請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77329
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 毛紹綱 | zh_TW |
dc.contributor.author | 蔡維庭 | zh_TW |
dc.contributor.author | Wei-Ting Tsai | en |
dc.date.accessioned | 2021-07-10T21:56:40Z | - |
dc.date.available | 2024-08-07 | - |
dc.date.copyright | 2019-08-07 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] P. Asbeck, L. Larson, D. Kimball, and J. Buckwalter, “CMOS handset power amplifiers: direction for the future,” in Proc. IEEE Custom Integr. Circuit Conf., Sep. 2012, pp. 1–6.
[2] W. C. E. Neo, Y. Lin, X.-d. Liu, L. C. N. de Vreede, L. E. Larson, M. Spirito, M. J. Pelk, K. Buisman, A. Akhnoukh, A. de Graauw, and L.K. Nanver, “Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks,” IEEE J. Solid-State Circuits, vol. 41, no. 9, pp. 2166–2176, Sep. 2006. [3] J. Moon, J. Son, J. Lee, and B. Kim, “A multimode/multiband envelope tracking transmitter with broadband saturated amplifier,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 12, pp. 3463–3473, Dec. 2011. [4] Y. Cho, D. Kang, J. Kim, D Kim, B. Park, and B. Kim, “A dual power-mode multi-band power amplifier with envelope tracking for handset applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 4, pp. 1608-1619, Apr. 2013. [5] D. Kang, D. Kim, J. Choi, J. Kim, Y. Cho, and B. Kim, “A multimode/ multiband power amplifier with a boosted supply modulator,” IEEE Trans. Microw. Theory Techn., vol. 58, no. 10, pp. 2598–2608, Oct. 2010. [6] S. Yoon, I. Lee, M. Urteagam, M. Kim, and S. Jeon, “A fully-integrated 40-222 GHz InP HBT distributed amplifier,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 7, pp. 460–462, Jul. 2014. [7] H.-Y. Chang, Y.-C. Liu, S.-H. Weng, C.-H. Lin, Y.-L. Yeh, and Y.-C. Wang, “Design and analysis of a DC-43.5-GHz fully integrated distributed amplifier using GaAs HEMT-HBT cascode gain stage,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 443–455, Feb. 2011. [8] P. Dennler, R. Quay, P. Brückner, M. Schlechtweg, and O. Ambacher, “Watt-level non-uniform distributed 6–37 GHz power amplifier MMIC with dual-gate driver stage in GaN technology,” in IEEE Power Amplifiers for Wireless and Radio Appl., Jan. 2014, pp. 37–39. [9] M. Chang and G. M. Rebeiz, “A 26 to 40 GHz wideband SiGe balanced power amplifier IC,” in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2007, pp. 729–732. [10] A. Scuderi, C. Santagati, M. Vaiana, F. Pidalà, and M. Paparo, “Balanced SiGe PA module for multi-band and multi-mode cellular-phone applications,” in Proc. IEEE Int. Solid-State Circuits Conf., Feb. 2008, pp. 572–637. [11] N. Demirel, E. Kerhervé, R. Plana, D. Pache, and D. Belot, “59-71 GHz wideband MMIC balanced power amplifier in a 0.13 um SiGe technology,” in Proc. Eur. Microw. Conf., Sep.–Oct., 2009, pp. 1852–1855. [12] H. Zhang, H. Gao, and G.-P. Li, “Broad-band power amplifier with a novel tunable output matching network,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 11, pp. 3606–3614, Nov. 2005. [13] S. Kang, U. Kim, Y. Kwon, and J. Kim, “A multi-mode multi-band reconfigurable power amplifier for low band GSM/UMTS handset applications,” in IEEE Power Amplifiers for Wireless and Radio Appl., Jan. 2013, pp. 16–18. [14] A. F. Aref and R. Negra, “A fully integrated adaptive multiband multimode switching-mode CMOS power amplifier,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 8, pp. 2549–2561, Aug. 2012. [15] U. Kim, S. Kang, J. Woo, Y. Kwon, and J. Kim, “A multiband reconfigurable power amplifier for UMTS handset applications,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 8, pp. 2532–2542, Aug. 2012. [16] J. Hur, O. Lee, C.-H. Lee, K. Lim, and J. Laskar, “A multi-level and multiband class-D CMOS power amplifier for the LINC system in the cognitive radio application,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 352–354, Jun. 2010. [17] G. Lee, J. Lee, and J.