請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77331完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王大銘 | zh_TW |
| dc.contributor.advisor | Da-Ming Wang | en |
| dc.contributor.author | 黃世宇 | zh_TW |
| dc.contributor.author | Shih-Yu Huang | en |
| dc.date.accessioned | 2021-07-10T21:56:46Z | - |
| dc.date.available | 2024-08-06 | - |
| dc.date.copyright | 2019-08-07 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | 1. Jameson, R., A system of mineralogy: In which minerals are arranged according to the natural history method. A. Constable & Company: 1820; Vol. 1.
2. LAPEDUS, M. Will 7nm And 5nm Really Happen? https://semiengineering.com/will-7nm-and-5nm-really-happen/. 3. Shalyt, E.; Palvov, M.; Yan, X.; Lin, D. In Process metrology of cobalt damascene interconnects, 2016 IEEE International Interconnect Technology Conference/Advanced Metallization Conference (IITC/AMC), IEEE: 2016; pp 186-188. 4. Sole, K. C.; Parker, J.; Cole, P. M.; Mooiman, M. B., Flowsheet options for cobalt recovery in African copper–cobalt hydrometallurgy circuits. Mineral Processing and Extractive Metallurgy Review 2019, 40 (3), 194-206. 5. Alves Dias, P.; Blagoeva, D.; Pavel, C.; Arvanitidis, N., Cobalt: demand-supply balances in the transition to electric mobility. European Commission, Joint Research Centre, EUR-Scientific and Technical Research Reports. Publications Office of the European Union. DOI 2018, 10, 97710. 6. Ho, W. W.; Poddar, T. K., New membrane technology for removal and recovery of chromium from waste waters. Environmental Progress 2001, 20 (1), 44-52. 7. Paoletti, P., Formation of metal complexes with ethylenediamine: a critical survey of equilibrium constants, enthalpy and entropy values. Pure and applied chemistry 1984, 56 (4), 491-522. 8. Jagminienė, A.; Stankevičienė, I.; Vaškelis, A., Autocatalytic copper (II) reduction by cobalt (II)-ethylenediamine complex studied by rotating disk electrode technique. Chemija 2003, 14, 140-144. 9. Vaškelis, A.; Norkus, E., Autocatalytic processes of copper (II) and silver (I) reduction by cobalt (II) complexes. Electrochimica Acta 1999, 44 (21-22), 3667-3677. 10. 劉芳宇, 具分散反萃取相支撐式液膜穩定性之評估. 臺灣大學化學工程學研究所學位論文 2008, 1-85. 11. Habashi, F., Principles of extractive metallurgy. Routledge: 2017. 12. Hudson, M., An introduction to some aspects of solvent extraction chemistry in hydrometallurgy. Hydrometallurgy 1982, 9 (2), 149-168. 13. Rydberg, J., Solvent extraction principles and practice, revised and expanded. CRC press: 2004. 14. 黃靖軒, 以具分散反萃取相支撐式液膜分離並回收 Ni2+-Zn2+-Al3+ 多成分金屬離子. 臺灣大學化學工程學研究所學位論文 2011, 1-131. 15. 王樹楷, 銦冶金. 2007. 16. Kislik, V. S., Solvent extraction: classical and novel approaches. Elsevier: 2011. 17. Ritcey, G. M.; Ashbrook, A., Solvent Extraction. Principles and Applications to Process Metallurgy. Part I. 1984. 18. 戴猷元,秦煒,張瑾及單欣昌, 有機物絡合萃取技術. 2007. 19. 陳昱瑋, 以具分散反萃取相支撐式液膜分離回收釹 (Nd3+) 鏑 (Dy3+) 離子. 臺灣大學化學工程學研究所學位論文 2013, 1-112. 20. Rousseau, R. W., Handbook of separation process technology. John Wiley & Sons: 1987. 21. Darvishi, D.; Haghshenas, D.; Alamdari, E. K.; Sadrnezhaad, S.; Halali, M., Synergistic effect of Cyanex 272 and Cyanex 302 on separation of cobalt and nickel by D2EHPA. Hydrometallurgy 2005, 77 (3-4), 227-238. 