroux J-C. Thermosensitive chitosan-based hydrogel containing liposomes for the delivery of hydrophilic molecules. Journal of Controlled Release. 2002;82:373-83.
[43] Ruel-Gariépy E, Shive M, Bichara A, Berrada M, Le Garrec D, Chenite A, et al. A thermosensitive chitosan-based hydrogel for the local delivery of paclitaxel. European Journal of Pharmaceutics and Biopharmaceutics. 2004;57:53-63.
[44] Richter A, Paschew G, Klatt S, Lienig J, Arndt K-F, Adler H-J. Review on hydrogel-based pH sensors and microsensors. Sensors. 2008;8:561-81.
[45] Ankareddi I, Brazel CS. Synthesis and characterization of grafted thermosensitive hydrogels for heating activated controlled release. International Journal of Pharmaceutics. 2007;336:241-7.
[46] Shen W, Luan J, Cao L, Sun J, Yu L, Ding J. Thermogelling polymer–platinum (IV) conjugates for long-term delivery of cisplatin. Biomacromolecules. 2014;16:105-15.
[47] Hu B-H, Messersmith PB. Rational design of transglutaminase substrate peptides for rapid enzymatic formation of hydrogels. Journal of the American Chemical Society. 2003;125:14298-9.
[48] Kogan G, Šoltés L, Stern R, Gemeiner P. Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnology letters. 2007;29:17-25.
[49] Schanté CE, Zuber G, Herlin C, Vandamme TF. Chemical modifications of hyaluronic acid for the synthesis of derivatives for a broad range of biomedical applications. Carbohydrate polymers. 2011;85:469-89.
[50] Flory PJ. Principles of polymer chemistry: Cornell University Press; 1953.
[51] Mortimer S, Ryan A, Stanford J. Rheological behavior and gel-point determination for a model Lewis acid-initiated chain growth epoxy resin. Macromolecules. 2001;34:2973-80.
[52] Ueno Y, Futagawa H, Takagi Y, Ueno A, Mizushima Y. Drug-incorporating calcium carbonate nanoparticles for a new delivery system. Journal of Controlled Release. 2005;103:93-8.
[53] Qiu N, Yin H, Ji B, Klauke N, Glidle A, Zhang Y, et al. Calcium carbonate microspheres as carriers for the anticancer drug camptothecin. Materials Science and Engineering: C. 2012;32:2634-40.
[54] Svenskaya Y, Parakhonskiy B, Haase A, Atkin V, Lukyanets E, Gorin D, et al. Anticancer drug delivery system based on calcium carbonate particles loaded with a photosensitizer. Biophysical chemistry. 2013;182:11-5.
[55] Stern ST, Adiseshaiah PP, Crist RM. Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Particle and fibre toxicology. 2012;9:20.
[56] Hirota K, Terada H. Endocytosis of particle formulations by macrophages and its application to clinical treatment. Molecular regulation of endocytosis: InTech; 2012.
[57] Jang W, Choi S, Kim SH, Yoon E, Lim H-G, Kim YJ. A comparative study on mechanical and biochemical properties of bovine pericardium after single or double crosslinking treatment. Korean circulation journal. 2012;42:154-63.
[58] Manual P. LDH Cytotoxicity Detection Kit.
[59] Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale research letters. 2018;13:339.
[60] Kettler K, Veltman K, van de Meent D, van Wezel A, Hendriks AJ. Cellular uptake of nanoparticles as determined by particle properties, experimental conditions, and cell type. Environmental toxicology and chemistry. 2014;33:481-92.
[61] Maleki Dizaj S, Barzegar-Jalali M, Zarrintan MH, Adibkia K, Lotfipour F. Calcium carbonate nanoparticles as cancer drug delivery system. Expert opinion on drug delivery. 2015;12:1649-60.
[62] Eisele G, Weller M. Targeting apoptosis pathways in glioblastoma. Cancer letters. 2013;332:335-45.
[63] Hassan M, Watari H, AbuAlmaaty A, Ohba Y, Sakuragi N. Apoptosis and molecular targeting therapy in cancer. BioMed research international. 2014;2014.