-I. Song, “A single chip multiband power amplifier using active load modulation techniques,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1–3. [18] D. Qiao, R. Molfino, S. M. Lardizabal, B. Pillans, P. M. Asbeck, and G. Jerinic, “An intelligently controlled RF power amplifier with a reconfigurable MEMS-varactor tuner,” IEEE Trans. Microw. Theory Techn., vol. 53, no. 3, pp. 1089–1095, Mar. 2005. [19] J. Kim, Y. Yoon, H. Kim, K. H. An, W. Kim, H.-W. Kim, C.-H. Lee, and K. T. Kornegay, “A linear multi-mode CMOS power amplifier with discrete resizing and concurrent power combining structure,” IEEE J. Solid-State Circuits, vol. 46, no. 5, pp. 1034–1048, May 2011. [20] S. A. Figur, V. Ziegler, F. van Raay, R. Quay, and L. Vietzorreck, “RF MEMS variable matching networks for multi-band and multi-mode GaN power amplifiers,” in Proc. Eur. Microw. Integr. Circuits Conf., Oct. 2013, pp. 324-327. [21] C.-M. Lai, T.-Y. Chao, W.-A. Tsou, M.-F. Chou, Y.-T. Cheng, and K.-A. Wen, “A polar modulated tri-band power amplifier using flexible substrate based MEMS switches,” in Proc. Eur. Microw. Conf., Sep. 2010, pp. 998–1001. [22] Y. Yoon, J. Kim, H. Kim, K. H. An, O. Lee, C.-H. Lee, and J. S. Kenney, “A dual-mode CMOS RF power amplifier with integrated tunable matching network,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 1, pp. 77–88, Jan. 2012. [23] F. Carrara, C. D. Presti, F. Pappalardo, and G. Palmisano, “A 2.4-GHz 24-dBm SOI CMOS power amplifier with fully integrated reconfigurable output matching network,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 9, pp. 2122–2130, Sep. 2009. [24] P. A. Dal Fabbro and M. Kayal, Linear CMOS RF Power Amplifier for Wireless Applications. Springer, 2010. . [25] A. Fukuda, H. Okazaki, S. Narahashi, T. Hirota, and Y. Yamao, “A 900/1500/2000-MHz triple-band reconfigurable power amplifier employing RF-MEMS switches,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2005. [26] Y. Yin, B. Chi, Z. Xia, and Z. Wang, “A reconfigurable dual-mode CMOS power amplifier with integrated T/R switch for 0.1–1.5-GHz multistandard applications,” IEEE Trans Circuits Syst. II, Exp. Briefs, vol. 61, no. 7, pp. 471-475, Jul. 2014. [27] M.-D. Tsai, C.-C. Lin, P.-Y. Chen, T.-Y. Chang, C.-W. Tseng, L.-C. Lin, C. Beale, B. Tseng, B. Tenbroek, C.-S. Chiu, G.-K. Dehng, and G. Chien, “A fully integrated multimode front-end module for GSM/EDGE/TD-SCDMA/TD-LTE applications using a Class-F CMOS power amplifier,” in IEEE Int. Solid-State Circuits Conf., 5-9 Feb. 2017. [28] A. Abdelhafiz, A. Kwan, O. Hammi, and F. M. Ghannouchi, “Digital predistortion of LTE-A power amplifiers using compressed-sampling-based unstructured pruning of volterra series,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 11, pp. 2583-2593, Nov. 2014. [29] B. Francois and P. Reynaert, “Highly linear fully integrated wideband RF PA for LTE-advanced in 180-nm SOI,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 649-658, Feb. 2015. [30] Z. Wang, Envelope Tracking Power Amplifiers for Wireless Communication. Norwood, MA, USA: Artech House, 2014. [31] Z. Wang, “Demystifying envelope tracking: Use for high-efficiency power amplifiers for 4G and beyond,” IEEE Microw. Mag., vol. 16, no. 3, pp. 106-129, Apr. 2015. [32] P. Asbeck and Z. Popovic, “ET comes of age: Envelope tracking for higher-efficiency power amplifiers,” IEEE Microw. Mag., vol. 17, no. 3, pp. 16-25, Mar. 2016. [33] B. Kim, J. Kim, D. Kim, J. Son, Y. Cho, J. Kim, and B. Park, “Push the envelope: Design concepts for envelope-tracking power amplifiers,” IEEE Microw. Mag., vol. 14, no. 3, pp. 68-81, 2013. [34] F. Wang, D. F. Kimball, D. Y. Lie, P. M. Asbeck, and L. E. Larson, “A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1271-1281, Jun. 2007. [35] J. Kim, D. Kim, Y. Cho, D. Kang, B. Park, K. Moon, S. Koo, and B. Kim, “Highly efficient RF transmitter over broad average power range using multilevel envelope-tracking power amplifier,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 62, no. 6, pp. 1648-1657, Jun. 2015. [36] R. Wu, Y.