請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77311完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張淑惠(Shu-Hui Chang) | |
| dc.contributor.author | Cheng-Hao Wu | en |
| dc.contributor.author | 吳承浩 | zh_TW |
| dc.date.accessioned | 2021-07-10T21:55:20Z | - |
| dc.date.available | 2021-07-10T21:55:20Z | - |
| dc.date.copyright | 2019-08-28 | |
| dc.date.issued | 2019 | |
| dc.date.submitted | 2019-08-06 | |
| dc.identifier.citation | 1.Dugas AF, Hsieh YH, Levin SR, Pines JM, Mareiniss DP,Mohareb A, et al. Google Flu Trends: correlation with emergency department influenza rates and crowding metrics. Clinical Infectious Disease. 2012; 54:463-9.
2.Glaser CA, Gilliam S, Thompson WW, Dassey DE, Waterman SH, Saruwatari M, et al. Medical Care Capacity for influenza Outbreaks, Los Angeles. Emerging Infectious Diseases. 2002; 8:569-74. 3.Schull MJ, Mamdani MM, Fang J. Community influenza outbreaks and emergency department ambulance diversion. Annals of emergency medicine. 2004; 44:61-7. 4.Schull MJ, Mamdani MM, Fang J. Influenza and emergency department utilization by elders. Academic emergency medicine : official journal of the Society for Academic Emergency Medicine. 2005; 12:338-44. 5.行政院衛生署. 有關急診病人壅塞問題,衛生署的因應措施. 2011-02-21. 6.Weingarten S, Friedlander M, Rascon D, Ault M, Morgan M, Meyer RD. Influenza surveillance in an acute-care hospital. Archives of Internal Medicine. 1988; 148:113-6. 7.Wu T-SJ, Shih F-YF, Yen M-Y, Wu J-SJ, Lu S-W, Chang KC-M, et al. Establishing a nationwide emergency department-based syndromic surveillance system for better public health responses in Taiwan. BMC Public Health. 2008; 8:18. 8.Chen H. Infectious disease informatics syndromic surveillance for public health and biodefense. Zeng D, Yan P, editors. Boston, MA: Springer Science, LLC; 2010. 9.莊人祥、王大為、林逸芬. 行政院衛生署疾病管制局 96 年度科技研究發展計畫. 2007:46. 10.Jian SW, Chen CM, Lee CY, Liu DP. Real-Time Surveillance of Infectious Diseases: Taiwan's Experience. Health Security. 2017; 15:144-53. 11.Chuang J-H, Huang AS, Huang W-T, Liu M-T, Chou J-H, Chang F-Y, et al. Nationwide Surveillance of Influenza during the Pandemic (2009–10) and Post-Pandemic (2010–11) Periods in Taiwan. PloS one. 2012; 7:e36120. 12.Tsui FC, Wagner MM, Dato V, Chang CC. Value of ICD-9 coded chief complaints for detection of epidemics. Journal of the American Medical Informatics Association. 2001:711-5. 13.Brillman JC, Burr T, Forslund D, Joyce E, Picard R, Umland E. Modeling emergency department visit patterns for infectious disease complaints: results and application to disease surveillance. BMC medical informatics and decision making. 2005; 5:4. 14.Rothman RE, Hsieh YH, Yang S. Communicable respiratory threats in the ED: tuberculosis, influenza, SARS, and other aerosolized infections. Emergency medicine clinics of North America. 2006; 24:989-1017. 15.Menec VH, Black C, MacWilliam L, Aoki FY. The impact of influenza-associated respiratory illnesses on hospitalizations, physician visits, emergency room visits, and mortality. Canadian Journal of Public Health. 2003; 94:59-63. 16.McDonnell WM, Nelson DS, Schunk JE. Should we fear 'flu fear' itself? Effects of H1N1 influenza fear on ED use. American Journal of Emergency Medicine. 2012; 30:275-82. 17.Menec VH RN, Nowicki DL, MacWilliam L, Finlayson G, Black C, et al. Seasonal Patterns of Winnipeg Hospital Use: Manitoba Centre for Health Policy and Evaluation, University of Manitoba;1999. 