請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77299完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡睿哲 | zh_TW |
| dc.contributor.author | 賴宇軒 | zh_TW |
| dc.contributor.author | Yu-Xuan Lai | en |
| dc.date.accessioned | 2021-07-10T21:54:48Z | - |
| dc.date.available | 2024-08-12 | - |
| dc.date.copyright | 2019-08-15 | - |
| dc.date.issued | 2019 | - |
| dc.date.submitted | 2002-01-01 | - |
| dc.identifier.citation | [1] John E. Greivenkamp, “Field Guide to Geometrical Optics,” SPIE, vol. FG01, 2004.
[2] Smasoft偲倢科技,工業相機鏡頭參數與選擇。 [3] Chris A. Mack, “Field Guide to Optical Lithography,” SPIE, vol. FG06, 2006. [4] ES Telecentric Lens,遠心鏡頭設計原理詳細的介紹,2016。 [5] 張勁燕,VLSI概論,五南出版,2009。 [6] H. H. Nasse, “Depth of Field and Bokeh,” Carl Zeiss, 2010. [7] 劉浩志,3D列印有這麼神奇嗎,科學發展521期,2016。 [8] 開源科技有限公司,3D列印機-初學入門指南v1.0,2015。 [9] 林鼎勝,3D列印的發展現況,科學發展503期,2014。 [10] Ł. Zgryza, A. Raczyńska, M. Paśnikowska-Łukaszuk, “Thermovisual Measurement of 3D Printing of ABS and PLA Filaments,” Advances in Science and Technology Research Journal, vol. 12, no. 3, pp. 266-271, 2018. [11] A. A. Konta, M. García-Piña, D. R. Serrano, “Personalised 3D Printed Medicines: Which Techniques and Polymers Are More Successful,” Bioengineering, 2017. [12] 易偉民,主流3D列印技術簡介。 [13] C. Coon1, B. Pretzel, T. Lomax, M. Strlič, “Preserving Rapid Prototypes: a Review,” Heritage Science, 2016. [14] W. J. Sames, F. A. List, S. Pannala, R. R. Dehoff, S. S. Babu, “The Metallurgy and Processing Science of Metal Additive Manufacturing,” International Materials Reviews, vol. 61, no. 5, pp. 315-360, 2016. [15] K. Kun, “Reconstruction and Development of a 3D Printer Using FDM Technology,” Procedia Engineering, vol. 149, pp. 203-211, 2016. [16] 林世忠,星芒的成因&拍攝技巧,2019 [17] H. Yu, G. Zhou, Y. Du, X. Mu, F. S. Chau, “MEMS-Based Tunable Iris Diaphragm,” Journal of Microelectromechanical Systems, vol. 21, no. 5, pp. 1136-1145, 2012. [18] G. Zhou, H. Yu, Y. Du, F. S. Chau, “Microelectromechanical-Systems-Driven Two-Layer Rotary-Blade-Based Adjustable Iris Diaphragm,” Optics Letters, vol. 37, no. 10, pp. 1745-1747, 2012. [19] P. Müller, N. Spengler, H. Zappe, W. Monch, “An Optofluidic Concept for a Tunable Micro-Iris,” Journal of Microelectromechanical Systems, Vol. 19, No. 6, pp. 1477-1484, 2010. [20] B.-J. Chen, C.-H. Lyu, C.-C. Chang, C.-H. Tsai, J.-C. Tsai, “Solid-State Variable Micro Aperture with No Moving Component,” 2014 International Conference on Optical MEMS and Nanophotonics, pp. 69-70, 2014. [21] W.-C. Shih, C-H Lyu, B.-J. Chen, S.-H. Yu, J.-C. Tsai, “Non-Mechanical Solid Tunable Diaphragm with a Large Optical Aperture,” 2016 International Conference on Optical MEMS and Nanophotonics, pp. 185-186, 2016. [22] C-H Lyu, “Design, Fabrication, and Characterization of Solid Tunable Micro Apertures,” Master Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2016. [23] S.-H. Yu, C-C Chang, J-H Gu, J-C. Tsai, “Solid Non-Mechanical Discretely-Tunable Hard-Aperture Diaphragm,” 2017 International Conference on Optical MEMS and Nanophotonics, pp. 77-78, 2017. [24] Y.-H. Chuang, “PDLC-Based Optical Switch Fabricated by 3D Printing,” Master Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2018. [25] W.-W. Chen, Y.-L. Chen, S.-H. Yu, and J.-C. Tsai, “PDLC-Based Optical Aperture Tuned by the Fringing Electric Field,” 2018 International Conference on Optical MEMS and Nanophotonics, pp. 177-178, 2018. [26] J.