22. Elizalde, M.; Ocio, A.; Andrade, F.; Menoyo, B., Synergistic extraction of cobalt (II) by mixtures of bis (2-ethylhexyl) phosphoric acid and LIX 860. Solvent Extraction and Ion Exchange 2013, 31 (3), 269-280. 23. Preston, J. S., Solvent extraction of cobalt and nickel by organophosphorus acids I. Comparison of phosphoric, phosphonic and phosphonic acid systems. Hydrometallurgy 1982, 9 (2), 115-133. 24. Cerpa, A.; Alguacil, F. J., Separation of cobalt and nickel from acidic sulfate solutions using mixtures of di (2‐ethylhexyl) phosphoric acid (DP‐8R) and hydroxyoxime (ACORGA M5640). Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 2004, 79 (5), 455-460. 25. Hutton-Ashkenny, M. D. Recovery of nickel and cobalt from nitrate-based nickel laterite leach solutions using direct solvent extraction. Curtin University, 2015. 26. Van de Voorde, I. Studies of the complexation behaviour of transition metals applicable in membrane technologies. Ghent University, 2008. 27. Cheng, C. Y.; Barnard, K. R.; Zhang, W.; Robinson, D. J., Synergistic solvent extraction of nickel and cobalt: A review of recent developments. Solvent Extraction and Ion Exchange 2011, 29 (5-6), 719-754. 28. Verbeken, K.; Vanheule, B.; Pinoy, L.; Verhaege, M., Cobalt removal from waste‐water by means of supported liquid membranes. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology 2009, 84 (5), 711-715. 29. Baker, R. W., Membrane technology and applications. John Wiley & Sons: 2012. 30. Mulder, J., Basic principles of membrane technology. Springer Science & Business Media: 2012. 31. Marr, R.; Kopp, A., Liquid membrane technology—A survey of associated phenomena, transport mechanisms, and models. Chem. Ing. Tech 1980, 52, 399-410. 32. W. Kaminski, W. K., Applicability of Liquid Membranes in Environmental Protection. Polish Journal of Environmental Studies 2000, 9 (1), 37-43. 33. Kemperman∗, A. J.; Bargeman, D.; Van Den Boomgaard, T.; Strathmann, H., Stability of supported liquid membranes: state of the art. Separation science and technology 1996, 31 (20), 2733-2762. 34. Kislik, V. S., Liquid membranes: principles and applications in chemical separations and wastewater treatment. Elsevier: 2009. 35. Chakraborty, M.; Bhattacharya, C.; Datta, S., Study of the stability of W/O/W‐type emulsion during the extraction of nickel via emulsion liquid membrane. Separation science and technology 2004, 39 (11), 2609-2625. 36. Li, N. N. Separating hydrocarbons with liquid membranes. Central Washington University, 1968. 37. Griffin, W. C., Classification of surface-active agents by" HLB". J. Soc. Cosmet. Chem. 1949, 1, 311-326. 38. Kentish, S.; Stevens, G., Innovations in separations technology for the recycling and re-use of liquid waste streams. Chemical Engineering Journal 2001, 84 (2), 149-159. 39. Kondo, K.; Matsumoto, M., Separation and concentration of indium (III) by an emulsion liquid membrane containing diisostearylphosphoric acid as a mobile carrier. Separation and Purification Technology 1998, 13 (2), 109-115. 40. Yang, X.; Fane, A.; Soldenhoff, K., Comparison of liquid membrane processes for metal separations: permeability, stability, and selectivity. Industrial & engineering chemistry research 2003, 42 (2), 392-403. 41. 李岳憲, 製備高分子萃取膜回收金屬離子並評估其操作穩定性. 臺灣大學化學工程學研究所學位論文2018, 1-187. 