請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77288
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 席行正 | zh_TW |
dc.contributor.author | 陳煜偈 | zh_TW |
dc.contributor.author | Yu-Jie Chen | en |
dc.date.accessioned | 2021-07-10T21:54:20Z | - |
dc.date.available | 2024-08-15 | - |
dc.date.copyright | 2019-08-22 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Akcil, A., Erust, C., Gahan, C. S., Ozgun, M., Sahin, M., and Tuncuk, A. (2015). Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants–a review. Waste Management, 45, 258-271.
Al-Saydeh, S. A., El-Naas, M. H., and Zaidi, S. J. (2017). Copper removal from industrial wastewater: A comprehensive review. Journal of industrial and engineering chemistry, 56, 35-44. An, F. Q., Li, M., Guo, X. D., Wang, H. Y., Wu, R. Y., Hu, T. P., and Jiao, W. Z. (2017). Selective adsorption of AuCl4− on chemically modified D301 resin with containing N/S functional polymer. Journal of Environmental Chemical Engineering, 5(1), 10-15. Baldé, C. P., Forti, V., Gray, V., Kuehr, R., and Stegmann, P. (2015) The global E-waste monitor—2014. United Nations University, Bonn Baldé, C. P., Forti, V., Gray, V., Kuehr, R., and Stegmann, P. (2017). The Global E-waste Monitor–2017. United Nations University (UNU),International Telecommunication Union (ITU) & International Solid Waste Association (ISWA), Bonn/Geneva/Vienna. Behnamfard, A., Salarirad, M. M., and Veglio, F. (2013). Process development for recovery of copper and precious metals from waste printed circuit boards with emphasize on palladium and gold leaching and precipitation. Waste Management, 33(11), 2354-2363. Birloaga, I., Coman, V., Kopacek, B., and Vegliò, F. (2014). An advanced study on the hydrometallurgical processing of waste computer printed circuit boards to extract their valuable content of metals. Waste management, 34(12), 2581-2586. Birloaga, I., and Vegliò, F. (2016). Study of multi-step hydrometallurgical methods to extract the valuable content of gold, silver and copper from waste printed circuit boards. Journal of Environmental Chemical Engineering, 4(1), 20-29. Birich, A., Mohamed, S. R., and Friedrich, B. (2018). Screening of Non-cyanide Leaching Reagents for Gold Recovery from Waste Electric and Electronic Equipment. Journal of Sustainable Metallurgy, 4(2), 265-275. Brodie, B. C. (1859). XIII. On the atomic weight of graphite. Philosophical Transactions of the Royal Society of London, (149), 249-259. Carro, P., Andreasen, G., Vericat, C., Vela, M. E., and Salvarezza, R. C. (2019). New aspects of the surface chemistry of sulfur on Au (111): Surface structures formed by gold-sulfur complexes. Applied Surface Science, 487, 848-856. Chowdhury, D. R., Singh, C., and Paul, A. (2014). Role of graphite precursor and sodium nitrate in graphite oxide synthesis. Royal Society of Chemistry Advances, 4(29), 15138-15145. Chen, Y., Zi, F., Hu, X., Yu, H., Nie, Y., Yang, P., and Zhang, Y. (2019). Grafting of organic sulfur-containing functional groups on activated carbon for gold (I) adsorption from thiosulfate solution. Hydrometallurgy, 185, 102-110. Cui, J., and Zhang, L. (2008). Metallurgical recovery of metals from electronic waste: a review. Journal of hazardous materials, 158(2-3), 228-256. Datta, S. S., Strachan, D. R., Khamis, S. M., and Johnson, A. C. (2008). Crystallographic etching of few-layer graphene. Nano letters, 8(7), 1912-1915. Dong, Z., Jiang, T., Xu, B., Yang, Y., and Li, Q. (2019). Leaching and Recovery of an Oxide Gold Concentrate Using Ammoniacal Thiosulfate Solutions. In Rare Metal Technology 2019 (pp. 11-19). Springer, Cham. Ficeriová, J., Balaz, P., Dutková, E., and