請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77280
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳億乘 | zh_TW |
dc.contributor.advisor | Yi-Chen Chen | en |
dc.contributor.author | 葉偉宇 | zh_TW |
dc.contributor.author | Wei-Yu Yeh | en |
dc.date.accessioned | 2021-07-10T21:53:59Z | - |
dc.date.available | 2024-08-13 | - |
dc.date.copyright | 2019-08-15 | - |
dc.date.issued | 2019 | - |
dc.date.submitted | 2002-01-01 | - |
dc.identifier.citation | Adler, A. I., Stevens, R. J., Manley, S. E., Bilous, R. W., Cull, C. A., & Holman, R. R. (2003). Development and progression of nephropathy in type 2 diabetes: the United Kingdom Prospective Diabetes Study (UKPDS 64). Kidney International, 63, 225-232.
Ahmadpour, S. H., & Haghir, H. (2011). Diabetes mellitus type 1 induces dark neuron formation in the dentate gyrus: a study by Gallyas' method and transmission electron microscopy. Romanian Journal of Morphology and Embryology, 52, 575-579. Ahmed, N. (2005). Advanced glycation endproducts—role in pathology of diabetic complications. Diabetes Research and Clinical Practice, 67, 3-21. Alberti, K. G. M. M., & Zimmet, P. F. (1998). Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Provisional report of a WHO consultation. Diabetic Medicine, 15, 539-553. Ali, F., Naqvi, S. A. S., Bismillah, M., & Wajid, N. (2016). Comparative analysis of biochemical parameters in diabetic and non-diabetic acute myocardial infarction patients. Indian Heart Journal, 68, 325-331. Ali, M. A., El-Abhar, H. S., Kamel, M. A., & Attia, A. S. (2015). Antidiabetic effect of galantamine: novel effect for a known centrally acting drug. PLOS One, 10. Allen, L. H. (2000). Anemia and iron deficiency: effects on pregnancy outcome. The American Journal of Clinical Nutrition 71, 1280-1284. American Diabetes Association (ADA). The complications of diabetes. (2019). http://www.diabetes.org/living-with-diabetes/complications/ Accessed date: 04/03/2019. Arvanitakis, Z., Wilson, R. S., Bienias, J. L., Evans, D. A., & Bennett, D. A. (2004). Diabetes mellitus and risk of Alzheimer disease and decline in cognitive function. Archives of Neurology, 61, 661-666. Balu, D. T., & Lucki, I. (2009). Adult hippocampal neurogenesis: regulation, functional implications, and contribution to disease pathology. Neuroscience & Biobehavioral Reviews, 33, 232-252. Baynes, J. W. (1991). Role of oxidative stress in development of complications in diabetes. Diabetes, 40, 405-412. Biessels, G. J., Staekenborg, S., Brunner, E., Brayne, C., & Scheltens, P. (2006). Risk of dementia in diabetes mellitus: a systematic review. Lancet Neurology, 5, 64-74. Brancati, F. L., Whelton, P. K., Randall, B. L., Neaton, J. D., Stamler, J., & Klag, M. J. (1997). Risk of end-stage renal disease in diabetes mellitus: a prospective cohort study of men screened for MRFIT. Journal of the American Medical Association, 278, 2069-2074. Bruce, D. G., Casey, G. P., Grange, V., Clarnette, R. C., Almeida, O. P., Foster, J. K., Ives, F. J., & Davis, T. M. (2003). Cognitive impairment, physical disability and depressive symptoms in older diabetic patients: the Fremantle Cognition in Diabetes Study. Diabetes Research and Clinical Practice, 61, 59-67. Brüning, J. C., Gautam, D., Burks, D. J., Gillette, J., Schubert, M., Orban, P. C., Klein, R., Krone, W., Wieland, D, M., & Kahn, C. R. (2000). Role of brain insulin receptor in control of body weight and reproduction. Science, 289, 2122-2125. Campos-Bedolla, P., Walter, F. R., Veszelka, S., & Deli, M. A. (2014). Role