[64] Wang X, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. Journal of Biological Chemistry. 2000;275:39435-43.
[65] Singh S, Upadhyay AK, Ajay AK, Bhat MK. p53 regulates ERK activation in carboplatin induced apoptosis in cervical carcinoma: a novel target of p53 in apoptosis. FEBS letters. 2007;581:289-95.
[66] Shen B, Mao W, Ahn JC, Chung PS, He P. Mechanism of HN‑3 cell apoptosis induced by carboplatin: Combination of mitochondrial pathway associated with Ca2+ and the nucleus pathways. Molecular medicine reports. 2018;18:4978-86.
[67] Malhi H, Guicciardi ME, Gores GJ. Hepatocyte death: a clear and present danger. Physiological reviews. 2010;90:1165-94.
-
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77338-
dc.description.abstract惡性膠質瘤為成人最常見的惡性腦瘤,約佔所有顱內腫瘤的30%至40%與所有顱內惡性腫瘤的80%。即便以手術加上術後同步放射化學治療,仍預後不佳。為使腫瘤切除後的傷口能夠順利恢復,通常放射治療必須等待術後兩週才能進行。此等待期間,腫瘤仍繼續生長。此空窗期可以藥物來抑制腫瘤生長,其中一種策略是藉由腫瘤原位注射可控制釋放藥物的載體來達成,此類局部藥物傳輸的方式可突破血腦屏障的限制,提高局部抗癌藥物的濃度並降低全身副作用。卡鉑透過鉗合DNA干擾癌細胞複製,具有放射性增強抗癌效果。卡鉑依附碳酸鈣顆粒,在中性環境下維持穩定不釋放,而在內體-溶酶體複合物或其他酸性環境中,經碳酸鈣被降解後釋放,藉此來達到藥物控制釋放的效果。水膠作為藥物載體能攜載大量藥物、提供適當的穿透深度並且具有與腦組織較為接近的力學性質,原位成膠以及良好的粘附特性可使水膠以較大的接觸面積來釋放藥物,單劑小體積注射可以降低腦水腫及癲癇的風險,適合用於惡性膠質瘤的治療。本研究使用溫感性的氧化透明質酸/己二酸二醯胼水膠來攜載卡鉑並且摻雜載藥的碳酸鈣顆粒來達到初期的抑制效果,而載藥的碳酸鈣會隨著水膠的降解逐漸被釋放出來,進一步延長卡鉑的釋放,透過兩週的卡鉑緩釋使得卡鉑的化學治療能與放射治療合併治療,來達到加成的治療效果。載藥碳酸鈣係透過化學沉澱法來製備,透明質酸的改值係先將透明質酸以過碘酸鈉溶液進行開環氧化,再以己二酸二醯胼來進行交聯。從SEM影像中可以證實本研究所製備出來的載藥碳酸鈣微粒呈現球型外貌,並且大小落在677奈米左右,粒徑大小也經由DLS進一步地被驗證。本研究使用ICP-MS來測定碳酸鈣的載藥效率以及藥物釋放曲線,載藥碳酸鈣的載藥效率為18.7 ± 2 %,而在pH 7的中性環境下,卡鉑在載藥碳酸鈣的釋放非常緩慢,而以pH 4來模擬內體-溶酶體複合物的酸性環境時,卡鉑能快速地從載藥碳酸鈣中被釋放出來,摻雜載藥碳酸鈣的載藥水膠則是在中性環境下可以快速地釋放水膠中的卡鉑來達到初期的抑制效果。摻雜載藥碳酸鈣的載藥水膠的降解時間約為兩週,因此載藥的碳酸鈣能在適當的時間內被釋放出來,而摻雜載藥碳酸鈣的載藥水膠在37℃的成膠時間為7.6分鐘,因此可以在人體的溫度下快速成膠。而從WST-1、LDH及Live/Dead染色當中證實了所選用的材料都具有良好的生物相容性。WST-1、Live/Dead染色、西方點墨法及gamma H2A.X的測定結果中也證實了載藥碳酸鈣及摻雜載藥碳酸鈣的載藥水膠具有良好的抑制腫瘤效果。這些結果證實了攜載卡鉑之碳酸鈣及攜載卡鉑之氧化透明質酸/己二酸二醯胼水膠所形成之複合載體用作神經膠質瘤之局部注射治療的潛力。zh_TW
dc.description.abstractMalignant gliomas are the most common adult brain tumors, which account for 30% to 40% of all intracranial tumors and 80% of all malignant intracranial tumors. Radiotherapy usually starts 2 weeks after surgery for patients’ recovery. Therefore, adequate intratumoral drug injection with sustained release was proposed to control the tumor growth after surgery. The site-specific property of local drug delivery increases the local drug concentration, reduces the systemic toxicity, and circumvents the restriction of blood–brain-barrier (BBB). Carboplatin is a platinum-based antineoplastic agent, which is usually combined with radiotherapy for cancer treatment. CaCO3 can incorporate carboplatin and remain stable until being degraded in the endosome/lysosome complex or acidic environment and thus achieves the controlled-release. In-situ forming potency, high drug encapsulation capability, biocompatibility, biodegradability, adhesive properties, moderate mechanical