Gock, E. (2008). Leaching of gold and silver from crushed Au-Ag wastes. The Open Chemical Engineering Journal, 2(1). Fleming, C. A. (1992). Hydrometallurgy of precious metals recovery. Hydrometallurgy, 30(1-3), 127-162. Gamboa, G. V., Noyola, M. M., and Valdivieso, A. L. (2005). Fundamental considerations on the mechanisms of silver cementation onto zinc particles in the Merril–Crowe process. Journal of colloid and interface science, 282(2), 408-414. García-Soto, M. J., and González-Ortega, O. (2016). Synthesis of silica-core gold nanoshells and some modifications/variations. Gold Bulletin, 49(3-4), 111-131. Geim, A. K., and Novoselov, K. S. (2010). The rise of graphene. In Nanoscience and Technology: A Collection of Reviews from Nature Journals, 11-19. Ghany, N. A. A., Elsherif, S. A., and Handal, H. T. (2017). Revolution of Graphene for different applications: State-of-the-art. Surfaces and Interfaces, 9, 93-106. Gönen, N., Körpe, E., Yıldırım, M. E., and Selengil, U. (2007). Leaching and CIL processes in gold recovery from refractory ore with thiourea solutions. Minerals Engineering, 20(6), 559-565. Gregg, S. J., and Sing, K. S. W. (1982). Adsorption surface area and porosity. London, UK: Academic Press Gurung, M., Adhikari, B. B., Kawakita, H., Ohto, K., Inoue, K., and Alam, S. (2013). Recovery of gold and silver from spent mobile phones by means of acidothiourea leaching followed by adsorption using biosorbent prepared from persimmon tannin. Hydrometallurgy, 133, 84-93. Habashi, F. (1970). Principles of Extractive Metallurgy Volume 2 Hydrometallurgy. Hall, W. J., and Williams, P. T. (2007). Separation and recovery of materials from scrap printed circuit boards. Resources, Conservation and Recycling, 51(3), 691-709. Herschlog, V. (1941). Procedure for Volumetric Determination of Gold by Means of Potassium Iodide and Arsenious Acid. Industrial & Engineering Chemistry Analytical Edition, 13(8), 561-563. Hilson, G., and Monhemius, A. J. (2006). Alternatives to cyanide in the gold mining industry: what prospects for the future? Journal of Cleaner production, 14(12-13), 1158-1167. Huergo, M. A., Giovanetti, L., Moreno, M. S., Maier, C. M., Requejo, F. G., Salvarezza, R. C., and Vericat, C. (2017). New insight into the chemical nature of the plasmonic nanostructures synthesized by the reduction of Au (III) with sulfide species. Langmuir, 33(27), 6785-6793. Hummers Jr, W. S., and Offeman, R. E. (1958). Preparation of graphitic oxide. Journal of the american chemical society, 80(6), 1339-1339. Hur, J., Shin, J., Yoo, J., and Seo, Y. S. (2015). Competitive adsorption of metals onto magnetic graphene oxide: comparison with other carbonaceous adsorbents. The Scientific World Journal, 2015. Jawitz, M. W. (1997). Printed circuit board materials handbook. McGraw Hill Professional. Kannan, A. G., Zhao, J., Jo, S. G., Kang, Y. S., and Kim, D. W. (2014). Nitrogen and sulfur co-doped graphene counter electrodes with synergistically enhanced performance for dye-sensitized solar cells. Journal of Materials Chemistry A, 2(31), 12232-12239. Kasper, A. C., Carrillo Abad, J., Garcia Gabaldon, M., Veit, H. M., and Perez Herranz, V. (2016). Determination of the potential gold electrowinning from an ammoniacal thiosulphate solution applied to recycling of printed circuit board scraps. Waste Management & Research, 34(1), 47-57. Kasper, A. C., Gabriel, A. P., de Oliveira, E. L. B., de Freitas Juchneski, N. C., and Veit, H. M. (2015). Electronic waste recycling. In Electronic waste (pp. 87-127). Springer, Cham. Krishnamoorthy, K., Veerapandian, M., Yun, K., and Kim, S. J. (2013). The