18.Afilalo J, Marinovich A, Afilalo M, Colacone A, Leger R, Unger B, et al. Nonurgent emergency department patient characteristics and barriers to primary care. Academic emergency medicine. 2004; 11:1302-10. 19.Morley C, Unwin M, Peterson GM, Stankovich J, Kinsman L. Emergency department crowding: A systematic review of causes, consequences and solutions. PloS one. 2018; 13:e0203316-e. 20.Hoot NR, Aronsky D. Systematic review of emergency department crowding: causes, effects, and solutions. Annals of emergency medicine. 2008; 52:126-36. 21.Salway RJ, Valenzuela R, Shoenberger JM, Mallon WK, Viccellio A. Emergency Department Overcrowding: evidence-based answers to frequently asked questions. Revista Médica Clínica Las Condes. 2017; 28:213-9. 22.Rabin E, Kocher K, McClelland M, Pines J, Hwang U, Rathlev N, et al. Solutions to emergency department 'boarding' and crowding are underused and may need to be legislated. Health affairs (Project Hope). 2012; 31:1757-66. 23.American College of Emergency Physicians EPC. Emergency department crowding: High impact solutions.2008. 24.Young Hoon Yoon MD, Sung Hyuk Choi, M.D., Han Jin Cho, M.D., Jung Youn Kim, M.D., Chul Han, M.D.,Kang Hyun Lee, M.D., Sang Do Shin, M.D. H1N1 Influenza: Hospital Countermeasures and the Need for Planning. 2011; Volume 22, Number 1, February, . 25.張雅姿、林育如、池宜倩、周淑玫、陳昶勳. 2015–2016 年臺灣流感疫情分析. 疫情報導. 2017 第33 卷 第18 期:339-44. 26.Ploin D, Liberas S, Thouvenot D, Fouilhoux A, Gillet Y, Denis A, et al. Influenza burden in children newborn to eleven months of age in a pediatric emergency department during the peak of an influenza epidemic. The Pediatric infectious disease journal. 2003; 22:S218-22. 27.Reis BY, Mandl KD. Time series modeling for syndromic surveillance. BMC medical informatics and decision making. 2003; 3:2. 28.Griffin BA, Jain AK, Davies-Cole J, Glymph C, Lum G, Washington SC, et al. Early detection of influenza outbreaks using the DC Department of Health's syndromic surveillance system. BMC Public Health. 2009; 9:483. 29.Bourgeois FT, Olson KL, Brownstein JS, McAdam AJ, Mandl KD. Validation of Syndromic Surveillance for Respiratory Infections. Annals of emergency medicine. 2006; 47:265.e1. 30.吳宗樹、朱育增、金傳春. 症候群偵測-及早察覺「未預期」性的傳染病流行. 疫情報導. 2005; 第 21 卷第 5 期 327-34. 31.Chapman WW, Dowling JN, Wagner MM. Generating a reliable reference standard set for syndromic case classification. Journal of the American Medical Informatics Association. 2005; 12:618-29. 32.魏嘉、劉宇倫、郭宏偉、鄭皓元、劉定萍. 探討國際疾病分類從ICD-9-CM轉換為ICD-10-CM的影響:以急診類流感就診趨勢為例. 疫情報導. 2017; 第33 卷‧第18 期:345-54. 33.Schneider SM, Gallery ME, Schafermeyer R, Zwemer FL. Emergency department crowding: a point in time. Annals of emergency medicine. 2003; 42:167-72. 34.Erenler AK, Akbulut S, Guzel M, Cetinkaya H, Karaca A, Turkoz B, et al. Reasons for Overcrowding in the Emergency Department: Experiences and Suggestions of an Education and Research Hospital. Turkish Journal of Emergency Medicine. 2014; 14:59-63. 35.Gordon JA, Billings J, Asplin BR, Rhodes KV. Safety net research in emergency medicine: proceedings of the Academic Emergency Medicine Consensus Conference on 'The Unraveling Safety Net'. Academic emergency medicine. 2001; 8:1024-9. 36.Asplin BR, Magid DJ, Rhodes KV, Solberg LI, Lurie N, Camargo CA, Jr. A conceptual model of emergency department crowding. Annals of emergency medicine. 2003; 42:173-80. 37.Grumbach K, Keane D, Bindman A. Primary care and public emergency department overcrowding. American Journal of Public Health. 1993; 83:372-8. 