-T. Liu, J. Lopez, C. Schecht, Y. Li, and D. Y. C. Lie, “High-efficiency silicon-based envelope-tracking power amplifier design with envelope shaping for broadband wireless applications,” IEEE J. Solid-State Circuits, vol. 48, no. 9, pp. 2030-2040, Sept. 2013. [37] M. Tan and W.-H. Ki, “An efficiency-enhanced hybrid supply modulator with single-capacitor current-integration control,” IEEE J. Solid-State Circuits, vol. 51, no. 2, pp. 533-542, Feb. 2016. [38] “LTE; evolved universal terrestrial radio access (E-UTRA); user equipment (UE) radio transmission and reception (3GPP TS 36.101 version 13.2.1 release 13),” 3GPP, Valbonne, France, Tech. Spec. ETSI TS 136 101 V13.2.1 (2016-01), Jan. 2016. [39] V. Jones and H. Sampath, “Emerging technologies for WLAN,” IEEE Commun. Mag., 1vol. 53, no. 3, pp.141-149, Mar. 2015. [40] A. K. Kwan, M. Younes, R. Darraji, and F. M. Ghannouchi, “On track for efficiency: Concurrent multiband envelope-tracking power amplifiers,” IEEE Microw. Mag., vol. 17, no. 5, pp. 46-59, May 2016. [41] J. Jeong, D. F. Kimball, M. Kwak, C. Hsia, P. Draxler, and P. M. Asbeck, “Wideband envelope tracking power amplifiers with reduced bandwidth power supply waveforms and adaptive digital predistortion techniques,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3307-3314, Dec. 2009. [42] H. Holma and A. Toskala, WCDMA for UMTS – HSPA Evolution and LTE, 4th ed. New York:Wiley, 2007. [43] M. Ji, D. Teeter, S. Richard, E. Shull, and D. Mahoney, “Envelope tracking power amplifier design considerations for handset applications,” in IEEE Topical Conf. Power Amplifier Wireless Radio Applicat., 24-27 Jan. 2016. [44] J. S. Paek, Y. S. Youn, J.-H. ChoiD.-S. Kim, J.-H. Jung, Y.-H. Choo, S.-J. Lee, S.-C. Lee, T. B. Cho, and I.-Y. Kang, “An RF-PA supply modulator achieving 83% efficiency and -136dBm/Hz noise for LTE-40MHz and GSM 35dBm applications,” in IEEE Int. Solid- State Circuits Conf., 31 Jan.–4 Feb. 2016. [45] A. Tasic, W. A. Serdijn, L. E. Larson, and G. Setti, Circuits and Systems for Future Generations of Wireless Communications, Springer, 2009. [46] K. Yamamoto, M. Miyashita, S. Maki, Y. Takahashi, K. Fujii, S. Fujiwara, F. Kitabayashi, S. Suzuki, T. Shimura, M. Hieda, and H. Seki, “A WCDMA multiband power amplifier module with Si-CMOS/GaAs-HBT hybrid power-stage configuration,” IEEE Trans Microw. Theory Techn., vol. 64, no. 3, pp. 810-825, Mar. 2016. [47] Y. Cho, D. Kang, J. Kim, K. Moon, B. Park, and B. Kim, “Linear doherty power amplifier with an enhanced back-off efficiency mode for handset applications,” IEEE Trans Microw. Theory Techn., vol. 62, no. 3, pp. 567-578, Mar. 2014. [48] G. Lee, J. Jung, and J.-I. Song, “A SiGe BiCMOS power amplifier using a lumped element-based impedance tuner,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 1, pp. 58-60, Jan. 2016. [49] J. Jung and J. Kim, “Fully integrated 3 x 3 mm BiFET stage-bypass power amplifier for WCDMA handset application,” Electron. Lett., vol. 45, no. 22, pp. 1125-1127, Oct. 2009. [50] S. Kang, U. Kim, and J. Kim, “A multi-mode multi-band reconfigurable power amplifier for 2G/3G/4G handset applications,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 1, pp. 49-51, Jan. 2015. [51] B. Suh and B.-W. Min, “DC–X-band high-power SOI CMOS T/R switch,” Electron. Lett., vol. 52, no. 11, pp. 937–939, May 2016. [52] D. P. Nguyen, A.