chemical and structural analysis of graphene oxide with different degrees of oxidation. Carbon, 53, 38-49. Kuyucak, N., and Akcil, A. (2013). Cyanide and removal options from effluents in gold mining and metallurgical processes. Minerals Engineering, 50, 13-29. Lacoste-Bouchet, P., Deschênes, G., and Ghali, E. (1998). Thiourea leaching of a copper-gold ore using statistical design. Hydrometallurgy, 47(2-3), 189-203. Lee, C. H., Tang, L. W., and Popuri, S. R. (2011). A study on the recycling of scrap integrated circuits by leaching. Waste Management & Research, 29(7), 677-685. Lee, W. S. V., Leng, M., Li, M., Huang, X. L., and Xue, J. M. (2015). Sulphur-functionalized graphene towards high performance supercapacitor. Nano Energy, 12, 250-257. Lekka, M., Masavetas, I., Benedetti, A. V., Moutsatsou, A., and Fedrizzi, L. (2015). Gold recovery from waste electrical and electronic equipment by electrodeposition: A feasibility study. Hydrometallurgy, 157, 97-106. Li, D., Zhang, B., and Xuan, F. (2015). The sequestration of Sr (II) and Cs (I) from aqueous solutions by magnetic graphene oxides. Journal of Molecular Liquids, 209, 508-514. Li, R., Li, J., Qi, K., Ge, X., Zhang, Q., and Zhang, B. (2018). One-step synthesis of 3D sulfur/nitrogen dual-doped graphene supported nano silicon as anode for Li-ion batteries. Applied Surface Science, 433, 367-373. Li, H., Eksteen, J., and Oraby, E. (2018). Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives–A review. Resources, Conservation and Recycling, 139, 122-139. Li, J., Wang, S., Wang, F., Wu, X., and Zhuang, X. (2019). Environmental separation and enrichment of gold and palladium ions by amino-modified three-dimensional graphene. Royal Society of Chemistry Advances, 9(5), 2816-2821. Li, X., Zhang, C., Zhao, R., Lu, X., Xu, X., Jia, X., and Li, L. (2013). Efficient adsorption of gold ions from aqueous systems with thioamide-group chelating nanofiber membranes. Chemical engineering journal, 229, 420-428. Lin, G., Wang, S., Zhang, L., Hu, T., Peng, J., Cheng, S., and Fu, L. (2018). Synthesis and evaluation of thiosemicarbazide functionalized corn bract for selective and efficient adsorption of Au (III) from aqueous solutions. Journal of Molecular Liquids, 258, 235-243. Liu, L., Liu, S., Zhang, Q., Li, C., Bao, C., Liu, X., and Xiao, P. (2012). Adsorption of Au (III), Pd (II), and Pt (IV) from aqueous solution onto graphene oxide. Journal of Chemical & Engineering Data, 58(2), 209-216. Lowell, S., Shields, J. E., Thomas, M. A., and Thommes, M. (2012). Characterization of porous solids and powders: surface area, pore size and density (Vol. 16). Springer Science & Business Media. Lu, Y., and Xu, Z. (2016). Precious metals recovery from waste printed circuit boards: A review for current status and perspective. Resources, Conservation and Recycling, 113, 28-39. Lustemberg, P. G., Vericat, C., Benitez, G. A., Vela, M. E., Tognalli, N., Fainstein, A., and Salvarezza, R. C. (2008). Spontaneously formed sulfur adlayers on gold in electrolyte solutions: Adsorbed sulfur or gold sulfide?. The Journal of Physical Chemistry C, 112(30), 11394-11402. Marsden, J., and House, I. (2006). The chemistry of gold extraction. SME. Montero, R., Guevara, A., and dela Torre, E. (2012). Recovery of gold, silver, copper and niobium from printed circuit boards using leaching column technique. Journal of Earth Science and Engineering, 2(10), 590. Ogunseitan, O. A. (2013). The Basel Convention and e-waste: translation of scientific uncertainty to protective policy. The Lancet Global Health, 1(6), e313-e314. Oh, Y. J., Yoo, J. J., Kim, Y. I., Yoon, J. K., Yoon, H. N., Kim, J. H., and Park, S. B. (2014). Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor. Electrochimica Acta, 116, 118-128. Park, Y. J., and Fray, D. J. (2009). Recovery of high purity precious metals from printed circuit boards. Journal of Hazardous materials, 164(2-3), 1152-1158. Peng, W., Li, H., Liu, Y., and Song, S. (2017). A review on heavy metal ions adsorption from water by graphene oxide and its composites. Journal of Molecular Liquids, 230, 496-504. Pensa, E., Cortes, E., Corthey, G., Carro, P., Vericat, C., Fonticelli, M. H., and Salvarezza, R. C. (2012). The chemistry of the sulfur–gold interface: in search of a unified model. Accounts of chemical research, 45(8), 1183-1192. Petter, P. M. H., Veit, H. M., and Bernardes, A. M. (2014). Evaluation of gold and silver leaching from printed circuit board of cellphones. Waste Management, 34(2), 475-482. Pollard, B. (2011). Growing graphene via chemical vapor deposition. Department of Physics, Pomona College. Ramesh, A., Hasegawa, H., Sugimoto, W., Maki, T., and Ueda, K. (2008). Adsorption of gold (III), platinum (IV) and palladium (II) onto glycine modified crosslinked chitosan resin. Bioresource Technology, 99(9), 3801-3809. Ray, S. (2015). Applications of graphene and graphene-oxide based nanomaterials. William Andrew. Satheesh, K., and Jayavel, R. (2013). Synthesis and electrochemical properties of reduced graphene oxide via chemical reduction using thiourea as a reducing agent. Materials Letters, 113, 5-8. Sherlala, A. I. A., Raman, A. A. A., Bello, M. M., and Asghar, A. (2018). A review of the applications of organo-functionalized magnetic graphene oxide nanocomposites for heavy metal adsorption. Chemosphere, 193, 1004-1017. Sitko, R., Turek, E., Zawisza, B., Malicka, E., Talik, E., Heimann, J., and Wrzalik, R. (2013). Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Transactions, 42(16), 5682-5689. Soleimani, M., and Kaghazchi, T. (2008). Adsorption of gold ions from industrial wastewater using activated carbon derived from hard shell of apricot stones–An agricultural waste. Bioresource Technology, 99(13), 5374-5383. Staudenmaier, L. (1898). Verfahren zur darstellung der graphitsäure. Berichte der deutschen chemischen Gesellschaft, 31(2), 1481-1487. Štofková, M., and Štofko, M. (2002). Ion Exchange Resin Use for Au and Ag Separation Form Diluted Solutions of Thiourea. Metalurgija, 41(1), 33-36. Tan, P., Sun, J., Hu, Y., Fang, Z., Bi, Q., Chen, Y., and Cheng, J. (2015). Adsorption of Cu2+, Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. Journal of Hazardous Materials, 297, 251-260. Tue, N. M., Takahashi, S., Subramanian, A., Sakai, S., and Tanabe, S. (2013). Environmental contamination and human exposure to dioxin-related compounds in e-waste recycling sites of developing countries. Environmental Science: Processes & Impacts, 15(7), 1326-1331. Tuncuk, A., Stazi, V., Akcil, A., Yazici, E. Y., and Deveci, H. (2012). Aqueous metal recovery techniques from e-scrap: hydrometallurgy in recycling. Minerals Engineering, 25(1), 28-37. Wang, H., Yuan, X., Wu, Y., Huang, H., Zeng, G., Liu, Y., and Qi, Y. (2013). Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Applied Surface Science, 279, 432-440. Wang, X., Chen, Z., and Yang, S. (2015). Application of graphene oxides for the removal of Pb (II) ions from aqueous solutions: Experimental and DFT calculation. Journal of Molecular Liquids, 211, 957-964. Wang, Y., Li, L., Luo, C., Wang, X., and Duan, H. (2016). Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+. International Journal of Biological Macromolecules, 86, 505-511. White, R. L., White, C. M., Turgut, H., Massoud, A., and Tian, Z. R. (2018). Comparative studies on copper adsorption by graphene oxide and functionalized graphene oxide nanoparticles. Journal of the Taiwan Institute of Chemical Engineers, 85, 18-28. Wu, Z., Yuan, W., Li, J., Wang, X., Liu, L., and Wang, J. (2017). A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy. Frontiers of Environmental Science & Engineering, 11(5), 8. Xiong, C., Wang, S., and Zhang, L. (2019). Selective recovery mechanism of Au (III) from an aqueous solution by trimethyl phosphate modified poly (glycidyl methacrylate). Journal of the Taiwan Institute of Chemical Engineers, 95, 55-64. Xu, B., Kong, W., Li, Q., Yang, Y., Jiang, T., and Liu, X. (2017). A review of thiosulfate leaching of gold: Focus on thiosulfate consumption and gold recovery from pregnant solution. Metals, 7(6), 222. Yang, L., Jia, F., and Song, S. (2017). Recovery of [Au (CN)2]− from gold cyanidation with graphene oxide as adsorbent. Separation and Purification Technology, 186, 63-69. Yang, S. T., Chang, Y., Wang, H., Liu, G., Chen, S., Wang, Y., and Cao, A. (2010). Folding/aggregation of graphene oxide and its application in Cu2+ removal. Journal of Colloid and Interface Science, 351(1), 122-127. Yang, Y., Hu, X., Zhao, Y., Cui, L., Huang, Z., Long, J., and Liao, W. (2017). Decontamination of tetracycline by thiourea-dioxide–reduced magnetic graphene oxide: Effects of pH, ionic strength, and humic acid concentration. Journal of Colloid and Interface Science, 495, 68-77. Yen, W. T., Aghamirian, M., Deschenes, G., and Theben, S. (1998, May). Gold extraction from mild refractory ore using ammonium thiosulfate. In Proceedings of the International Symposium on Gold Recovery, Montreal May, 2-6. Yu, J., Williams, E., and Ju, M. (2009, May). Review and prospects of recycling methods for waste printed circuit boards. In 2009 IEEE International Symposium on Sustainable Systems and Technology (pp. 1-5). IEEE.. Zhang, H., Chang, Q., Jiang, Y., Li, H., and Yang, Y. (2018). Synthesis of KMnO4-treated magnetic graphene oxide nanocomposite (Fe3O4@ GO/MnOx) and its application for removing of Cu2+ ions from aqueous solution. Nanotechnology, 29(13), 135706. Zhang, H., and Dreisinger, D. B. (2004). The recovery of gold from ammoniacal thiosulfate solutions containing copper using ion exchange resin columns. Hydrometallurgy, 72(3-4), 225-234. Zhang, L., and Xu, Z. (2016). A review of current progress of recycling technologies for metals from waste electrical and electronic equipment. Journal of Cleaner Production, 127, 19-36. Zhang, Y., Liu, S., Xie, H., Zeng, X., and Li, J. (2012). Current status on leaching precious metals from waste printed circuit boards. Procedia Environmental Sciences, 16, 560-568. Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J. W., Potts, J. R., and Ruoff, R. S. (2010). Graphene and graphene oxide: synthesis, properties, and applications. Advanced Materials, 22(35), 3906-3924. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77288 | - |
dc.description.abstract | 隨著科技的迅速發展,電子電器設備不斷的推陳出新,對於電子電器設備的需求量同時快速上升,導致電子電器設備的廢棄量也有逐年增加的趨勢。根據聯合國大學研究指出,2016年的電子電器設備之廢棄量達44.2百萬噸,然而,印刷電路板為電子電器設備中的重要元件,電刷電路板富含高價值的金,另外,印刷電路板的製造過程中會產生含金廢水,因此,如果能從廢棄電子電器設備及含金廢水中回收金,不僅能使資源再利用,同時也落實城市採礦的前瞻思維。
本研究係利用Hummers 法合成氧化石墨烯並改質成硫脲還原氧化石墨烯進行廢水中選擇性吸附金之實驗,首先進行氧化石墨烯吸附廢水中銅、鉛及鋅,結果顯示,由於氧化石墨烯氧含量為40%,因此對於銅、鉛及鋅有良好的吸附效果,然而對於金並無選擇性吸附效果,因此透過改質成硫脲還原氧化石墨烯,增加對金之選擇性吸附效率。經由元素分析結果顯示,經改質後之硫脲還原氧化石墨烯硫及氮含量分別為22.8 wt.%及2.0 wt.%,氧含量從40 wt.%下降至10 wt.%,再進一步探討劑量、pH及時間對吸附金之影響,結果顯示硫脲還原氧化石墨烯在酸性溶液中對於金有較佳之吸附效率,然而需要96小時才可達吸附平衡;另外在同時含有銅、鉛、鋅及金之廢水中進行選擇性吸附實驗,在0.1 mg L-1至10 mg L-1 金含量溶液,硫脲還原氧化石墨烯之金選擇性吸附效率為95-99%,對於鉛僅有1-2%的吸附效率,對銅及鋅都不具吸附效果,因此硫脲還原氧化石墨烯具有相當高的金選擇性吸附效果。另外利用硫代硫酸銨進行金脫附實驗,結果顯示經由0.2 M硫代硫酸銨處理,金脫附效率達93.7%;為了使金能夠脫附完全,本研究嘗試利用二階段脫附增加脫附效率,結果顯示脫附效率只增加1.4%;本研究再接續探討材料之再生能力,經由五次之吸附脫附實驗,結果顯示,吸附效率從99.0%下降至77.6%,根據元素分析結果顯示,硫含量也下降至5.5 wt.%。此結果主要歸因於金吸附於硫脲還原氧化石墨烯表面時被硫官能基還原成元素金,硫官能基則會被氧化成硫化物,導致硫脲還原氧化石墨烯表面上硫含量的損失。 | zh_TW |