of the blood–brain barrier in the nutrition of the central nervous system. Archives of Medical Research, 45, 610-638. Castellani, R. J., Siedlak, S. L., Fortino, A. E., Perry, G., Ghetti, B., & Smith, M. A. (2005). Chitin-like polysaccharides in Alzheimer's disease brains. Current Alzheimer Research, 2, 419-423. Castellani, R. J., Perry, G., & Smith, M. A. (2007). The role of novel chitin-like polysaccharides in Alzheimer disease. Neurotoxicity Research, 12, 269-274. Cattaneo, F., Sayago, J. E., Alberto, M. R., Zampini, I. C., Ordoñez, R. M., Chamorro, V., Pazos, A., & Isla, M. I. (2014). Anti-inflammatory and antioxidant activities, functional properties and mutagenicity studies of protein and protein hydrolysate obtained from Prosopis alba seed flour. Food Chemistry, 161, 391-399. Chan, J. C., Malik, V., Jia, W., Kadowaki, T., Yajnik, C. S., Yoon, K. H., & Hu, F. B. (2009). Diabetes in Asia: epidemiology, risk factors, and pathophysiology. Journal of the American Medical Association, 301, 2129-2140. Chang, Y. Y., Chou, C. H., Chiu, C. H., Yang, K. T., Lin, Y. L., Weng, W. L., & Chen, Y. C. (2010). Preventive effects of taurine on development of hepatic steatosis induced by a high-fat/cholesterol dietary habit. Journal of Agricultural and Food Chemistry, 59, 450-457. Chen, H.-M., Muramoto, K., & Yamauchi, F. (1995). Structural analysis of antioxidative peptides from Soybean. beta.-Conglycinin. Journal of Agricultural and Food Chemistry, 43, 574-578. Chen, G., Wang, H., Zhang, X., & Yang, S. T. (2014). Nutraceuticals and functional foods in the management of hyperlipidemia. Critical Reviews in Food Science and Nutrition, 54, 1180-1201. Chen, P. J., Tseng, J. K., Lin, Y. L., Wu, Y. H. S., Hsiao, Y. T., Chen, J. W., & Chen, Y. C. (2017). Protective effects of functional chicken liver hydrolysates against liver fibrogenesis: antioxidation, anti-inflammation, and antifibrosis. Journal of Agricultural and Food Chemistry, 65, 4961-4969. Chiu, C. Y., Yang, R. S., Sheu, M. L., Chan, D. C., Yang, T. H., Tsai, K. S., Chiang, C. K., & Liu, S. H. (2016). Advanced glycation end‐products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE‐mediated, AMPK‐down‐regulated, Akt pathway. Journal of Pathology, 238, 470-482. Choi, J. H., Hwang, I. K., Yi, S. S., Yoo, K. Y., Lee, C. H., Shin, H. C., Yoon, Y. S., & Won, M. H. (2009). Effects of streptozotocin-induced type 1 diabetes on cell proliferation and neuronal differentiation in the dentate gyrus; correlation with memory impairment. Anatomy and Cell Biology, 42, 41-48. Chou, C. H., Wang, S. Y., Lin, Y. T., & Chen, Y. C. (2014). Antioxidant activities of chicken liver hydrolysates by pepsin treatment. International Journal of Food Science & Technology, 49, 1654-1662. Cho, S. (2014). The role of functional foods in cutaneous anti-aging. Journal of Lifestyle Medicine, 4, 8. Chung, S. S., Ho, E. C., Lam, K. S., & Chung, S. K. (2003). Contribution of polyol pathway to diabetes-induced oxidative stress. Journal of the American Society of Nephrology, 14, 233-236. Clemente, A. (2000). Enzymatic protein hydrolysates in human nutrition. Trends in Food Science & Technology, 11, 254-262. Corsino, L., Dhatariya, K., & Umpierrez, G. Management of diabetes and hyperglycemia in hospitalized patients. (2017). https://www.ncbi.nlm.nih.gov/books/NBK279093/ Accessed date: 04/13/2019. Council of Agriculture, Executive Yuan, Taiwan. Livestock production. (2018). https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx. Accessed