-V. Pham, and F. Aryanfar, “A K-band high power and high isolation stacked-FET single pole double throw MMIC switch using resonating capacitor,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 696-698, Sept. 2016. [53] X. J. Li and Y. P. Zhang, “Flipping the CMOS switch,” IEEE Microw. Mag., vol. 11, no. 1, pp. 86-96, Feb. 2010. [54] R. Shu and Q. J. Gu, “A transformer-based V-band SPDT switch,” IEEE Microw. Wireless Compon. Lett., vol. 27, no. 3, pp. 278-280, Mar. 2017. [55] P. Park, D. H. Shin, and C. P. Yue, “High-linearity CMOS T/R switch design above 20 GHz using asymmetrical topology and AC-floating bias,” IEEE Trans Microw. Theory Techn, vol. 57, no. 4, pp. 948-956, Apr. 2009. [56] M. Ahn, H.-W. Kim, C.-H. Lee, and J. Laskar, “A 1.8-GHz 33-dBm P 0.1-dB CMOS T/R switch using stacked FETs with feed-forward capacitors in a floated well structure,” IEEE Trans Microw. Theory Techn, vol. 57, no. 11, pp. 2661-2670, Nov. 2009. [57] I.-Y. Lee and D. Im, “Low-power SOI CMOS antenna switch driver circuit with RF leakage suppression and fast switching time,” Electron. Lett., vol. 53, no. 5, pp. 293–294, Mar. 2017. [58] S.-L. Liu, M.-H. Wu, and A. Chin, “Design of a CMOS T/R switch with high power capability: Using asymmetric transistors,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 12, pp. 645-647, Dec. 2012. [59] J.-S. Fu, “SPDT switch using both nMOS and pMOS transistors for improving power handling,” in IEEE Int. Conf. Ubiquitous Wireless Broadband, 4-7 Oct. 2015. [60] H. Wang, S. Kousai, K. Onizuka, and S. Hu, “The wireless workhouse: Mixed-signal power amplifiers leverage digital and analog techniques to enhance large-signal RF operations,” IEEE Microw. Mag., vol. 16, no. 9, pp. 36 - 63, Oct. 2015. [61] W.-T. Tsai, C.-Y. Liou, Z.-A. Peng, and S.-G. Mao, “Wide-Bandwidth and high-linearity envelope-tracking front-end module for LTE-A carrier aggregation applications,” IEEE Trans. Microw. Theory Tech., vol. 65, no. 11, pp. 4657 - 4668, Nov. 2017. [62] C. Fager, J. C. Pedro, N. B. de Carvalho, H. Zirath, F. Fortes, and M. J. Rosario, “A comprehensive analysis of IMD behavior in RF CMOS power amplifiers,” IEEE J. Solid-State Circuits, vol. 39, no. 1, pp. 24 - 34, Jan. 2004. [63] K. Onizuka, H. Ishihara, M. Hosoya, S. Saigusa, O. Watanable, and S. Otaka, “A 1.9 GHz CMOS power amplifier with embedded linearizer to compensate AM-PM distortion,” IEEE J. Solid-State Circuits, vol. 47, no. 8, pp. 1820 - 1827, Aug. 2012. [64] W. Hallberg, M. Ozen, D. Gustafsson, K. Buisman, and C. Fager. Rosario, “A Doherty power amplifier design method for improved efficiency and linearity,” IEEE Trans. Microw. Theory Tech., vol. 64, no. 12, pp. 4491 - 4504, Dec. 2016. [65] J. Kang, J. Yoon, K. Min, D. Yu, J. Nam, Y. Yang, and B. Kim, “A highly linear and efficient differential CMOS power amplifier with harmonic control,” IEEE J. Solid-State Circuits, vol. 41, no. 6, pp. 1314 - 1322, Jun. 2006. [66] K. H. An, O. Lee, H. Kim, D. H. Lee, J. Han, K. S. Yang, Y. Kim, J. J. Chang, W.Woo, C.-H. Lee, H. Kim, and J. Laskar, “Power-combining transformer techniques for fully-integrated CMOS power amplifiers,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1064–1075, May 2008. [67] O. Lee, K. H. An, H. Kim, D. H. Lee, J. Han, K. S. Yang, C.-H. Lee, H. Kim, and J. Laskar, “Analysis and design of fully integrated high-power parallel-circuit class-E CMOS power amplifiers,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 3, pp. 725–734, Mar. 2010. [68] Y. S. Noh and C. S. Park, “An intelligent power amplifier MMIC using a new adaptive bias control circuit for W-CDMA applications,” IEEE J. Solid-State Circuits, vol. 39, no. 6, pp. 967–970, Jun. 2004. [69] C.