42. López-López, J. A.; Mendiguchía, C.; Pinto, J. J.; Moreno, C., Liquid membranes for quantification and speciation of trace metals in natural waters. TrAC Trends in Analytical Chemistry 2010, 29 (7), 645-653. 43. Neplenbroek, A.; Bargeman, D.; Smolders, C., Supported liquid membranes: instability effects. Journal of Membrane Science 1992, 67 (2-3), 121-132. 44. Lyklema, J., Fundamentals of interface and colloid science: soft colloids. Elsevier: 2005; Vol. 5. 45. TAKAHASHI, K.; TAKEUCHI, H., Transport of copper through a supported liquid membrane. Journal of chemical engineering of Japan 1985, 18 (3), 205-211. 46. Zha, F.; Fane, A.; Fell, C., Instability mechanisms of supported liquid membranes in phenol transport process. Journal of Membrane Science 1995, 107 (1-2), 59-74. 47. Fabiani, C.; Merigiola, M.; Scibona, G.; Castagnola, A., Degradation of supported liquid membranes under an osmotic pressure gradient. Journal of membrane science 1987, 30 (1), 97-104. 48. Danesi, P.; Reichley-Yinger, L.; Rickert, P., Lifetime of supported liquid membranes: the influence of interfacial properties, chemical composition and water transport on the long-term stability of the membranes. Journal of membrane science 1987, 31 (2-3), 117-145. 49. Nogueira, C.; Delmas, F., New flowsheet for the recovery of cadmium, cobalt and nickel from spent Ni–Cd batteries by solvent extraction. Hydrometallurgy 1999, 52 (3), 267-287. 50. Muthuraman, G.; Teng, T. T., Use of vegetable oil in supported liquid membrane for the transport of Rhodamine B. Desalination 2009, 249 (3), 1062-1066. 51. 韓佳耘, 以具分散反萃取相支撐式液膜分離回收稀土金屬離子. 臺灣大學化學工程學研究所學位論文 2015, 1-182. 52. Urbanski, T.; Fornari, P.; Abbruzzese, C., The extraction of cerium (III) and lanthanum (III) from chloride solutions with LIX 54. Hydrometallurgy 1996, 40 (1-2), 169-179. 53. Alguacil, F. J.; Caravaca, C.; Martín, M. I., Transport of chromium (VI) through a Cyanex 921‐supported liquid membrane from HCl solutions. Journal of Chemical Technology & Biotechnology 2003, 78 (10), 1048-1053. 54. Torkaman, R.; Asadollahzadeh, M.; Torab-Mostaedi, M.; Maragheh, M. G., Recovery of cobalt from spent lithium ion batteries by using acidic and basic extractants in solvent extraction process. Separation and Purification Technology 2017, 186, 318-325. 55. Liang, P.; Liming, W.; Guoqiang, Y., Separation of Eu (III) with supported dispersion liquid membrane system containing D2EHPA as carrier and HNO3 solution as stripping solution. Journal of rare earths 2011, 29 (1), 7-14. 56. Van De Voorde, I.; Pinoy, L.; Courtijn, E.; Verpoort, F., Influence of acetate ions and the role of the diluents on the extraction of copper (II), nickel (II), cobalt (II), magnesium (II) and iron (II, III) with different types of extractants. Hydrometallurgy 2005, 78 (1-2), 92-106. 57. Komasawa, I.; Otake, T.; Ogawa, Y., The effect of diluent in the liquid-liquid extraction of cobalt and nickel using acidic organophosphorus compounds. Journal of Chemical Engineering of Japan 1984, 17 (4), 410-417. 58. Cierpiszewski, R., Kinetics of copper extraction from chloride solutions with model and commercial dialkyl pyridine-dicarboxylates. Solvent Extraction and ion Exchange 2000, 18 (1), 93-108. 59. Danesi, P. R., Separation of metal species by supported liquid membranes. Separation Science and Technology 1984, 19 (11-12), 857-894. 60. Danesi, P.; Horwitz, E.; Vandegrift, G.; Chiarizia, R., Mass transfer rate through liquid membranes: interfacial chemical reactions and diffusion as simultaneous permeability controlling factors. Separation science and Technology 1981, 16 (2), 201-211. 61. KOMASAWA, I.; OTAKE, T.; HATTORI, I., Separation of cobalt and nickel using solvent extraction with acidic organophosphorus compounds. Journal of chemical engineering of Japan 1983, 16 (5), 384-388. 62. Vernekar, P. V.; Jagdale, Y. D.; Patwardhan, A. W.; Patwardhan, A. V.; Ansari, S. A.; Mohapatra, P. K.; Manchanda, V. K., Transport of cobalt (II) through a hollow fiber supported liquid membrane containing di-(2-ethylhexyl) phosphoric acid (D2EHPA) as the carrier. Chemical Engineering Research and Design 2013, 91 (1), 141-157. 63. Lu, J. Cobalt precipitation by reduction with sodium borohydride. University of British Columbia, 1995. 64. Monhemius, A., Precipitation diagrams for metal-hydroxides, sulfides, arsenates and phosphates. Transactions of the institution of mining and metallurgy section c-mineral processing and extractive metallurgy 1977, 86 (DEC), C202-C206. 65. Ferron, C., The control of manganese in acidic leach liquors with special emphasis to laterite leach liquors. SGS minerals services technical paper (2002-02) 2002. 66. Yüzer, H.; Kara, M.; Sabah, E.; Çelik, M. S., Contribution of cobalt ion precipitation to adsorption in ion exchange dominant systems. Journal of hazardous materials 2008, 151 (1), 33-37. 67. Zhang, P.; Yokoyama, T.; Suzuki, T. M.; Inoue, K., The synergistic extraction of nickel and cobalt with a mixture of di (2-ethylhexyl) phosphoric acid and 5-dodecylsalicylaldoxime. Hydrometallurgy 2001, 61 (3), 223-227. 68. Miulovic, S.; Nikolic, V.; Lausevic, P.; Acimovic, D.; Tasic, G.; Marceta-Kaninski, M., Electrochemistry of cobalt ethylenediamine complexes at high pH. Journal of the Serbian Chemical Society 2015, 80 (12), 1515-1527. 69. Smith, R.; Martell, A.; Motekaitis, R., NIST standard reference database 46. NIST Critically Selected Stability Constants of Metal Complexes Database Ver 2004, 2. 70. Perrin, D.; Sharma, V., Mixed ligand complex formation by cobalt (II) and zinc (II) ions. Journal of the Chemical Society A: Inorganic, Physical, Theoretical 1969, 2060-2062. 71. Bjerrum, J.; Rasmussen, S., METAL AMMINE FORMATION IN AQUEOUS SOLUTION. 8. ACID-BASE, CIS-TRANS, AND COMPLEX EQUILIBRIA IN THE COBALT (III)-ETHYLENEDIAMINE SYSTEM. Acta Chemica Scandinavica 1952, 6 (8), 1265-1284. 72. Cotton, F. A.; Harris, F. E., The Thermodynamics of Chelate Formation. 1. Experimental Determination of Enthalpies and Entropies in Diamine-Metal Ion Systems. The Journal of Physical Chemistry 1955, 59 (12), 1203-1208. 73. Norkus, E.; Vaškelis, A.; Grigucevičienė, A.; Rozovskis, G.; Reklaitis, J.; Norkus, P., Oxidation of cobalt (II) with air oxygen in aqueous ethylenediamine solutions. Transition Metal Chemistry 2001, 26 (4-5), 465-472. 74. Cabani, S.; Ceccanti, N.; Conti, G., Thermodynamic studies on the addition of molecular oxygen to cobalt (II) complexes. Part 1. The cobalt (II)–ethylenediamine–oxygen system in aqueous solution at 25° C. Journal of the Chemical Society, Dalton Transactions 1983, (7), 1247-1251. 75. Comuzzi, C.; Melchior, A.; Polese, P.; Portanova, R.; Tolazzi, M., Cobalt (II) dioxygen carriers based on simple diamino ligands: kinetic and ab initio studies. Inorganic chemistry 2003, 42 (25), 8214-8222. 76. Powell, H.; Nancollas, G., Coordination of oxygen by cobalt (II) complexes in aqueous solution. Calorimetric study. Journal of the American Chemical Society 1972, 94 (8), 2664-2668. 77. Michailidis, M. S.; Martin, R. B., Oxygenation and oxidation of cobalt (II) chelates of amines, amino acids, and dipeptides. Journal of the American Chemical Society 1969, 91 (17), 4683-4689. 78. Köferstein, R.; Robl, C., Synthesis, Crystal Structure, and Hydrogen Bonding of μ‐Hydroxo‐μ‐peroxo‐bis [bis (ethylenediamine) cobalt (III)] Squarate. Zeitschrift für anorganische und allgemeine Chemie 2016, 642 (7), 560-565. 79. Karmy, R. J. The Reaction of Ethylenediamine with Cobalt (II) Perchlorate and Oxygen in Dilute Aqueous Solutions. Central Washington University, 1968. 80. Mohanty, B.; Behera, J.; Acharya, S.; Mohanty, P.; Patnaik, A., Kinetics and mechanism of oxidation of GSH by cis-(diaqua)-bis-(ethylenediamine) Cobalt (III) ion. International Journal of Advanced Chemistry 2014, 2 (1), 39-43. 81. Fallab, S.; Zehnder, M.; Thewalt, U., Reactions of oxygenated cobalt (II) complexes. XIII. Diastereoisomeric forms of μ‐peroxo‐μ‐hydroxo‐bis [bis (ethylenediamine) cobalt (III)]. Preparation, X‐ray structure determination and reactivity. Helvetica Chimica Acta 1980, 63 (6), 1491-1498. 82. Kikkawa, M.; Sasaki, Y.; Kawata, S.; Hatakeyama, Y.; Ueno, F. B.; Saito, K., Photochemical and thermal decomposition of (. DELTA.. DELTA.,. LAMBDA.. LAMBDA.)-(. mu.-hydroxo)(. mu.-peroxo) bis [bis (ethylenediamine) cobalt (III)] ions in basic aqueous solution. Inorganic Chemistry 1985, 24 (24), 4096-4100. 83. Dumond, F.; Marceau, E.; Che, M., A Study of Cobalt Speciation in Co/Al2O3 Catalysts Prepared from Solutions of Cobalt− Ethylenediamine Complexes. The Journal of Physical Chemistry C 2007, 111 (12), 4780-4789. 84. Burns, P. J.; Tsitovich, P. B.; Morrow, J. R., Preparation of a Cobalt (II) Cage: An Undergraduate Laboratory Experiment That Produces a ParaSHIFT Agent for Magnetic Resonance Spectroscopy. Journal of Chemical Education 2016, 93 (6), 1115-1119. 85. Pinnell, D.; Jordan, R., Kinetics of reduction of cobalt (III)-ammine complexes by dithionite. Inorganic Chemistry 1979, 18 (11), 3191-3194. 86. Mehrotra, R.; Wilkins, R., Kinetics of reduction of metal complexes by dithionite. Inorganic Chemistry 1980, 19 (7), 2177-2178. 87. Schmidt, S.; Heinemann, F. W.; Grohmann, A., A Structurally Characterised Pair of Dicobalt (III) Peroxo/Superoxo Complexes with C2‐Symmetrical Tetrapodal Pentadentate Amine Ligands, and Some Reactivity en route. European Journal of Inorganic Chemistry 2000, 2000 (7), 1657-1667. 88. Suchecki, T. T.; Mathews, B.; Kumazawa, H., Kinetic study of ambient-temperature reduction of FeIIIedta by Na2S2O4. Industrial & engineering chemistry research 2005, 44 (12), 4249-4253. 89. Selwyn, L.; Tse, S., The chemistry of sodium dithionite and its use in conservation. Studies in Conservation 2008, 53 (sup2), 61-73. 90. Ku, Y.; Wang, L.-S.; Shen, Y.-S., Decomposition of EDTA in aqueous solution by UVy HO process. J. Haz. Mater 1998, 2 (2), 60. 