date: 04/13/2019. Demarquoy, J., Georges, B., Rigault, C., Royer, M. C., Clairet, A., Soty, M., Lekounoungou, S., & Le Borgne, F. (2004). Radioisotopic determination of L-carnitine content in foods commonly eaten in Western countries. Food Chemistry, 86, 137-142. Doi, M., Yamaoka, I., Nakayama, M., Sugahara, K., & Yoshizawa, F. (2007). Hypoglycemic effect of isoleucine involves increased muscle glucose uptake and whole body glucose oxidation and decreased hepatic gluconeogenesis. American Journal of Physiology-Endocrinology and Metabolism, 292, 1683-1693. Dong, S., Zeng, M., Wang, D., Liu, Z., Zhao, Y., & Yang, H. (2008). Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chemistry, 107, 1485-1493. Fagot-Campagna, A., Nelson, R. G., Knowler, W. C., Pettitt, D. J., Robbins, D. C., Go, O., Welty, T. K., Lee, E. T., & Howard, B. V. (1998). Plasma lipoproteins and the incidence of abnormal excretion of albumin in diabetic American Indians: the Strong Heart Study. Diabetologia, 41, 1002-1009. Fang, Z. Y., Prins, J. B., & Marwick, T. H. (2004). Diabetic cardiomyopathy: evidence, mechanisms, and therapeutic implications. Endocrine Reviews, 25, 543-567. Fang, S. C., Xie, H., Chen, F., Hu, M., Long, Y., Sun, H. B., Kong, L. Y., Hong, H., & Tang, S. S. (2017). Simvastatin ameliorates memory impairment and neurotoxicity in streptozotocin-induced diabetic mice. Neuroscience, 355, 200-211. Feldman, E. L. (2003). Oxidative stress and diabetic neuropathy: a new understanding of an old problem. Journal of Clinical Investigation, 111, 431-433. Floyd, R. A., & Hensley, K. (2002). Oxidative stress in brain aging: implications for therapeutics of neurodegenerative diseases. Neurobiology of Aging, 23, 795-807. Food and Drug Administration, Taiwan. (2014). https://data.fda.gov.tw/ Accessed date: 04/05/2019. Fournier, A. (2000). Diagnosing Diabetes: A Practitioner's Plea: Keep It Simple. Journal of General Internal Medicine,15, 603-604. Gansevoort, R. T., Correa-Rotter, R., Hemmelgarn, B. R., Jafar, T. H., Heerspink, H. J. L., Mann, J. F., Matsushima, K., & Wen, C. P. (2013). Chronic kidney disease and cardiovascular risk: epidemiology, mechanisms, and prevention. Lancet, 382, 339-352. Ginsberg, H. N., Zhang, Y. L., & Hernandez-Ono, A. (2005). Regulation of plasma triglycerides in insulin resistance and diabetes. Archives of Medical Research, 36, 232-240. Golde, T. E. (2003). Alzheimer disease therapy: can the amyloid cascade be halted? Journal of Clinical Investigation, 111, 11-18. Grøntved, A., Pan, A., Mekary, R. A., Stampfer, M., Willett, W. C., Manson, J. E., & Hu, F. B. (2014). Muscle-strengthening and conditioning activities and risk of type 2 diabetes: a prospective study in two cohorts of US women. PLOS Medicine, 11(1), e1001587. Grünblatt, E., Salkovic‐Petrisic, M., Osmanovic, J., Riederer, P., & Hoyer, S. (2007). Brain insulin system dysfunction in streptozotocin intracerebroventricularly treated rats generates hyperphosphorylated tau protein. Journal of Neurochemistry, 101, 757-770. Gülçin, İ. (2006). Antioxidant and antiradical activities of L-carnitine. Life Sciences, 78, 803-811. Hasler, C. M. (2002). Functional foods: benefits, concerns and challenges—a position paper from the American Council on Science and Health. Journal of Nutrition, 132, 3772-3781. Haus, J. M., Carrithers, J. A., Trappe, S. W., & Trappe, T. A. (2007). Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. Journal of Applied Physiology, 103, 2068-2076. Ho, N., Sommers, M. S., & Lucki, I. (2013). Effects of diabetes on hippocampal neurogenesis: links to cognition and depression. Neuroscience & Biobehavioral Reviews, 37, 1346-1362. Hooper, C., Killick, R., & Lovestone, S. (2008). The GSK3 hypothesis of Alzheimer’s disease. Journal of Neurochemistry, 104, 1433-1439. Hsieh, H. M., Wu, W. M., & Hu, M. L. (2009). Soy isoflavones attenuate oxidative stress and improve parameters related to aging and Alzheimer’s disease in C57BL/6J mice treated with D-galactose. Food and Chemical Toxicology, 47, 625-632. Hsu, C. L., Hsu, C. C., & Yen, G. C. (2010). Hepatoprotection by freshwater clam extract against CCl4-induced hepatic damage in rats. American Journal of Chinese Medicine, 38, 881-894. Hu, M. L. (1994). Measurement of protein thiol groups and glutathione in plasma. Academic Press, 233, 380-385. Huang, X. J., Choi, Y. K., Im, H. S., Yarimaga, O., Yoon, E., & Kim, H. S. (2006). Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sensors, 6, 756-782. Huang, W. C., Lin, C. I., Chiu, C. C., Lin, Y. T., Huang, W. K., Huang, H. Y., & Huang, C. C. (2014). Chicken essence improves exercise performance and ameliorates physical fatigue. Nutrients, 6, 2681-2696. Hung, M. Y., Fu, T. Y. C., Shih, P. H., Lee, C. P., & Yen, G. C. (2006). Du-Zhong (Eucommia ulmoides Oliv.) leaves inhibits CCl4-induced hepatic damage in rats. Food and Chemical Toxicology, 44, 1424-1431. Jafari Anarkooli, I., Sankian, M., Ahmadpour, S., Varasteh, A. R., & Haghir, H. (2008). Evaluation of Bcl-2 family gene expression and caspase-3 activity in hippocampus STZ-induced diabetic rats. Experimental Diabetes Research, 1-6. Janson, J., Laedtke, T., Parisi, J. E., O’Brien, P., Petersen, R. C., & Butler, P. C. (2004). Increased risk of type 2 diabetes in Alzheimer disease. Diabetes, 53, 474-481. Je, J. Y., Park, P. J., & Kim, S. K. (2005). Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Research International, 38, 45-50. Kaneto, H., Katakami, N., Matsuhisa, M., & Matsuoka, T. A. (2010). Role of reactive oxygen species in the progression of type 2 diabetes and atherosclerosis. Mediators of Inflammation, 1191-1202. Kang, K. S., Lee, W., Jung, Y., Lee, J. H., Lee, S., Eom, D. W., Jeon, Y., Yoo, H. H., Jin, M. J., Song, K, I., Kim, W. J., Ham, J., Kim, H. J., & Kim, S. N. (2014). Protective effect of esculin on streptozotocin-induced diabetic renal damage in mice. Journal of Agricultural and Food Chemistry, 62(9), 2069-2076. Karmaker, S., Saha, T. K., Yoshikawa, Y., & Sakurai, H. (2007). Amelioration of hyperglycemia and metabolic syndromes in type 2 diabetic KKAy mice by poly (γ‐glutamic acid) oxovanadium (IV) complex. ChemMedChem: Chemistry Enabling Drug Discovery, 2, 1607-1612. Kawamura, M., Heinecke, J. W., & Chait, A. (1994). Pathophysiological concentrations of glucose promote oxidative modification of low density lipoprotein by a superoxide-dependent pathway. Journal of Clinical Investigation, 94, 771-778. Kawasaki, T., & Kamijo, S. (2012). Inhibition of aggregation of amyloid β42 by arginine-containing small compounds. Bioscience, Biotechnology, and Biochemistry, 76, 762-766. Kesner, R. P. (2007). Behavioral functions of the CA3 subregion of the hippocampus. Learning & Memory, 14, 771-781. Kim, J. Y., Michaliszyn, S. F., Nasr, A., Lee, S., Tfayli, H., Hannon, T., Hughan, K. S., Bacha, F., & Arslanian, S. (2016). The shape of the glucose response curve during an oral glucose tolerance test heralds biomarkers of type 2 diabetes risk in obese youth. Diabetes Care, 39, 