-W. P. Huang, M. Doherty, P. Antognetti, L. Lam, and W. Vaillancourt, “A highly integrated dual band SiGe BiCMOS power amplifier that simplifies dual-band WLAN and MIMO front-end circuit designs,” in IEEE MTT-S Int. Microw. Symp. Dig., May 2010, pp. 256–259. [70] F. Wang, D. F. Kimball, D. Y. Lie, P. M. Asbeck, and L. E. Larson, “A monolithic high-efficiency 2.4-GHz 20-dBm SiGe BiCMOS envelope-tracking OFDM power amplifier,” IEEE J. Solid-State Circuits, vol. 42, no. 6, pp. 1271–1281, Jun. 2007. [71] D. Fritsche, R. Wolf, and F. Ellinger, “Analysis and design of a stacked power amplifier with very high bandwidth,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 10, pp. 3223–3231, Oct. 2012. [72] G. Hueber and R. B. Staszewski, Multi-Mode/Multi-Band RF Transceivers for Wireless Communications: Advanced Techniques, Architectures, and Trends. New York, NY, USA: Wiley, 2011. [73] D. Yang and A. Molnar, “A widely tunable active duplexing transceiver with same-channel concurrent RX/TX and 30dB RX/TX isolation,” in IEEE Radio Freq. Integr. Circuits Symp., Jun. 2014. pp. 321–324. [74] G. Lee, J. Jung, and J.-I. Song, “A 26 dBm output power SiGe power amplifier for mobile 16 QAM LTE applications,” in IEEE Radio Wireless Sym., Jan. 2013, pp. 232–234. [75] V. Krishnamurthy, K. Hershberger, B. Eplett, J. Dekosky, H. Zhao, D. Poulin, R. Rood, and E. Prince, “SiGe power amplifier ICs for 4G (WIMAX and LTE) mobile and nomadic applications,” in IEEE Radio Freq. Integr. Circuits Symp., May 2010, pp. 569-572. [76] W.-Y. Kim, H.-S. Son, J.-Y. Jang, J.-H. Kim, I.-Y. Oh, and C.-S. Park, “A fully integrated triple-band CMOS hybrid-EER transmitter for WCDMA/LTE applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014, pp. 1–3. [77] Y. Li, J. Lopez, P.-H. Wu, W. Hu, R. Wu, and D. Y. C. Lie, “A SiGe envelope-tracking power amplifier with an integrated CMOS envelope modulator for mobile WiMAX/3GPP LTE transmitters,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 10, pp. 2525–2536, Oct. 2011. [78] B. Kim, J. Kim, D. Kim, J. Son, Y. Cho, J. Kim, and B. Park, “Push the envelope: design concepts for envelope-tracking power amplifiers,” IEEE Microw. Mag., vol. 14, no. 3, pp. 68–81, 2013. [79] M. Hassan, L. E. Larson, V. W. Leung, and P. M. Asbeck, “A combined series-parallel hybrid envelope amplifier for envelope tracking mobile terminal RF power amplifier applications,” IEEE J. Solid-State Circuits, vol.47, no. 5, pp. 1185–1198, May 2012. [80] J. Jeong, D. F. Kimball, M. Kwak, P. Draxler, and P. M. Asbeck, “Envelope tracking power amplifiers with reduced peak-to-average power ratio RF input signals,” in IEEE Radio Wireless Symp., Jan. 2010, pp. 112–115. [81] Y. Li, J. Lopez, D. Y. C. Lie, K. Chen, S. Wu, T.-Y. Yang, and G.-K. Ma, “Circuits and system design of RF polar transmitters using envelope- tracking and SiGe power amplifiers for mobile WiMAX,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, no. 5, pp. 893–901, May 2011. [82] M. Rumney and Keysight Technologies, LTE and the Evolution to 4G Wireless: Design and Measurement Challenges. 2nd Edition New York, NY, USA: Wiley, 2013. [83] J. Choi, D. Kim, D. Kang, and B. Kim, “A new power management IC architecture for envelope tracking power amplifier,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 7, pp. 1796–1802, Jul. 2011. [84] Y. Li, J. Lopez, C. Schecht, R. Wu, and D. Y. C. Lie, “Design of high efficiency monolithic power amplifier with envelope-tracking and transistor resizing for broadband wireless applications,” IEEE J. Solid- State Circuits, vol. 47, no. 9, pp. 2007–2018, Sep. 2012. [85] J. Kim, D. Kim, Y. Cho, D. Kang, B. Park, and B. Kim, “Envelope-tracking two-stage power amplifier with dual-mode supply modulator for LTE applications,” IEEE Trans. Microw. Theory Techn., vol. 61, no. 1, pp. 543–552, Jan. 2013. [86] M. Kwak, J. Jeong, M. Hassan, J. J. Yan, D. F. Kimball, P. M. Asbeck, and L. E. Larson, “High efficiency wideband