-H. Gu, W.-C. Lee, Y.-F. Chen, S.-H. Yu, J.-C. Tsai, “Stepped-Tuning Optical Diaphragm Fabricated with a Lithography-less Process,” 2018 International Conference on Optical MEMS and Nanophotonics, pp. 175-176, 2018. [27] C. W. Chang, “The Effect of Temperature and Mechanical Rubbing on the Surface Free Energy of Polyimide Thin Films and the Wettability of Liquid Crystal,” Master Thesis, Department of Photonics, National Sun Yat-Sen University, 2010. [28] D.-K. Yang, “Fundamentals of Liquid Crystal Devices,” Wiley, 2014. [29] 賴耿陽,液晶製法與應用,復漢出版社,2001。 [30] 紀國鐘,鄭晃忠,液晶顯示器技術手冊,臺灣電子材料元件協會,2002。 [31] 松本正一,角田正良,液晶之基礎與應用,國立編譯館出版,1996。 [32] T. Scharf, “Polarized Light in Liquid Crystals and Polymers,” John Wiley & Sons, 2007. [33] 謝依萍,明日之星-PDLC智慧綠色材料,材料世界網。 [34] P. Formentín, R. Palacios, J. Ferré-Borrull, J. Pallarés, L. F. Marsal, “Polymer-Dispersed Liquid Crystal Based on E7: Morphology and Characterization,” Synthetic Metals, vol. 158, no. 21, pp. 1004-1008, 2008. [35] J.-Y. Tsai, “Studies of Fast Optical Recording in Dye Doped Polymer-Dispersed Liquid Crystal Films,” Master Thesis, Graduate Institute of Physics, National Cheng Kung University, 2002. [36] “Norland Optical Adhesive 65,” Norland Products Inc. website (page title:NOA65) retrieved from https://www.norlandprod.com/adhesives/noa% 2065.html. [37] “NIKKOR - The Thousand and One Nights No.44,” Nikon Inc. website (page title:Nikon | Imaging Products | NIKKOR - The Thousand and One Nights No.44), retrieved from https://imaging.nikon.com/history/story/0044/index.htm?fbclid= IwAR0pmqkrkUBsv-js4A8TgZHOiJ7ErcUIrXzrNZy7ta6f2GyGJR05RWalARg [38] O. Patel, Y. P. S. Maravi, S. Sharma, “A Comparative Study of Histogram Equalization Based Image Enhancement Techniques for Brightness Preservation and Contrast Enhancement,” Signal & Image Processing: An International Journal, vol. 4, no. 5, pp. 11-25, 2013. [39] Q. Zhang, C.-Y. Tsai, L.-J. Li, D.-J. Liaw, “Colorless-to-Colorful Switching Electrochromic Polyimides with Very High Contrast Ratio,” Nature Communications, vol. 10, no. 1, pp. 1-8, 2019. [40] Y.-L. Chen, “Tunable Tick-Tack-Toe-Patterned Aperture Fabricated with the Polymer-Dispersed Liquid Crystal (PDLC) and by Laser Engraving,” Master Thesis, Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 2019 | - |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77299 | - |
| dc.description.abstract | 本研究擺脫傳統繁雜的光微影製程,提出一個簡易、低成本的方式來製作多層式可調變固體光圈。元件的調變機制是利用高分子分散型液晶(Polymer-Dispersed Liquid Crystal, PDLC)的特性,以不同電壓值來驅使高分子分散型液晶轉動,產生不同的穿透率,來定義光圈的亮暗區。
在元件設計中,光圈結構是將兩片氧化銦錫(Indium Tin Oxide, ITO)導電玻璃中間以聚對苯二甲酸乙二酯(Polyethylene Terephthalate, PET)薄膜當作間隙物(Spacer),同時在兩ITO導電玻璃的中心滴入圓形的NOA65光學膠且以紫外光曝光固化黏合。將液晶E7與高分子NOA65以重量百分比6 : 4的比例混合調配PDLC,將其他區域以毛細現象的方式滲入調配好的PDLC,再次以紫外光曝光固化。最後形成一個中心為透明區,其他區為乳白色的固態光圈。以上述相同方式,滴入不同容量之NOA65光學膠來製作不同孔徑之光圈。照順序相疊各大小的光圈,以不同電極來調變各大小之光圈。 元件完成後,將元件黏上導電銀膠與銅導線延伸電極,再利用3D列印製作以聚乳酸(Polylactic Acid, PLA)為材料的黑色外殼封裝元件,以便架設在相機中,拍攝不同光圈大小造成的景深效果,最後再進行元件的特性量測與數據分析。 | zh_TW |
| dc.description.abstract | In this thesis, we replaced the traditional photolithography process with a simple way to fabricate a PDLC-Based Tunable Diaphragm. We used the characteristic of the Polymer-Dispersed Liquid Crystal (PDLC) to tune the diaphragm. Driving PDLC with different voltage result in different transmittance to define the bright and dark region of the diaphragm.
In the design, the diaphragm structure is formed by two piece of Indium Tin Oxide (ITO) conductive glass and some Polyethylene Terephthalate (PET) film as spacer. Simultaneously, we dripped NOA65 optical adhesive into a circular area between the two ITO glass and exposed with the UV light to solidify the NOA65. We prepared PDLC with a specific weight ratio of E7 liquid crystal to NOA65 polymer. Fill in the prepared PDLC by capillary phenomenon and exposed with the UV light. A diaphragm which its center area is transparent and the other area is milky white will be done. By the same way as above, we dripped different volume of NOA65 to fabricate diaphragms of different diameter. Finally, we stacked the diaphragms in sequence and the assembled diaphragms could be tuned by changing its electrodes. After fabricating the diaphragm device, we stuck up the copper wires with some conductive silver paste to extend the electrodes. Moreover, we designed a black case to package the device by 3D printing which its material is Polylactic Acid (PLA) in order to set up in a camera more convenient. At last, we did some measurement and analysis on the device. | en |
| dc.description.provenance | Made available in DSpace on 2021-07-10T21:54:48Z (GMT). No. of bitstreams: 1 ntu-108-R06941098-1.pdf: 8243982 bytes, checksum: 606b7b24471a212da5d1385671c2bd4e (MD5) Previous issue date: 2019 | en |
| dc.description.tableofcontents | 論文口試委員審定書 i
致謝 ii 中文摘要 iii ABSTRACT iv 目錄 v 圖目錄 vii 表目錄 x Chapter 1 緒論 1 1.1 前言 1 1.2 光圈簡介 1 1.3 3D列印介紹 4 1.4 文獻回顧 7 1.4.1 刀刃式微機電結構光圈 7 1.4.2 光流體結構光圈 11 1.5 研究動機 14 Chapter 2 元件設計原理與理論分析 15 2.1 PDLC介紹 15 2.1.1 液晶介紹 15 2.1.2 PDLC基本性質 20 2.1.3 PDLC工作原理 23 2.2 多層式可調變固體光圈設計原理與分析 25 2.2.1 設計理念 25 2.2.2 結構設計 27 Chapter 3 多層式可調變固體光圈製作 28 3.1 PDLC製備 28 3.2 單元件製作 31 3.3 3D列印外殼 36 3.4 元件組裝與電路架構 39 Chapter 4 元件量測分析與應用 42 4.1 穿透率量測 42 4.2 光圈孔徑量測 46 4.3 實際拍攝與景深 51 Chapter 5 結論與未來展望 64 5.1 結論 64 5.2 未來展望 65 參考文獻 66 附錄一 70 | - |
| dc.language.iso | zh_TW | - |
| dc.subject | 3D列印 | zh_TW |
| dc.subject | 聚乳酸 | zh_TW |
| dc.subject | 氧化銦錫 | zh_TW |
| dc.subject | 多層式可調變固體光圈 | zh_TW |
| dc.subject | 高分子分散型液晶 | zh_TW |
| dc.subject | Tunable Diaphragm | en |
| dc.subject | 3D Printing | en |
| dc.subject | Indium Tin Oxide (ITO) | en |
| dc.subject | Polymer-Dispersed Liquid Crystal (PDLC) | en |
| dc.subject | Polylactic Acid (PLA) | en |
| dc.title | 使用高分子分散型液晶製作多層式可調變固體光圈 | zh_TW |
| dc.title | PDLC-Based Tunable Solid Diaphragm with a Multiple-Stack Architecture | en |
| dc.type | Thesis | - |
| dc.date.schoolyear | 107-2 | - |
| dc.description.degree | 碩士 | - |
| dc.contributor.oralexamcommittee | 孫家偉;鍾仁傑 | zh_TW |
| dc.contributor.oralexamcommittee | ;; | en |
| dc.subject.keyword | 高分子分散型液晶,多層式可調變固體光圈,氧化銦錫,3D列印,聚乳酸, | zh_TW |
| dc.subject.keyword | Polymer-Dispersed Liquid Crystal (PDLC),Tunable Diaphragm,Indium Tin Oxide (ITO),3D Printing,Polylactic Acid (PLA), | en |
| dc.relation.page | 70 | - |
| dc.identifier.doi | 10.6342/NTU201902761 | - |
| dc.rights.note | 未授權 | - |
| dc.date.accepted | 2019-08-07 | - |
| dc.contributor.author-college | 電機資訊學院 | - |
| dc.contributor.author-dept | 光電工程學研究所 | - |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-2.pdf 未授權公開取用 | 8.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