dc.description.abstract | With the rapid technology development, massive improvement and innovation on the performance of electric and electronic equipment (EEE) has been achieved, causing an increasing demand for EEE. Hence, the amount of waste electric and electronic equipment (WEEE) has markedly increased in recent years. According to the Global E-waste Monitor 2017 of the United Nations University report, 44.2 Mt of WEEE has been generated in 2016. Notably, the printed circuit boards (PCBs), which contain a valuable amount of Au are also key components of EEE. The massive production of EEE makes the content of Au existing in the PCBs of WEEE much larger than that in ores. Additionally, the wastewater generated from the process of PCBs manufacturing also contains metals and precious metals. As a result, the recovery of Au from WEEE and wastewater could be an important Au source for urban mining.
In this study, selective adsorption experiment of Au was carried out by using graphene oxide (GO) and thiourea reduced graphene oxide (TU-rGO). Firstly, GO was synthesized through Hummers’ method, and modified by thiourea to thiourea reduced graphene oxide. The adsorption experiments of Cu, Pb, and Zn were carried out in wastewater. The experimental results showed that GO had excellent adsorption of Cu, Pb, and Zn because of its abundant oxygen content (over 40%). However, GO cannot selectively adsorb Au. Therefore, TU-rGO was subsequently prepared to selectively adsorb Au. The element analysis showed that the content of sulfur and nitrogen was 22.8 wt.% and 2.0 wt.% for TU-rGO, respectively. The content of oxygen decreased from 40 wt.% to 10 wt.% as compared to GO. Then, the effect of TU-rGO dosage, pH, and contact time was discussed. The results showed that TU-rGO had greater adsorption efficiency for Au in the acidic environment as compared to basic environment. Then, selective adsorption experiment of TU-rGO for Au was carried out with Cu, Pb, Zn and Au coexisting in the wastewater. TU-rGO still demonstrated a high efficiency of 95-99% Au selective adsorption with the initial Au concentration of 0.1-10 mg L-1. However, 96 h are needed to reach the Au adsorption equilibrium on TU-rGO. In order to separate Au from TU-rGO, desorption experiment was further carried out. The experimental result indicated that desorption efficiency of Au reached 93.7% when 0.2 M ammonium thiosulfate was added. To complete the desorption of Au, two-step desorption was carried out to examine the desorption efficiency of Au. The experimental result showed that desorption efficiency of Au only slightly increased about 1.4%. The regeneration of TU-rGO was subsequently discussed. The adsorption efficiency of TU-rGO decreased from 99.0 to 77.6% after five cycles of adsorption and desorption, with the content of sulfur and nitrogen decreasing to 5.5 wt.%, respectively. These results suggest that the Au adsorbed on the TU-rGO was consequently reduced to elemental Au. In addition, the sulfur on the surface of TU-rGO would be oxidized, resulting in forming sulfide. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:54:20Z (GMT). No. of bitstreams: 1 ntu-108-R06541140-1.pdf: 5947141 bytes, checksum: e52d437bb5df36d58c1278710c477ab3 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | Content