envelope tracking power amplifier with direct current sensing for LTE applications,” in IEEE Power Amplifiers for Wireless and Radio Appl., Jan. 2012, pp. 41–44. [87] Y. Li, R. Zhu, D. Prikhodko, and Y. Tkachenko, “LTE power amplifier module design: challenges and trends,” in IEEE Solid-State Integr. Circuit Tech. Conf., Nov. 2010, pp. 192-195. [88] Z. Wang, Envelope Tracking Power Amplifiers for Wireless Communication. Artech House, 2014. [89] R. S. Assaad and J. Silva-Martinez, “The recycling folded cascade: A general enhancement of the folded cascade amplifier,” IEEE J. Solid-State Circuits, vol. 44, no. 9, pp. 2535-2542, Sept. 2009. [90] Y. L. Li, K. F. Han, X. Tan, N. Yan, and H. Min, “Transconductance enhancement method for operational transconductance amplifiers,” Electron. Lett., vol. 46, no. 19, pp. 1321-1323, Sept. 2010. [91] B. Razavi, Design of Analog CMOS Integrated Circuits, McGraw-Hill College, 2001. [92] M.-L. Lee, C.-Y. Liou, W.-T. Tsai, C.-Y. Lou, H.-L. Hsu, and S.-G. Mao, “Fully monolithic BiCMOS reconfigurable power amplifier for multi-mode and multi-band applications,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 2, pp. 614-624, Feb. 2015. [93] J. Wood, Behavioral Modeling and Linearization of RF Power Amplifiers, Artech House, 2014. [94] K. Choi, M. Kim, H. Kim, S. Jung, J. Cho, S. Yoo, Y. H. Kim, H. Yoo, and Y. Yang, “A highly linear two-stage mplifier integrated circuit using InGaP/GaAs HBT,” IEEE J. Solid-State Circuits, vol. 45, no. 10, pp. 2038-2043, Oct. 2010. [95] K. Moon, Y. Cho, J. Kim, S. Jin, B. Park, D. Kim, and B. Kim, “Investigation of intermodulation distortion of envelope tracking power amplifier for linearity improvement,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 4, Apr. 2015. [96] “LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); user equipment (UE) radio transmission and reception (3GPP TS 36.101 Version 14.3.0 Release 14),” 3GPP, Valbonne, France, Tech. Spec. ETSI TS 136 101 V14.3.0 (2017-04), Mar. 2017. [97] “Wideband digital pre-distortion with SystemVue and PXI modular instruments,” Keysight Technologies [Online]. Available: http://literature.cdn.keysight.com/litweb/pdf/5990-8883EN.pdf [98] B. Xiong, X. Zhu, W. Li, and G. Guo , “Analysis of maximum power reduction of uplink for carrier aggregation in LTE-A system,” in Int. Conf. Connected Vehicles Expo,12-16 Dec. 2012. [99] Y. H. Chee, F. Golcuk, T. Matsuura, C. Beale, J. F. Wang, and O. Shanaa, “A digitally assisted CMOS WiFi 802.11ac/ax front-end module achieving 12% PA efficiency at 20dBm output power with 160MHz 256-QAM OFDM signal,” in IEEE Int. Solid-State Circuits Conf., 5-9 Feb. 2017. [100] T.-M. Chen, Y. Lu, P.-N. Chen, Y.-H. Chang, M.-C. Liu, P.-Y. Chang, C.-J. Liang, Y.-C. Chen, H.-L. Lu, J.-Y. Ding, C.-C. Wang, Y.-L. Hsueh, J.-C.-Tsai, M.-S. Hsu, Y.-H. Chung, and G. Chien, “An 802.11ac dual-band reconfigurable transceiver supporting up to four VHT80 spatial streams with 116fsrms-jitter frequency synthesizer and integrated LNA/PA delivering 256QAM 19dBm per stream achieving 1.733Gb/s PHY rate,” in IEEE Int. Solid-State Circuits Conf., 5-9 Feb. 2017. [101] J. Ham, J. Bae, H. Kim, M. Seo, H. Lee, K. C. Hwang, K.-Y. Lee, C.-S. Park, D. Heo, and Y. Yang, “CMOS power amplifier integrated circuit with dual-mode supply modulator for mobile terminals,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 63, no. 1, pp. 157-167, Jan. 2016. [102] D. Kim. D. Kang, J. Kim, Y. Cho, and B. Kim, “Wideband envelope tracking power amplifier for LTE application,” in IEEE Radio Freq. Integr. Circuits Symp., 17-19 Jun. 2012. [103] K. Onizuka, S. Saigusa, and S. Otaka, “A 1.8GHz linear CMOS power amplifier with supply-path switching scheme for WCDMA/LTE applications,” in IEEE Int. Solid-State Circuit Conf., 17-21 Feb. 2013. [104] S. park, J.