請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77326
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 李士傑 | zh_TW |
dc.contributor.advisor | Shyh-Jye Lee | en |
dc.contributor.author | 方莉萍 | zh_TW |
dc.contributor.author | Li-Ping Fang | en |
dc.date.accessioned | 2021-07-10T21:56:32Z | - |
dc.date.available | 2024-08-07 | - |
dc.date.copyright | 2019-08-07 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | De Sandre-Giovannoli, A., Bernard, R., Cau, P., Navarro, C., Amiel, J., Boccaccio, I., Lyonnet, S., Stewart, C.L., Munnich, A., Le Merrer, M., et al. (2003). Lamin a truncation in Hutchinson-Gilford progeria. Science 300, 2055.
Deepadarshan, K., Gangadhar, B., and Mallikarjun, M. (2016). Hutchinson-Gilford progeria syndrome: a rare case report. Our Dermatology Online 7, 210-212. El-Brolosy, M.A., Kontarakis, Z., Rossi, A., Kuenne, C., Gunther, S., Fukuda, N., Kikhi, K., Boezio, G.L.M., Takacs, C.M., Lai, S.L., et al. (2019). Genetic compensation triggered by mutant mRNA degradation. Nature 568, 193-197. Eriksson M, B.W.T., Gordon L B, et al. (2003). Recurrent de novo point mutations in lamin A cause Hutchinson–Gilford progeria syndrome. Nature 423. Fischer, B., Dimopoulou, A., Egerer, J., Gardeitchik, T., Kidd, A., Jost, D., Kayserili, H., Alanay, Y., Tantcheva-Poor, I., Mangold, E., et al. (2012). Further characterization of ATP6V0A2-related autosomal recessive cutis laxa. Hum Genet 131, 1761-1773. Fischer-Zirnsak, B., Escande-Beillard, N., Ganesh, J., Tan, Y.X., Al Bughaili, M., Lin, A.E., Sahai, I., Bahena, P., Reichert, S.L., Loh, A., et al. (2015). Recurrent De Novo Mutations Affecting Residue Arg138 of Pyrroline-5-Carboxylate Synthase Cause a Progeroid Form of Autosomal-Dominant Cutis Laxa. Am J Hum Genet 97, 483-492. Fong, L.G., Ng, J.K., Lammerding, J., Vickers, T.A., Meta, M., Cote, N., Gavino, B., Qiao, X., Chang, S.Y., Young, S.R., et al. (2006). Prelamin A and lamin A appear to be dispensable in the nuclear lamina. J Clin Invest 116, 743-752. Gao, P., Tchernyshyov, I., Chang, T.C., Lee, Y.S., Kita, K., Ochi, T., Zeller, K.I., De Marzo, A.M., Van Eyk, J.E., Mendell, J.T., et al. (2009). c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature 458, 762-765. Guernsey, D.L., Jiang, H., Evans, S.C., Ferguson, M., Matsuoka, M., Nightingale, M., Rideout, A.L., Provost, S., Bedard, K., Orr, A., et al. (2009). Mutation in pyrroline-5-carboxylate reductase 1 gene in families with cutis laxa type 2. Am J Hum Genet 85, 120-129. Liang, S.T., Audira, G., Juniardi, S., Chen, J.R., Lai, Y.H., Du, Z.C., Lin, D.S., and Hsiao, C.D. (2019). Zebrafish Carrying pycr1 Gene Deficiency Display Aging and Multiple Behavioral Abnormalities. Cells 8. Liu, W., Le, A., Hancock, C., Lane, A.N., Dang, C.V., Fan, T.W., and Phang, J.M. (2012). Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc Natl Acad Sci U S A 109, 8983-8988. Meng, Z., Lou, Z., Liu, Z., Li, M., Zhao, X., Bartlam, M., and Rao, Z. (2006). Crystal Structure of Human Pyrroline-5-carboxylate Reductase. Journal of Molecular Biology 359, 1364-1377. Phillip, J.M., Aifuwa, I., Walston, J., and Wirtz, D. (2015). The Mechanobiology of Aging. Annu Rev Biomed Eng 17, 113-141. Pollex, R.L., and Hegele, R.A. (2004). Hutchinson-Gilford progeria syndrome. Clin Genet 66, 375-381. Ramirez, C.L., Cadinanos, J., Varela, I., Freije, J.M., and Lopez-Otin, C. (2007). Human progeroid syndromes, aging and cancer: new genetic and epigenetic insights into old questions. Cell Mol Life Sci 64, 155-170. Reversade, B., Escande-Beillard, N., Dimopoulou, A., Fischer, B., Chng, S.C., Li, Y., Shboul, M., Tham, P.Y., Kayserili, H., Al-Gazali, L., et al. (2009). Mutations in PYCR1 cause cutis laxa with progeroid features. Nat Genet 41, 1016-1021. Santiago-Fernandez, O., Osorio, F.G., Quesada, V., Rodriguez, F., Basso, S., Maeso, D., Rolas, L., Barkaway, A., Nourshargh, S., Folgueras, A.R., et al. (2019). Development of a CRISPR/Cas9-based therapy for Hutchinson-Gilford progeria syndrome. Nat Med 25, 423-426. Suhm, T., Kaimal, J.M., Dawitz, H., Peselj, C., Masser, A.E., Hanzen, S., Ambrozic, M., Smialowska, A., Bjorck, M.L., Brzezinski, P., et al. (2018). Mitochondrial Translation Efficiency Controls Cytoplasmic Protein Homeostasis. Cell Metab 27, 1309-1322 e1306. ZH Wang, e. (2018). 人类早衰症的发病机制及干预方法. Progress in Biochemistry and Biophysics 45, 926~934. Zhou, B., Kreuzer, J., Kumsta, C., Wu, L., Kamer, K.J., Cedillo, L., Zhang, Y., Li, S., Kacergis, M.C., Webster, C.M., et al. (2019). Mitochondrial Permeability Uncouples Elevated Autophagy and Lifespan Extension. Cell 177, 299-314 e216. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77326 | - |
dc.description.abstract | 早衰綜合症(PS)是一種罕見的加速生理衰老的遺傳性疾病,使患病的個體看起來比正常情況下更加衰老。與HGPS不同,ARCLII是一種鮮為人知的早衰綜合症,其特徵是皮膚褶皺或者皮膚鬆弛以及與早衰相關的骨質流失。其一部分病因(22名患者)是由PYCR1基因的突變引起的,PYCR1編碼吡咯啉-5-羧酸還原酶1,其在涉及NADP(+)和ATP生成的脯氨酸合成中起到一定的作用。在這項研究中,我在斑馬魚中註釋了pycr1a基因並分析其表達。根據RT-PCR分析,pycr1a 的RNA水平在受精後後12小時之內很高,而且在眼睛和卵巢中含量很高。原位雜交顯示pycr1a出現在胚胎早期發育階段的眼睛和大腦中。此外西方墨點法顯示,其可以有效結合Pycr1a羧基末端结构域GST融合蛋白的Pycr1a抗體,並可染到斑馬魚线粒体蛋白中之Pycr1a。在表型上,突變雌魚的體重較低,長度較野生型斑馬魚更短,而突變型和野生型雄魚之間沒有明顯的差異。實驗中關於pycr1a分子上和物理上的特徵將為未來斑馬魚早衰綜合症的研究提供基礎性支持。 | zh_TW |
dc.description.abstract | Progeroid syndromes (PS) are a group of rare genetic disorders which speed up physiological aging, making affected individuals appear to be older than they are. Unlike the HGPS (Hutchinson–Gilford progeria syndrome), ARCLII (autosomal recessive cutis laxa type II) is a less known progeria syndrome characterized by wrinkly skin or cutis laxa and bone loss associated with premature aging. Some cases (22 patients) resulted from mutations of PYCR1 gene-encode pyrroline-5-carboxylate reductase 1-which play a role in proline production involving NADP (+) and ATP generation. In this study, I annotated a pycr1a gene in zebrafish and performed its expression analysis. According to RT-PCR, pycr1a RNA level is high before 12 h post fertilization (hpf) stages and has the highest levels in eyes and ovary. In-situ hybridization shows that pycr1a locate in eyes and brain in early developmental embryos. Furthermore, I generated a Pycr1a antibody, which effectively bind to GST fusion protein of the pycr1a carboxyterminal domains and zebrafish Pycr1a mitochondria protein. Phenotypically, mutant female fish have a lower body weight and s shorter length than wide type fish while there is no significant physical difference between male fish. The molecular and physical features of pycr1a will provide basic support for future study of progeria syndromes in zebrafish. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:56:32Z (GMT). No. of bitstreams: 1 ntu-108-R06B21034-1.pdf: 5883276 bytes, checksum: 45e21fe46d22aee4cca3581c3da49b2d (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 感謝 I
中文摘要 II Abstract III Contents IV Introduction 1 Materials and methods 10 Construction of evolutionary tree 10 Gene cloning and sequencing 10 Zebrafish breeding and maintenance 11 Expression analysis by reverse transcription PCR (RT-PCR) 12 Whole-mount in situ hybridization (WISH) 13 Secondary structure prediction & tertiary structure location 13 Generation of recombinant GST-pycr1a fusion protein 14 Bacteria protein extraction 15 SDS-PAGE Coomassie blue staining 15 Microinjection 16 Fish mitochondrial protein extract 16 Western blot 17 Recording of body length and weight 18 Results 19 Sequence and phylogenetic analysis of pyrroline-5-carboxylate reductase (pycr)family proteins 19 Sequence analysis to confirm TALENs mutant pycr1a -/- fish 20 Spatial and Temporal expression of pycr1a in zebrafish 20 Plasmid construction and pycr1a-GST fusion protein production 22 pycr1a antibody QC by Western blot 23 The pycr1a(-/-) mutant fish showed a reduction in pycr1a protein in the mitochondria fraction 24 Growth delay and defects of pycr1a(-/-) mutant fish 25 Discussion 26 Figures 29 Figure 1. Sequence analysis of PYCR family genes 30 Figure 2. Validation of mutation in pycr1a(-/-) fish 31 Figure 3. Spatial and Temporal expression of pycr1a in zebrafish 33 Figure 4. Expression analysis by whole-mount in situ hybridization (WISH) against pycr1a in developing zebrafish embryos and larvae 35 Figure 5. pycr1a identity and c-terminal in 3D structure. 36 Figure 6. Generation and analysis of GST-Pycr1 fusion proteins. 38 Figure 7. Design of immunogen and titration of Pycr1a antibody. 40 Figure 8. Immunobloting against Pycr1a_C23 with zebrafish mitochondria protein. 42 Figure 9. Body weight and length of pycr1a(-/-) mutant fish. 43 Figure 10. Body weight and fish length of male pycr1a(-/-) mutant fish. 44 Figure 11. Body weight and fish length of female pycr1a(-/-) mutant fish. 45 Figure 12. Early development of pycr1a(-/-) mutants. 46 Supplementary Figures 47 Supplementary Figure 1.Tertiary structure of Human PYCR1. 48 Supplementary Figure 2. ClusterX between pycr1a and pycr1b coding region. 49 Supplementary Figure 3. Change in weight and length record from 3 months. 51 References 52 | - |
dc.language.iso | zh_TW | - |
dc.title | 斑馬魚pycr1a基因分析 | zh_TW |
dc.title | Analysis of pycr1a gene in zebrafish | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 蔡素宜;郭典翰 | zh_TW |
dc.contributor.oralexamcommittee | Su-Yi Tsai;Dian-Han Kuo | en |
dc.subject.keyword | 斑馬魚,pycr1a,早衰,衰老,脯氨酸, | zh_TW |
dc.subject.keyword | Zebrafish,pycr1a,progeria,aging,proline, | en |
dc.relation.page | 56 | - |
dc.identifier.doi | 10.6342/NTU201902287 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-05 | - |
dc.contributor.author-college | 生命科學院 | - |
dc.contributor.author-dept | 生命科學系 | - |
顯示於系所單位: | 生命科學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 5.75 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。