38.Howard MS, Davis BA, Anderson C, Cherry D, Koller P, Shelton D. Patients' perspective on choosing the emergency department for nonurgent medical care: a qualitative study exploring one reason for overcrowding. Journal of Emergency Nursing 2005; 31:429-35. 39.Huang JA, Tsai WC, Chen YC, Hu WH, Yang DY. Factors associated with frequent use of emergency services in a medical center. Journal of the Formosan Medical Association. 2003; 102:222-8. 40.Lambe S, Washington DL, Fink A, Laouri M, Liu H, Scura Fosse J, et al. Waiting times in California's emergency departments. Annals of emergency medicine. 2003; 41:35-44. 41.Davis B, Sullivan S, Levine A, Dallara J. Factors affecting ED length-of-stay in surgical critical care patients. American Journal of Emergency Medicine. 1995; 13:495-500. 42.張宏泰. 醫學中心急診壅塞問題的分析及改善措施之研究-以某醫學中心改善方案為例: 國立中山大學; 2010. 43.Cooke MW, Wilson S, Halsall J, Roalfe A. Total time in English accident and emergency departments is related to bed occupancy. Emergency Medicine Journal. 2004; 21:575-6. 44.Forster AJ, Stiell I, Wells G, Lee AJ, van Walraven C. The effect of hospital occupancy on emergency department length of stay and patient disposition. Academic emergency medicine. 2003; 10:127-33. 45.Hwang U, McCarthy ML, Aronsky D, Asplin B, Crane PW, Craven CK, et al. Measures of crowding in the emergency department: a systematic review. Academic emergency medicine . 2011; 18:527-38. 46.Patel PB, Combs MA, Vinson DR. Reduction of admit wait times: the effect of a leadership-based program. Academic emergency medicine. 2014; 21:266-73. 47.Puvanachandra P, Razzak JA, Hyder AA. Establishing a National Emergency Department Surveillance: an innovative study from Pakistan. BMC emergency medicine. 2015; 15 Suppl 2:I1. 48.Peter J. Brockwell RAD. Introduction to Time Series and Forecasting: Springer; 3rd ed.; 2016. 49.Douglas C. Montgomery CLJ, Murat Kulahci. Introduction to Time Series Analysis and Forecasting Wiley-Interscience; 2 edition; 2015. 50.Fricker RD. Introduction to Statistical Methods for Biosurveillance: With an Emphasis on Syndromic Surveillance. Cambridge: Cambridge University Press; 2013. 51.Bruce L. Bowerman ROC, Anne Koehler. Forecasting, Time Series, and Regression Cengage Learning; 4 edition 2004. 52.熊昭、劉介宇、李正宇、于慧芝、蔡宜芬. 建立類流感與腸病毒的疾病預測模式: 財團法人國家衛生研究院2005. 53.胡鈞傑. 應用貝氏統計方法於建立顧客消費行為預測之時間序列模型: 國立臺灣大學; 2006. 54.Quddus MA. Time series count data models: an empirical application to traffic accidents. Accident; analysis and prevention. 2008; 40:1732-41. 55.Newbold P. Some Recent Developments in Time Series Analysis, Correspondent Paper. International Statistical Review. 1981; 49:53-66. 56.Briët OJ, Amerasinghe PH, Vounatsou P. Generalized seasonal autoregressive integrated moving average models for count data with application to malaria time series with low case numbers. PloS one. 2013; 8:e65761. 57.ZEGER SL. A regression model for time series of counts. Biometrika. 1988; 75:621-9. 58.Jung RC, Kukuk M, Liesenfeld R. Time series of count data: modeling, estimation and diagnostics. Computational Statistics & Data Analysis. 2006; 51:2350-64. 59.Liboschik T, Fokianos K, Fried R. tscount: An R Package for Analysis of Count Time Series Following Generalized Linear Models. 2017. 2017; 82:51. 60.Ferland R, Latour A, Oraichi D. Integer-Valued GARCH Process. Journal of Time Series Analysis. 2006; 27:923-42. 61.Ruey S. Tsay RC. Nonlinear Time Series Analysis: Wiley; 2018. 62.Robertson C, Yee L. Avian Influenza Risk Surveillance in North America with Online Media. PloS one. 2016; 11:e0165688. 