-L. Woo, U. Kim, and Y. Kwon, “Broadband CMOS stacked RF power amplifier using reconfigurable interstage network for wideband envelope tracking,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 4, pp. 1174-1185, Apr. 2015. [105] D. Chowdhury, S. R. Mundlapudi, and A. Afsahi, “A fully integrated reconfigurable wideband envelope-tracking SoC for high-bandwidth WLAN applications in a 28nm CMOS technology,” in IEEE Int. Solid-State Circuit Conf., 5-9 Feb. 2017 [106] D.Y.C. Lie, Y. Li, R. Wu, W. Hu, 1. Lopez, C. Schecht, and Y.W. Liu, "Design of monolithic silicon-based envelope-tracking power amplifiers for broadband wireless applications", in IEEE Asia Pacific Conf. Circuits Systems, 2-5 Dec. 2012, pp. 212- 215. [107] F. Balteanu, “CMOS high bandwidth envelope tracking and power amplifiers for LTE carrier aggregation,” in IEEE Topical Conf. Power Amplifiers for Wireless Radio Application, 25-28 Jan. 2015. [108] Qorvo. B7 / B30 / B38 / B40 / B41N HB Front-End Module (FEM). Accessed on Aug. 2014 [Online]. Available: http://www.qorvo.com/products/d/da005238 [109] Skyworks. 700 to 2700 MHz Broadband Linear Amplifier Driver. Accessed on Apr. 2014. [Online]. Available: http://www.skyworksinc.com/uploads/documents/758_SKY65099_360LF_202024C.pdf | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77329 | - |
dc.description.abstract | 本論文提出一寬頻且支援WCDMA、LTE、WLAN之0.18 μm SiGe BiCMOS 功率放大器(Power Amplifier ; PA)。此PA於單晶片中整合了可調式輸入匹配網路、寬頻輸出匹配網路與可調式偏壓電路來使得在不同調變訊號及操作頻率下皆可達成高線性度與高功率之輸出表現。所提出之PA使用三級差動式架構而成,在不使用任何貫穿基板結構(TSV)的技術下可以達成41.3-42 dB的增益、28.2-28.6 dBm的1dB壓縮點輸出功率,並得到20.8-27.6 % 的功率附加效率(Power Added Efficiency ; PAE)於1.85-2.5 GHz的操作頻率下。為了進一步驗證所提出之PA的功用,本論文亦設計封包追蹤放大器來結合PA,於2.35GHz 16QAM LTE 20-MHz 頻寬下,可達24.7dBm之線性輸出功率,並同時符合-33dBc 之線性度規範,且再提升PAE 6.5%。
封包追蹤前端模組由封包追蹤電源調變器(Envelope Tracking Supply Modulator ; ETSM)、雙功率模態功率放大器、單刀雙擲開關電路所組成,並應用於LTE-A 頻帶內載波聚合技術。ETSM使用雙交錯路徑電流重複利用結構來獲得較高的頻寬與效率。量測效率於頻寬分別為1 × 20MHz、2 × 20MHz 、3 × 20MHz、4 × 20MHz之16-QAM LTE-A 載波聚合訊號下,可分別達到79.6%、76.4%、74%與72.8%之效率,而此時之峰值頻均功率比(Peak to Average Power Ratio ; PAPR)分別為7.4 dB、9.6 dB、11.2 dB與12.3 dB。雙功率模態SiGe BiCMOS PA被實現來結合ETSM以改善鄰近功率洩漏比(Adjacent Channel Leakage Ratio ; ACLR)與向量誤差比(Error Vector Magnitude ; EVM)。於操作頻率1.95GHz,1 × 20MHz、2 × 20MHz 、3 × 20MHz調變頻寬下,輸出功率為26.8 dBm、24.3 dBm、21.7 dBm時,ACLR可改善11.7 dB、7.9 dB和4.7 dB而EVM可改善7.1 %、6.1 %與4.1 %。單刀雙擲開關結合ETSM可降低0.3 dB功率損耗,並獲得1.1-dB的ACLR改善與0.7 %的EVM改善,於12 dBm輸入功率下。封包追蹤前端模組操作於12.5 dB PAPR 64 QAM 4 × 20 MHz 頻寬之LTE-A載波聚合訊號下,於輸出功率13.1 dBm時,可獲得1.3 dB的ACLR改善與1 %的EVM改善以達成寬頻高線性度之射頻前端模組應用。 此論文同時也提出了集極電壓變化技術來改善PA之線性度。PA之三階交互調變行為於此論文中將被分析並透過集極電壓調變來改善交互調變失真之非線性程度。此集極電壓調變技術改善非線性之方法將於此論文中被透過實驗與理論來進行驗證。經由SiGe BiCMOS PA實驗結果顯示,透過集極電壓調變可以比傳統固定供給電壓之PA提升約2.3 dB之線性輸出功率。 | zh_TW |
dc.description.abstract | A power amplifier supporting wideband code division multiple access (WCDMA), long-term evolution (LTE) and wireless local area network (WLAN) applications has been implemented in 0.18 SiGe BiCMOS technology. The power amplifier integrates a tunable input matching network, a broadband output matching network, and adaptive bias circuits in a single chip to achieve high linearity and high power in different modulation schemes and operating bands. The three-stage power amplifier adopts differential-type configuration without using through-silicon-via technology to deliver 41.3-42 dB of gain and 28.2-28.6 dBm of 1-dB compression output power with a 20.8-27.6% power-added efficiency at 1.85-2.5 GHz. To further validate the usefulness of the proposed power amplifier, the envelope tracking power amplifier is designed to improve the power-added efficiency by 6.5% within the linearity specification of a 24.7 dBm average output power and a -33 dBc adjacent channel leakage ratio for 2.35 GHz 16QAM time-division LTE signal with 20 MHz bandwidth.