properties, and moderate penetration depth make hydrogel a great candidate for local drug delivery and gliomas treatment. In this study, we adopted thermogelling oxidized hyaluronic acid/adipic acid dihydrazide (oxi-HA/ADH) hydrogel to load carboplatin and combined with carboplatin-loaded CaCO3 (CPCC) to provide an initial suppressive effect and enable the co-treatment of the chemical therapy and the radiotherapy via 2-week controlled-release. CPCC particles were synthesized by chemical precipitation method. HA was oxidized by sodium periodate and then crosslinked with ADH. The sphere-shaped CPCC particles with averaged size of 677 nm were characterized by SEM, and the size was further confirmed by DLS. ICP-MS was used to characterize the encapsulation efficiency of CPCC and the drug release profile. The encapsulation efficiency of CPCC was 18.7 ± 2 %, and the release of carboplatin from CPCC was slow in neutral environment (pH 7.4) while the release in acidic environment (pH 4) was relative fast. The release of CPCC-incorporated carboplatin-loaded oxi-HA/ADH hydrogel (CPH) was fast in neutral environment, indicating the potency of initial suppressive effect. The degradation took 2 weeks and the gelation time was 7.6 min at °C, indicating the release of CPCC particles with moderate time and the fast gelation of CPCC-incorporated CPH at human body temperature. WST-1, LDH, and Live/Dead staining results of L929 cells and ALTS1C1-Luc cells confirmed the biocompatibility of chosen materials. Antineoplastic effect of CPCC and CPCC-incorporated CPH were further proved by WST-1, Live/Dead staining, western blot, and gamma-H2A.X analysis. From these results, the potency of CPCC-incorporated CPH for gliomas treatment was demonstrated.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:57:06Z (GMT). No. of bitstreams: 1
ntu-108-R06548001-1.pdf: 4077100 bytes, checksum: 30841f0615d2a36b3ee1598bc4d0b726 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書...i
致謝...ii
中文摘要...iii
ABSTRACT...v
LIST OF FIGURES...xi
LIST OF TABLES...xiii
LIST OF FORMULAS...xiv
LIST OF ABBREVIATIONS...xv
CHAPTER 1 INTRODUCTION...1
1.1 Gliomas...1
1.2 Current treatments for gliomas...3
1.3 Systemic drug delivery...5
1.4 Local drug delivery...6
1.5 Hydrogels as potential drug carries for the local treatment of gliomas...7
1.6 Purpose of study...9
CHAPTER 2 THEORETICAL BASIS...11
2.1 Carboplatin...11
2.2 In-situ forming mechanisms of hydrogel...12
2.2.1 Solvent exchange method...12
2.2.2 Photopolymeriztion...12
2.2.3 Ionic cross-linking...12
2.2.4 pH-induced gelation...13
2.2.5 Thermo-induced gelation...13
2.2 Hyaluronic acid-based thermogelling hydrogel...14
2.2.1 Hyaluronic acid (HA)...14
2.2.2 Modifications of HA...15
2.2.3 Rheological properties of hydrogel...17
2.3 Calcium carbonate as drug carrier...19
2.3.1 Calcium carbonate (CaCO3)...19