63.Petukhova T, Ojkic D, McEwen B, Deardon R, Poljak Z. Assessment of autoregressive integrated moving average (ARIMA), generalized linear autoregressive moving average (GLARMA), and random forest (RF) time series regression models for predicting influenza A virus frequency in swine in Ontario, Canada. PloS one. 2018; 13:e0198313. 64.Yeung A, Weir A, Austin H, Morrison K, Inverarity D, Sherval J, et al. Assessing the impact of a temporary class drug order on ethylphenidate-related infections among people who inject drugs in Lothian, Scotland: an interrupted time–series analysis. Addiction. 2017; 112:1799-807. 65.Engle RF, Russell JR. Autoregressive Conditional Duration: A New Model for Irregularly Spaced Transaction Data. Econometrica. 1998; 66:1127-62. 66.Heinen A. Modelling Time Series Count Data: An Autoregressive Conditional Poisson Model: University Library of Munich, Germany2003. 67.Richard A. Davis SHH, Robert Lund, Nalini Ravishanker. Handbook of Discrete-Valued Time Series. 1 st ed. Fitzmaurice G, editor. USA: Chapman and Hall/CRC; 2015. 68.LJUNG GM, BOX GEP. On a measure of lack of fit in time series models. Biometrika. 1978; 65:297-303. 69.Durlauf SN. Spectral based testing of the martingale hypothesis. Journal of Econometrics. 1991; 50:355-76. 70.Durbin J. Tests for Serial Correlation in Regression Analysis Based on the Periodogram of Least-Squares Residuals. Biometrika. 1969; 56:1-15. 71.Czado C, Gneiting T, Held L. Predictive Model Assessment for Count Data. Biometrics. 2009; 65:1254-61. 72.Lachin JM. Fallacies of last observation carried forward analyses. Clinical trials. 2016; 13:161-8. 73.溫振谷. 時間序列計數資料之統計分析:以台灣地區抗蛇毒血清使用量為探討: 國立臺灣大學; 2016. 74.江旺財、李衛華、廖芝倩. 台灣急診室壅塞的初探. 輔仁醫學期刊. 2015; 第 13 卷 第 4 期:223-31. 75.吳秋芬、吳肖琪、石富元、許銘能. 影響急診病患暫留時間之相關因素探討. 台灣衛誌. 2008; 27. 76.大醫院急診壅塞 台大等最久. 自由時報. 2019. 77.台灣去年7.5萬人 急診室等2天. 中時電子報. 2015. 78.急診躺走廊 等2天才有病房. 蘋果日報. 2013. 79.徐志育. 運用風險控管縮短急診轉住院病人在急診停留時間之研究 —以臺北市某醫學中心實施專案的: 國立臺灣大學; 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77311 | - |
| dc.description.abstract | 背景
每年流行性感冒病毒在全球造成至少500萬人次的重症及50萬人死亡,長期以來為人類史中的公共健康安全威脅,每當進入流行季節時,大量類流感患者湧入急診室中,恐造成急診壅塞現象,此外,大量滯留於急診室的類流感病患,恐交叉感染進而引發群聚疫情,嚴重影響急診救護品質。 急診壅塞是當前重要的衛生議題,然而迄今對於急診壅塞尚無統一的定義,且其成因復雜,近期研究指出過多的急診等待住院人數是主因之一,流感疫情與急診壅塞間的關聯性為何尚不清楚。 目的 本研究旨在分析每日類流感就診人次數與每日急診等待住院人數是否存在相關。 材料與方法 研究樣本為18家全國重度及急救責任醫院,2016-2017年之急診室就診資料,其係屬計數時間序列資料,包括:每日類流感就診人次、每日類流感就診人次、每日急診總人次與每日急診等待住院人數,資料分別來自於衛生福利部之疾病流行早期即時監測系統(Real-time Outbreak and Disease Surveillance, RODS) 與全國重度級急救責任醫院公開急診即時資訊。 研究採用描述性、相關性分析來探索每日類流感就診人次、每日類流感就診人次與急診等待住院人數的關係,並利用自迴歸條件均值模型配適不同期間,包括:2016年、2017年以及流感季節與非流感季節,來釐清流感疫情對於每日急診等待住院人數的影響為何。 結果 描述性統計分析結果顯示整體而言當平均每日急診就診總人次增加,平均每日類流感就診人次、平均每日非類流感就診人次與平均每日急診等待住院人數也會遞增,於相關性分析中,類流感就診人次、非類流感就診人次與急診等待住院人數之互相關函數及斯皮曼等級相關係數,隨著滯後天數的增加相關性也跟著增加,多數醫院當滯後天數為1日、2日時相關性為最高且為正相關。 以自迴歸條件均值模型分析,發現所有醫院之一日前急診等待住院人數在不同的研究期間下與平均每日急診等待住院人數呈現正相關且均達到統計上顯著意義,部分醫院之二日前急診等待住院人數亦顯著,但與平均每日急診等待住院人數呈現負相關。當以流感與非流感季節所分析同期類流感就診人次、同期非類流感就診人次、一日前類流感就診人次與二日前類流感就診人次對於急診等待住院人數的影響,高中就診人次的醫院間的結果存在異質性,但於低就診人次的醫院中,則可以見到在2016年流感季期間類流感就診人次對於急診等待住院人數則有顯著的影響。另外,在多數高中就診人次的醫院中前述變項對於急診等待住院人數的影響,在不同年度、季節影響均相同。 結論 在低就診人次醫院中,每日急診等待住院人數在2016流感季有顯著的上升,但在中高急診就診人次的醫院間,前述影響則不明顯。另外,發現到在大多數的醫院裡,部分急診就診病患可能常需於急診室中留觀1-2日以上,因此,醫療院所需建立相關應變、分流機制與感控措施以降低於流感季節時當有過多類流感病患滯留於急診室時,發生流感群聚事件、院內感染的可能性。 | zh_TW |
| dc.description.abstract | Background