誌謝 I 中文摘要 II Abstract IV Content VII List of figures XII List of tables XV Chapter 1. Introduction 1 1.1. Motivation 1 1.2. Research objectives 2 Chapter 2. Literature Review 4 2.1. Waste electric and electronic equipment (WEEE) 4 2.2. Printed circuit boards 7 2.2.1. Component of PCBs 7 2.2.2. Characterization of Au 9 2.3. Technique of Au recovery 9 2.3.1. Mechanical separation 9 2.3.2. Pyrometallurgy 11 2.3.3. Hydrometallurgy 11 2.3.3.1. Mineral acid 12 2.3.3.2. Leaching agent: cyanide 13 2.3.3.3. Leaching agent: thiourea 14 2.3.3.4. Leaching agent: thiosulfate 15 2.3.3.5. Leaching agent: halide 16 2.3.4. Purification of leaching solution 17 2.3.4.1. Cementation 17 2.3.4.2. Electrodeposition 18 2.3.4.3. Activated carbon adsorption 18 2.3.4.4. Ion exchange by resin 19 2.4. Graphene 21 2.5. Graphene oxide 23 2.6. Adsorption 26 Chapter 3. Materials and Methods 28 3.1. Research framework 28 3.2. Preparation of graphene oxide 30 3.3. Preparation of thiourea reduced graphene oxide 31 3.4. Analytical instruments, experimental equipment, experimental reagents 32 3.4.1. Elemental Analysis (EA) 33 3.4.2. X-ray Diffraction (XRD) 34 3.4.3. X-ray Photoelectron Spectroscopy (XPS) 34 3.4.4. Scanning Electron Microscopy (SEM) 34 3.4.5. Transmission Electron Microscopy (TEM) 35 3.4.6. Inductively Couple Plasma Optical Emission Spectrometry (ICP-OES) 35 3.4.7. Surface Area, Pore Volume, and Pore Size Distribution (PSD) 35 3.4.8. Experimental equipment 36 3.4.9. Experimental reagents 37 3.5. Adsorption experiments of Cu, Pb, Zn and Au 38 3.5.1. Batch experiments on understanding Cu, Pb and Zn removal efficiency by GO 38 3.5.2. Batch experiments of Au removal efficiency by TU-rGO 40 3.6. Desorption experiments of Au 41 3.7. Regeneration and reuse experiments of Au 42 3.8. Adsorption isotherm experiments of Cu, Pb, Zn and Au 43 Chapter 4. Results and discussion 44 4.1. Physical and chemical characterization of GO and TU-rGO 44 4.1.1. Element analysis 44 4.1.2. XRD analysis 45 4.1.3. SEM analysis 46 4.1.4. TEM analysis 49 4.1.5. XPS analysis 51 4.2. Adsorption experiments of Cu, Pb and Zn with GO 56 4.2.1. Effect of contact time 56 4.2.2. Effect of pH 58 4.2.3. Effect of GO dosage 60 4.2.4. Competitive adsorption experiments of Cu, Pb and Zn with GO 61 4.3. Adsorption experiments of Au with TU-rGO 65 4.3.1. Effect of contact time 65 4.3.2. Effect of pH 66 4.3.3. Effect of TU-rGO dosage 68 4.3.4. Selective adsorption experiments of Au with TU-rGO 69 4.3.5. Selective adsorption of Au with TU-rGO and GO 72 4.4. Desorption experiments of Au with TU-rGO 73 4.5. Regeneration and reuse experiments of TU-rGO 76 4.6. Mechanism of Au adsorption and desorption 77 4.7. Adsorption isotherm experiments of Cu, Pb, Zn and Au 80 Chapter 5. Conclusions and Suggestions 83 5.1. Conclusions 83 5.2. Suggestions 85 References 86 | - |
dc.language.iso | en | - |
dc.title | 利用硫脲還原氧化石墨烯進行廢水中選擇性吸附金之研究 | zh_TW |
dc.title | Selective Adsorption of Gold in Wastewater by Synthesized Thiourea Reduced Graphene Oxide | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張添晉;林逸彬;余炳盛 | zh_TW |
dc.contributor.oralexamcommittee | ;; | en |
dc.subject.keyword | 氧化石墨烯,硫?,硫?還原氧化石墨烯,金回收技術, | zh_TW |
dc.subject.keyword | graphene oxide,thiourea,thiourea reduced graphene oxide,gold recovery technology, | en |
dc.relation.page | 99 | - |
dc.identifier.doi | 10.6342/NTU201902863 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-12 | - |
dc.contributor.author-college | 工學院 | - |
dc.contributor.author-dept | 環境工程學研究所 | - |
顯示於系所單位: | 環境工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 5.81 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。