2.3.2 Endocytosis...21
CHAPTER 3 MATERIALS AND METHODS...22
3.1 Chemicals and Instruments...22
3.1.1 Chemicals...22
3.1.2 Instruments...24
3.2 Synthesis of carboplatin-loaded calcium carbonate (CPCC) particles...25
3.3 Characterization of CPCC...25
3.3.1 Scanning Electron Microscope (SEM)...25
3.3.2 X-ray diffractometer (XRD)...25
3.3.3 Dynamic Light Scattering (DLS)...26
3.3.4 Inductively coupled plasma mass spectrometry (ICP-MS)...26
3.4 Preparation of oxi-HA...27
3.5 TNBS assay...27
3.6 Preparation of CPCC-incorporated carboplatin-loaded hydrogel (CPH)...28
3.7 Characterization of CPCC-incorporated CPH...28
3.7.1 Rheological evaluation of CPCC-incorporated oxi-HA/ADH hydrogel...28
3.7.2 In-vitro degradation of CPCC-incorporated CPH...28
3.7.3 Fourier transform infrared spectroscopy (FTIR)...29
3.7.4 Inductively coupled plasma mass spectrometry (ICP-MS)...29
3.8 In-vitro studies...29
3.8.1 WST-1 assay...29
3.8.2 LDH assay...31
3.8.3 Live/Dead staining...32
3.8.4 IC50...33
3.8.5 Cellular uptake...34
3.8.6 Western blot analysis...34
3.8.7 Flow cytometry...35
3.9 Statistical analysis...36
CHAPTER 4 RESULTS AND DISCUSSION...37
4.1 Material Characterization...37
4.1.1 SEM images of CPCC...37
4.1.2 XRD pattern of CPCC...39
4.1.3 DLS analysis of CPCC...40
4.1.4 Loading capacity, loading efficiency, and carboplatin release profile...40
4.1.5 FTIR analysis of hydrogel...42
4.1.6 Degree of oxidation...43
4.1.7 In-vitro degradation of CPCC-loaded oxi-HA/ADH...43
4.1.8 Rheological property of CPCC-loaded CPH...44
4.2 In-vitro Studies...45
4.2.1 WST-1 assay for biocompatibility...45
4.2.2 LDH assay for biocompatibility...46
4.2.3 Live/Dead cell staining for biocompatibility...46
4.2.4 IC50 of carboplatin for ALTS1C1-Luc cells...48
4.2.5 WST-1 assay for antineoplastic activity...48
4.2.6 Live/Dead staining for antineoplastic activity...50
4.2.7 Cellular uptake...51
4.2.8 Western blot analysis for apoptosis...52
4.2.9 Flow cytometry for DNA damage...54
CHAPTER 5 CONCLUSIONS...56
REFERENCE...58
-
dc.language.isoen-
dc.title結合碳酸鈣與溫感性水膠作為卡鉑控制釋放及小鼠神經膠質瘤治療之藥物載體zh_TW
dc.titleCombination of CaCO3 and Thermosensitive Hydrogel as a Drug Carrier for Carboplatin Controlled-release and Mice Gliomas Treatmenten
dc.typeThesis-
dc.date.schoolyear107-2-
dc.description.degree碩士-
dc.contributor.oralexamcommittee姚俊旭;郭士民zh_TW
dc.contributor.oralexamcommitteeChun-Hsu Yao;Shyh-Ming Kuoen
dc.subject.keyword神經膠質瘤,碳酸鈣,溫感性水膠,卡鉑控制釋放,腫瘤原位注射,zh_TW
dc.subject.keywordGliomas,CaCO3,Thermogelling hydrogel,Controlled-release carboplatin,Intratumoral injection,en
dc.relation.page61-
dc.identifier.doi10.6342/NTU201902055-
dc.rights.note未授權-
dc.date.accepted2019-07-30-
dc.contributor.author-college工學院-
dc.contributor.author-dept醫學工程學系-
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-2.pdf
  目前未授權公開取用
3.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved