請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77306
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳正剛 | zh_TW |
dc.contributor.advisor | Argon Chen | en |
dc.contributor.author | 郭晁端 | zh_TW |
dc.contributor.author | Chao-Tuan Kuo | en |
dc.date.accessioned | 2021-07-10T21:55:07Z | - |
dc.date.available | 2024-08-07 | - |
dc.date.copyright | 2019-08-12 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | [1] Adnan S. Dajani, MD and Kathryn A. Taubert (1993). Diagnosis and Therapy of Kawasaki Disease in Children. Circulation, 87(5): pp.1776
[2] Altman, D.G. and J.M. Bland (1994). Diagnostic tests. 1: Sensitivity and specificity. BMJ: British Medical Journal, 308(6943): pp. 1552. [3] C. Yu, Y. Su (2011). Marfan Syndrome—An Echocardiographer’s Perspective. Journal of Medical Ultrasound, 19(1): pp.1-6 [4] Hanley, J.A. and B.J. McNeil (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1): pp. 29-36. [5] Hocking, R. R., The Analysis and Selection of Variables in Linear Regression. Biometrics, 1976. 32 [6] Jean Serra (1983). Image Analysis and Mathematical Morphology. Academic Press, Inc. Orlando, FL, USA. [7] Joel Morganroth, MD, C.C. Chen (1980). MD, Echocardiographic Detection of Coronary Artery Disease. The American Journal of Cardiology, 46: pp.1178 [8] N. Otsu (1979). A threshold selection method from gray-level histograms. IEEE Trans. Sys., Man., Cyber, 9 (1): pp.62–66 [9] T. Kaiser and C.J. Kellenberger (2008). Normal values for aortic diameters in children and adolescents –assessment in vivo by contrast-enhanced CMR-angiography. Journal of Cardiovascular Magnetic Resonance 10: pp.56 [10] Walker, SH; Duncan (1967). Estimation of the probability of an event as a function of several independent variables. Biometrika, 54 (1/2): pp. 167–178 [11] Y. Sahasakul, MD and W.D. Edwards, MD (1988). Age-Related Changes in Aortic and Mitral Valve Thickness: Implications for Two-Dimensional Echocardiography Based on an Autopsy Study of 200 Normal Human Hearts, The American Journal of Cardiology, 62(7): pp.424-430 [12] Yi-Ching Liu and Ming-Tai Lin (2018). State-of-the-art acute phase management of Kawasaki disease after 2017 scientific statement from the American Heart Association. Pediatrics and Neonatology, 59: pp. 543-552 [13] Z. Shen and A. Chen, Relative importance under low-rank condition and its applications to semiconductor yield analysis, in Proceedings of the 2017 International Conference on Decision Support System Technology. EWG-DSS, 2017. pp. 153–159. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77306 | - |
dc.description.abstract | 川崎症目前每年於台灣約新增800例,並已取代以往的風溼熱及風溼性心臟病成為兒童後天性心臟病的主要成因。其主要的診斷方式除了病童外觀的臨床症狀以及病理分析外,還可以透過超音波影像的表現來判斷是否為川崎症急性期,例如組織的回聲強度與血管的直徑。然而對於組織回聲強度的判斷標準,目前並沒有一致的量化方式與標準,必須經由醫務人員的經驗判斷。因此本研究希望透過一系列的流程,自動搜尋出重要的組織區域,並進一步確立能顯著判別的超音波影像特徵。
本研究所使用的自動判別流程,為先將超音波影像進行前處理,包括二值化和侵蝕與擴張,在進一步確立大動脈組織的上下範圍。接著使用計算連串長度的搜尋得到大動脈的中心點,以接著取得大動脈內腔外的四周組織像素點,最後計算所提出的可能特徵。在得到許多影像的特徵後,使用特徵選擇的方法選出顯著的特徵,並建立邏輯斯迴歸預測該張影像為川崎症患者的機率。 最終建立之邏輯斯迴歸模型,其所使用的三個特徵係數皆顯著,並且AUC達到0.881,而獨立測試的影像敏感性與特異度也到達了0.895與0.818,該模型對於辨別是否為川崎症急性期有顯著的判別能力,且本研究所提出之自動判別流程具有一定的穩定性。 | zh_TW |
dc.description.abstract | Kawasaki Disease has approximately 800 new case in Taiwan annually and has replaced Rheumatic fever as the main cause of acquired heart disease in children. Other than its main diagnostic method like observation on patient’s clinical symptoms and pathological analysis, echogenicity and vessel diameter from ultrasound images can be used to determine whether the patient is in acute phase of Kawasaki Disease. However, with regard to the echogenicity in ultrasound images, there is currently no consistent quantification method or judging criteria. Thus, our research would like to propose a series of automatic detection method to search important tissue areas in heart ultrasound image and further identify significant features to determine Kawasaki Disease patients.
In this research, several image preprocessing methods are applied first including binarization and erosion along with dilation. Secondly, the center of the Aorta in image is searched by calculating run lengths of pixels and then acquire pixels of tissue around the Aorta. Features proposed can be calculate after the tissue and Aortic valve are identified. Important features would be then selected by feature selecting techniques and thus logistic regression models can be constructed to predict the probability of the patient being in acute phase of Kawasaki Disease. The final logistic regression model constructed by this research use three significant features, which achieved 0.881 of Area Under ROC curve (AUC). The model also performs well in independence test with 0.842 and 0.818 in sensitivity and specificity respectively, which means the model is effective in determining acute phase of Kawasaki Disease and the quantification method is robust as well. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:55:07Z (GMT). No. of bitstreams: 1 ntu-108-R06546032-1.pdf: 3902915 bytes, checksum: 2b33209d7ed36cc79bd769e228d80f9d (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES vii LIST OF TABLES xi Chapter 1 Introduction 1 1.1 研究背景 1 1.2 研究動機 3 1.3 論文架構 3 Chapter 2 文獻探討 4 2.1 胸骨旁短軸心臟超音波影像 4 2.2 大動脈內徑與瓣膜厚度統計 5 2.3 大津演算法取得分組閾值 7 2.4 侵蝕與擴張 9 2.4.1 侵蝕 9 2.4.2 擴張 10 2.5 特徵選擇 11 2.5.1 逐步邏輯斯迴歸 11 2.5.2 相對重要性 12 Chapter 3 影像特徵自動判別方法 13 3.1 影像前處理 14 3.1.1 建立影像位置 15 3.1.2 影像二值化 16 3.1.3 大動脈區域上下邊界 18 3.1.4 改良後之侵蝕與擴張 21 3.2 大動脈搜尋方法 23 3.2.1 方位連串長度 24 3.2.2 去除連串長度離群值 26 3.3 標準影像搜尋方法 28 3.3.1 影像中瓣膜明顯程度 28 3.3.2 多幅影像挑選流程 30 3.4 組織分區與特徵計算 31 3.4.1 組織四區分類 31 3.4.2 特徵計算 32 Chapter 4 特徵選擇與分析 34 4.1 單一特徵表現 35 4.2 特徵選擇與預測模型建構 39 4.2.1 逐步邏輯斯迴歸 39 4.2.2 相對重要性 40 4.3 邏輯斯迴歸預測驗證 41 Chapter 5 程式操作流程 47 5.1 讀入檔案 48 5.1.1 選擇DICOM檔案 48 5.1.2 點選邊界頂點 50 5.2 搜尋大動脈 52 5.3 計算特徵 53 Chapter 6 結論與未來研究建議 56 REFERENCE 58 | - |
dc.language.iso | zh_TW | - |
dc.title | 川崎症患者短軸心臟超音波影像之自動特徵計算與分析 | zh_TW |
dc.title | Automatic Feature Calculation and Analysis on Short-Axis Heart Ultrasound Image of Kawasaki Disease Patients | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 林銘泰;陳炯年;吳志宏;何明志 | zh_TW |
dc.contributor.oralexamcommittee | ;;; | en |
dc.subject.keyword | 川崎症,自動判別方法,超音波影像, | zh_TW |
dc.subject.keyword | Kawasaki Disease,Automatic detection,Ultrasound image, | en |
dc.relation.page | 59 | - |
dc.identifier.doi | 10.6342/NTU201901562 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-06 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 工業工程學研究所 | - |
顯示於系所單位: | 工業工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 3.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。