91. Kunz, A.; Peralta-Zamora, P.; Durán, N., Hydrogen peroxide assisted photochemical degradation of ethylenediaminetetraacetic acid. Advances in Environmental Research 2002, 7 (1), 197-202. 92. Lan, S.; Xiong, Y.; Tian, S.; Feng, J.; Xie, T., Enhanced self-catalytic degradation of CuEDTA in the presence of H2O2/UV: Evidence and importance of Cu-peroxide as a photo-active intermediate. Applied Catalysis B: Environmental 2016, 183, 371-376. 93. 吳建衡, 以具分散反萃取相支撐式液膜回收螯合銅離子. 臺灣大學化學工程學研究所學位論文 2017, 1-119. 94. Xu, Z.; Shan, C.; Xie, B.; Liu, Y.; Pan, B., Decomplexation of Cu (II)-EDTA by UV/persulfate and UV/H2O2: efficiency and mechanism. Applied Catalysis B: Environmental 2017, 200, 439-447. | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77331 | - |
| dc.description.abstract | 金屬鈷具有優異的物理和化學性質被廣泛應用於電池、合金等領域中,且近年來隨著電動車產業的發展,鋰離子電池的關鍵材料鈷成為全球矚目之過渡金屬,然而全球超過一半之鈷礦位在剛果民主共和國,此地區戰亂頻繁,造成鈷的供應不穩定,使其價格逐年攀升,因此,若能回收工業廢水中之鈷離子並重複使用,將能減省製程上的成本。
本研究使用具分散反萃取相支撐式液膜技術回收並濃縮鈷離子,首先探討純鈷系統下,具分散反萃取相支撐式液膜操作參數如進料氫離子濃度、萃取劑濃度對鈷離子透過係數之影響。第二部分探討含螯合劑乙二胺之系統,研究結果顯示鈷離子之透過係數會分成兩段,以使用萃取劑D2EHPA為例,於過程中控制進料溶液pH值為4的條件下,透過係數分別為1.0×10-4 (m/min)及5.3×10-6 (m/min)。進一步使用UV-Vis光譜探討進料溶液中鈷-乙二胺螯合物之性質,得知第二段透過係數較慢的原因為溶液中存在穩定之鈷(III)-乙二胺螯合物所致。為了提升第二段較慢的透過係數,在進入具分散反萃取相支撐式液膜前,本研究將進料溶液分別使用還原法和H2O2/UV光法進行前處理。還原法為添加還原劑連二亞硫酸鈉將鈷(III)-乙二胺螯合物還原成鈷(II)-乙二胺螯合物,接著使用具分散反萃取相支撐式液膜回收鈷離子,可提升透過係數為1.5×10-4 (m/min)。 H2O2/UV光法主要利用雙氧水分解產生之自由基將乙二胺降解來破壞螯合,經由具分散反萃取相支撐式液膜操作也可提升透過係數為1.8×10-4 (m/min)。 本研究也對實務上之廢水進行測試,先進行UV-Vis光譜分析得知水樣中含有鈷(III)-乙二胺螯合物,直接進行具分散反萃取相支撐式液膜操作會有兩段透過係數,分別為6.0×10-5 (m/min)及4.4×10-6 (m/min),因此嘗試進行還原法及H2O2/UV光法前處理,此兩方式皆可提升透過係數且只有一段(分別為2.6×10-4 m/min、4.5×10-4 m/min),研究結果顯示具分散反萃取相支撐式液膜技術結合前處理方法具有應用在工業上之潛力。 | zh_TW |
| dc.description.abstract | Cobalt has excellent physical and chemical properties, making it widely used in battery and alloy fields, etc. Moreover, the electric vehicle industry is rising and cobalt is one of the key materials used in the rechargeable battery, so people expect the demand for cobalt will be very large in the next few years. However, more than one-half of cobalt ores are located in Congo, where we can not get a stable amount of cobalt due to this war-ridden country. This leads to the increasing price of cobalt. Therefore, if we can recover cobalt ions from the wastewater, that will be helpful to reduce the cost in the process.
Herein, we present a technique called supported liquid membrane with strip dispersion (SLMSD) to recover cobalt ions. At first, we investigated the effects of pH value in feed and extractant concentration in organic on the permeability of pure cobalt ions. In the second part, we studied the cobalt solution containing ethylenediamine chelating agent, and the results showed that cobalt ions had two permeability segments. Take the extractant of D2EHPA (pH control at 4 in feed) as an example, two values, 1.0×10-4 (m/min) and 5.3×10-6 (m/min) were obtained. The UV-Vis spectra verified that the slower permeability was due to the existence of stable Co(III)-ethylenediamine complex. In order to increase the slower permeability, we proposed two pretreatment approaches before starting SLMSD. One is the reduction approach, and the other one is the H2O2/UV approach. For reduction approach, we used sodium dithionite as a reductant to reduce Co(III)-ethylenediamine to Co(II)-ethylenediamine. After the pretreatment, the