The envelope-tracking frontend module (ETFEM) consisting of an envelope-tracking supply modulator (ETSM), a dual-power-mode power amplifier, and a single-pole-double-throw (SPDT) switch is proposed for the long term evolution-advanced (LTE-A) intra-band carrier aggregation (CA) signal. The linear stage of ETSM is implemented by introducing the dual-path crossover current-reuse mechanism to obtain the measured efficiency 79.6 %, 76.4 %, 74 %, and 72.8 % for the 7.4-dB, 9.6-dB, 11.2-dB, and 12.3-dB PAPR 16-QAM LTE-A CA signals with 1 20-MHz, 2 20-MHz, 3 20-MHz, and 4 20-MHz bandwidths, respectively. A SiGe BiCMOS dual-power-mode power amplifier with two output power modes is realized and incorporated with ETSM to improve the adjacent channel leakage ratio (ACLR) by 11.7 dB, 7.9 dB, and 4.7 dB and the error vector magnitude (EVM) by 7.1 %, 6.1 %, and 4.1 % at the 26.8-dBm, 24.3-dBm, and 21.7-dBm output powers for the LTE-A 16-QAM signals with 1 20-MHz, 2 20-MHz, and 3 20-MHz bandwidths at 1.95 GHz, respectively. The SPDT switch integrated with ETSM provides the 0.3-dB power loss reduction, the 1.1-dB ACLR improvement, and the 0.7-% EVM enhancement at the 12-dBm average input power. The ETFEM operated at the 12.5-dB PAPR 64-QAM LTE-A CA signal with 4 20-MHz bandwidth demonstrates that the improvements of 1.3-dB ACLR and 1-% EVM at the 13.1-dBm output power are achieved for the wide-bandwidth and high-linearity FEM applications. This thesis also proposes a power amplifier with the various collector voltages technique to linearize the power amplifier. The third-order intermodulation term in the behavior model of the power transistor is analyzed to demonstrate the minimum third-order intermodulation distortion for the power amplifier with the various collector voltages technique. This various collector voltages technique for reducing the third-order intermodulation distortion of the power amplifier is experimentally and theoretically verified. A SiGe BiCMOS power amplifier with the various collector voltages technique is designed and implemented. Results demonstrate that the linear output power of the proposed power amplifier is 2.3 dB higher than the power amplifier with the fixed supply voltage. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:56:40Z (GMT). No. of bitstreams: 1 ntu-108-D03942001-1.pdf: 6782677 bytes, checksum: 2a0264cfae34d3764443acc69d8ceb90 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | Contents
口試委員會審定書……………………………………………………………………………………………….1 Abstract……………………………………………………………………………….2 中文摘要………………………………………………………………………………4 Contents……………………………………………………………………………….6 List of Figures…………………………………………………………………………8 List of Tables………………………………………………………………………...13 Chapter 1 Introduction……………………………………………………14 Chapter 2 Fully Monolithic Bicmos Reconfigurable Power Amplifier for Multi-Mode and Multi-Band Applications…………………...19 I. Design…………………………………………………..20 II. Implementation and Measurement…………………...32 A. Standalone MMPA………………………………….32 B. Envelope Tracking Power Amplifier……………….39 Chapter 3 Wide-Bandwidth and High-Linearity Envelope-Tracking Front-End Module for LTE-A Carrier Aggregation Applications……………………………………………………48 I. Wide-Bandwidth Envelope-Tracking Supply Modulator……………………………………………...51 II. Dual-Power-Mode Envelope-Tracking Power Amplifier ………………………………………………59 III. Envelope-Tracking Frontend Module………………..78 Chapter 4 Intermodulation Distortion Analysis for Power Amplifier With Various Collector Voltages…………………………………….82 Conclusion …………………………………………………………………..92 References …………………………………………………………………..95 Publication List …………………………………………………………………110 | - |
dc.language.iso | en | - |
dc.title | 寬頻高線性度封包追蹤前端模組設計 | zh_TW |
dc.title | Wide-Bandwidth High-Linearity Envelope-Tracking Front- End Module Design | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 博士 | - |
dc.contributor.oralexamcommittee | 林育平;林清泉;葉人郡;劉重儀 | zh_TW |
dc.contributor.oralexamcommittee | ;;; | en |
dc.subject.keyword | 封包追蹤,功率放大器,載波聚合,多頻多模,射頻前端模組,單刀雙擲開關, | zh_TW |
dc.subject.keyword | Envelope-tracking power amplifier (ETPA),envelope-tracking supply modulator (ETiM),front-end module (FEM),Long-Term Evolution-Advanced (LTEA) carrier aggregation (CA),switch, | en |
dc.relation.page | 111 | - |
dc.identifier.doi | 10.6342/NTU201902367 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-02 | - |
dc.contributor.author-college | 電機資訊學院 | - |
dc.contributor.author-dept | 電信工程學研究所 | - |
顯示於系所單位: | 電信工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 6.62 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。