The influenza has been a global health security threat for long-lasting in human history. It causes over 5 million critical cases and 500 thousand deaths annually worldwide. If a large number of patients with influenza-like illness symptoms remain in emergency department (ED), it may cause cluster infection among patients and seriously affects the quality of emergency medical care. During influenza season, massive influenza-like illness visits surge into ED as well. The relationship between influenza-like illnesses and crowding in emergency department is still unclear. The emergency crowding is an important public health issue. However, it has no uniform definition and its formation is quite complex. Many studies have indicated that one primary cause of crowding is boarding in emergency department. The relationship between influenza-like illnesses and crowding in emergency department is still unclear. Aims This study aims to examine if the daily numbers of influenza-like illnesses in ED are associated with the daily numbers of boarded patients. Material and Methods The time-series count data including the daily numbers of influenza-like illness visits(ILI), noninfluenza-like illness visits(non-ILI)as well as the daily numbers of visits in the ED , which are retrospectively collected from Real-time Outbreak and Disease Surveillance(RODS)of Taiwan CDC and daily numbers of boarded patients are from open and real time information of 18 intensive emergency care responsibility hospitals between 2016 and 2017. Univariate and bivariate descriptive statistics and correlation analyses are used to explore the relationship between the daily numbers of ILI and non-ILI in ED as well as the daily numbers of boarded patients in ED. The autoregressive conditional mean models are used to fit the time-series count data in different study periods including 2016, 2017, influenza seasons and non-influenza seasons to understand how the influenza epidemic affects the daily numbers of boarded patients in ED. Result Descriptive statistics show that the daily numbers of boarded patients, ILI, non-ILI and in ED tend to increase as the average daily total numbers of patient visits in the emergency department increase. The results of correlation analysis indicate that the strength of correlations between the daily numbers of boarded patients and the daily numbers of influenza-like illness cases as well as the daily numbers of noninfluenza-like illnesses increases as the lags in day decrease. In particular, such correlations of 1-day lag and 2-day lag are highest with statistical significance in most hospitals. For fitting the autoregressive conditional mean models, the results show that the number of boarded patient one day ago is significantly associated with increased average daily numbers of boarded patients during any types of study period in all hospitals, and in some hospitals, the number of boarded patients two days ago is also significantly with reduced association between average daily numbers of boarded patients. In addition, the impacts of the daily numbers of ILI at the same day, one day ago as well as two day ago, and the non-ILI at the same day to the daily numbers of boarded patients during flu and non-flu seasons are quite heterogeneious among hospitals with more than 300 and 200-300 ED visits per day. Nevertheless, in hospitals with less than 200 daily ED visits, the daily number of ILI visits significantly affect the average daily number of boarded patients during 2016 flu season. Furthermore, in most of hospitals with over 200 daily ED visits, their impacts on the boarded patients are the same during