permeability increased to 1.5×10-4 (m/min) by SLMSD operation. On the other hand, adopting the H2O2/UV approach could degrade ethylenediamine molecules, making the permeability also increase to 1.8×10-4 (m/min). In addition to lab research, we also dealt with cobalt-containing wastewater from industry to recover cobalt ions. By UV-Vis spectra, we knew there was Co(III)-ethylenediamine complex existing in the wastewater. Without any pretreatment, the permeability of cobalt ions was divided into 6.0×10-5 (m/min) and 4.4×10-6 (m/min). Using either reduction or H2O2/UV pretreatment approach, we could get higher permeability, which was 2.6×10-4 (m/min) and 4.5×10-4 (m/min), respectively. Therefore, SLMSD technique combining with pretreatment approaches has the potential to be used in the industry. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:56:46Z (GMT). No. of bitstreams: 1 ntu-108-R06524047-1.pdf: 3999915 bytes, checksum: e3767bc5fed87f27110e5f08aeb759c1 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員審定書 I
致謝 II 摘要 III Abstract V 目錄 VII 圖目錄 X 表目錄 XV 第 1 章 緒論 1 第 2 章 文獻回顧 5 2-1 鈷的性質和應用 5 2-1-1電池材料 5 2-1-2合金 6 2-1-3觸媒 6 2-1-4顏料 6 2-1-5磁性材料 6 2-2 螯合劑 7 2-3液液萃取 8 2-3-1液液萃取之原理 8 2-3-2液液萃取之操作程序 9 2-3-3物理萃取 10 2-3-4化學萃取 11 2-3-5協同萃取 26 2-4液膜分離技術 27 2-4-1液膜的工作原理與傳遞機制 29 2-4-2液膜的型態 33 2-4-3支撐式液膜的不穩定性與改善 37 2-4-4影響支撐式液膜效率之參數 42 第 3 章 實驗理論 45 3-1萃取平衡 45 3-2支撐式液膜傳送速率的推導及測定 46 第 4 章 實驗方法 52 4-1設備與儀器 52 4-2實驗藥品 54 4-3實驗步驟 56 4-3-1批次式搖瓶萃取實驗 56 4-3-2紫外光/可見光光譜儀(Ultraviolet/Visible spectrophotometer, UV/VIS) 57 4-3-3還原反應前處理法 57 4-3-4過氧化氫/UV前處理法 58 4-3-5具分散反萃取相支撐式液膜 58 4-3-6樣品濃度量測 61 第 5 章 結果與討論 62 5-1具分散反萃取相支撐式液膜參數對純鈷離子透過係數之影響 63 5-1-1 進料相氫離子濃度 63 5-1-2 萃取劑濃度 69 5-2螯合劑乙二胺對鈷離子透過係數之影響 73 5-2-1不同乙二胺-鈷莫爾比 (Molar ratio of En/Co= 2, 3) 73 5-2-2抑制第三相生成之探討 78 5-3提升鈷-乙二胺系統透過係數之探討 80 5-3-1 D2EHPA/Lix 860-I協同萃取 80 5-3-2 鈷-乙二胺螯合能力之探討 83 5-3-3 改變鈷-乙二胺溶液配製順序 88 5-4前處理方法對鈷-乙二胺系統透過係數影響 91 5-4-1還原法前處理 91 5-4-2 H2O2/UV光法前處理 101 5-5以具分散反萃取相支撐式液膜回收實廠廢水中之鈷離子 108 5-5-1 鈷(III)離子之檢驗 108 5-5-2 還原法前處理 110 5-5-3 H2O2/UV光法前處理 113 第 6 章 結論與未來研究方向 116 參考文獻 118 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 支撐式液膜 | zh_TW |
| dc.subject | 鈷 | zh_TW |
| dc.subject | 乙二胺 | zh_TW |
| dc.subject | D2EHPA | zh_TW |
| dc.subject | 前處理 | zh_TW |
| dc.subject | Supported liquid membrane with strip dispersion (SLMSD) | en |
| dc.subject | Pretreatment | en |
| dc.subject | D2EHPA | en |
| dc.subject | Ethylenediamine | en |
| dc.subject | Cobalt | en |
| dc.title | 以具分散反萃取相支撐式液膜回收鈷離子 | zh_TW |
| dc.title | Recovery of Cobalt Ions by Supported Liquid Membrane with Strip Dispersion | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 莊清榮;謝學真;謝子陽 | zh_TW |
| dc.contributor.oralexamcommittee | Ching-Jung Chuang;Hsyue-Jen Hsieh;Tzu-Yang Hsien | en |
| dc.subject.keyword | 支撐式液膜,鈷,乙二胺,D2EHPA,前處理, | zh_TW |
| dc.subject.keyword | Supported liquid membrane with strip dispersion (SLMSD),Cobalt,Ethylenediamine,D2EHPA,Pretreatment, | en |
| dc.relation.page | 128 | - |
| dc.identifier.doi | 10.6342/NTU201902347 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-02 | - |
| dc.contributor.author-college | 工學院 | - |
| dc.contributor.author-dept | 化學工程學系 | - |
| 顯示於系所單位: | 化學工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 3.91 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