flu and non-flu seasons. Conclusion For hospitals with less than 200 daily ED visits, the daily number of boarded patients tended to increase during the 2016 influenza season, but such increase was not apparent for hospitals with over 200 daily ED visits. In most hospitals, it is common that some patients may stay in the emergency room for more than one or two days. Therefore, during the influenza season, it is necessary to formulate contingency plans, diversion mechanisms and infection control in all the hospitals to prevent any possible epidemics as massive patients with influenza-like symptoms remain in ED. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:55:20Z (GMT). No. of bitstreams: 1 ntu-108-R06847020-1.pdf: 8382041 bytes, checksum: 2b9f936004369f60e92c571025c0e697 (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 摘要 iii Abstract v 目錄 viii 表目錄 x 圖目錄 xi 實習單位簡介 xii 第一章 緒論 1 第一節 研究背景 1 第二節 研究目的 2 第二章 文獻回顧 3 第一節 流行性感冒對於公共衛生之威脅 3 第二節 我國症候群監測系統簡介 3 第三節 急診壅塞的成因與評估指標 4 第四節 流感與急診壅塞關聯性之研究回顧 6 第五節 統計方法之回顧 7 第三章 研究方法 14 第一節 資料來源 14 第二節 資料處理與說明 14 第三節 統計方法 16 第四章 研究結果 21 第一節 描述性分析 21 第二節 相關性分析 21 第三節 模型分析結果 24 第五章 討論 34 第六章 結論 37 參考文獻 38 表一、各變項之描述性統計結果(以各醫院之平均每日就診總人次來分類) 44 表二、2016-2017年類流感就診人次、非類流感就診人次與急診等待住院人數之互相關函數(僅列一日前、二日前) 47 表三、2016年類流感就診人次、非類流感就診人次與急診等待住院人數之互相關函數(僅列一日前、二日前) 50 表四、2017年類流感就診人次、非類流感就診人次與急診等待住院人數之互相關函數(僅列一日前、二日前) 53 表五、2016-2017年類流感就診人次、非類流感就診人次與急診等待住院人數之斯皮曼等級相關係數 56 表六、2016年類流感就診人次、非類流感就診人次與急診等待住院人數之斯皮曼等級相關係數 59 表七、2017年類流感就診人次、非類流感就診人次與急診等待住院人數之斯皮曼等級相關係數 62 表八、以ACM模型進行分析(以年度來分析) 65 表九、以ACM模型進行分析(以流感季與非流感季來進行分析) 67 表十、以ACM模型進行分析(2016-2017年) 69 表十一、以ACM模型進行分析(2016年) 73 表十二、以ACM模型進行分析(2017年) 77 表十三、以ACM模型進行分析(2016流感季) 81 表十四、以ACM模型進行分析(2016非流感季) 84 表十五、以ACM模型進行分析(2017流感季) 87 表十六、以ACM模型進行分析(2017非流感季) 90 圖一、各醫院急診等待住院人數之自相關函數 93 圖二、2016-2017年各醫院類流感就診人次、非類流感就診人次與急診等待住院人數在不同滯後天數之互相關函數 96 圖三、2016年各醫院類流感就診人次、非類流感就診人次與急診等待住院人數在不同滯後天數之互相關函數 106 圖四、2017年各醫院類流感就診人次、非類流感就診人次與急診等待住院人數在不同滯後天數之互相關函數 116 | |
| dc.language.iso | zh-TW | |
| dc.subject | 非線性時間序列 | zh_TW |
| dc.subject | 自迴歸模型 | zh_TW |
| dc.subject | 急診等待住院人數 | zh_TW |
| dc.subject | 急診壅塞 | zh_TW |
| dc.subject | 計數時間序列 | zh_TW |
| dc.subject | 流感 | zh_TW |
| dc.subject | 類流感就診人次 | zh_TW |
| dc.subject | Influenza | en |
| dc.subject | Nonlinear time series | en |
| dc.subject | Influenza-like illnesses | en |
| dc.subject | Autoregressive model | en |
| dc.subject | Boarded patients | en |
| dc.subject | Emergency crowding | en |
| dc.subject | Count time series | en |
| dc.title | 以非線性時間序列方法分析急診類流感就診人次與急診等待住院人數之相關性 | zh_TW |
| dc.title | The Association Between the Numbers of Influenza-Like Illnesses Visits and Boarders in Emergency Departments:A Nonlinear Time Series Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 107-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 石富元(Fuh-Yuan Shih),陳秀熙(Hsiu-Hsi Chen) | |
| dc.subject.keyword | 自迴歸模型,急診等待住院人數,急診壅塞,計數時間序列,流感,類流感就診人次,非線性時間序列, | zh_TW |
| dc.subject.keyword | Autoregressive model,Boarded patients,Emergency crowding,Count time series,Influenza,Influenza-like illnesses,Nonlinear time series, | en |
| dc.relation.page | 132 | |
| dc.identifier.doi | 10.6342/NTU201902570 | |
| dc.rights.note | 未授權 | |
| dc.date.accepted | 2019-08-06 | |
| dc.contributor.author-college | 公共衛生學院 | zh_TW |
| dc.contributor.author-dept | 公共衛生碩士學位學程 | zh_TW |
| 顯示於系所單位: | 公共衛生碩士學位學程 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-108-R06847020-1.pdf 未授權公開取用 | 8.19 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