1431-1439. Kitamura, T., & Inokuchi, K. (2014). Role of adult neurogenesis in hippocampal-cortical memory consolidation. Molecular Brain, 7, 13. Klein, J. P., & Waxman, S. G. (2003). The brain in diabetes: molecular changes in neurons and their implications for end-organ damage. Lancet Neurology, 2, 548-554. Klöppel, G., Löhr, M., Habich, K., Oberholzer, M., & Heitz, P. U. (1985). Islet pathology and the pathogenesis of type 1 and type 2 diabetes mellitus revisited. Survey and Synthesis of Pathology Research, 4, 110-125. Kobilo, T., Yuan, C., & van Praag, H. (2011). Endurance factors improve hippocampal neurogenesis and spatial memory in mice. Learning & Memory, 18, 103-107. Kodl, C. T., & Seaquist, E. R. (2008). Cognitive dysfunction and diabetes mellitus. Endocrine Reviews, 29, 494-511. Kong, X., Guo, M., Hua, Y., Cao, D., & Zhang, C. (2008). Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresource Technology, 99, 8873-8879. Kuhad, A., Bishnoi, M., Tiwari, V., & Chopra, K. (2009). Suppression of NF-κβ signaling pathway by tocotrienol can prevent diabetes associated cognitive deficits. Pharmacology Biochemistry and Behavior, 92, 251-259. Kuzuya, T., Katano, Y., Nakano, I., Hirooka, Y., Itoh, A., Ishigami, M., Hayashi, K., Honda, T., Goto, H., Fujita, Y., Shikano, R., Muramatsu, Y., Bajotto, G., Tamura, T., Tamura, N., & Shimomura, Y. (2008). Regulation of branched-chain amino acid catabolism in rat models for spontaneous type 2 diabetes mellitus. Biochemical and Biophysical Research Communications, 373, 94-98. Lee, Y. M., Gweon, O. C., Seo, Y. J., Im, J., Kang, M. J., Kim, M. J., & Kim, J. I. (2009). Antioxidant effect of garlic and aged black garlic in animal model of type 2 diabetes mellitus. Nutrition Research and Practice, 3, 156-161. Liaury, K., Miyaoka, T., Tsumori, T., Furuya, M., Wake, R., Ieda, M., Tsuchie, K., Taki, M., Ishihara, K., Tanara, A. J., & Horiguchi, J. (2012). Morphological features of microglial cells in the hippocampal dentate gyrus of Gunn rat: a possible schizophrenia animal model. Journal of Neuroinflammation, 9, 56. Li, D. X., Deng, T. Z., Lv, J., & Ke, J. (2014). Advanced glycation end products (AGEs) and their receptor (RAGE) induce apoptosis of periodontal ligament fibroblasts. Brazilian Journal of Medical and Biological Research, 47, 1036-1043. Li, W., Zhang, Y., & Shao, N. (2019). Protective effect of glycine in streptozotocin-induced diabetic cataract through aldose reductase inhibitory activity. Biomedicine & Pharmacotherapy, 114, 108-794. Lim, G. P., Chu, T., Yang, F., Beech, W., Frautschy, S. A., & Cole, G. M. (2001). The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. Journal of Neuroscience, 21, 8370-8377. Lin, Y. L., Tai, S. Y., Chen, J. W., Chou, C. H., Fu, S. G., & Chen, Y. C. (2017). Ameliorative effects of pepsin-digested chicken liver hydrolysates on development of alcoholic fatty livers in mice. Food & Function, 8, 1763-1774. Liu, Q., Kong, B., Xiong, Y. L., & Xia, X. (2010). Antioxidant activity and functional properties of porcine plasma protein hydrolysate as influenced by the degree of hydrolysis. Food Chemistry, 118, 403-410. Liu, J., Zhang, Y., Deng, X., & Yin, F. (2013). Geniposide decreases the level of Aβ1− 42 in the hippocampus of streptozotocin-induced diabetic rats. Acta Biochim Biophys Sin, 45, 787-791. Liu, L. P., Yan, T. H., Jiang, L. Y., Hu, W., Hu, M., Wang, C., Zhang, Q., Long, Y., Wang, J. Q., Li, Y. Q., Hu, M., & Hong, H. (2013). Pioglitazone ameliorates memory deficits in streptozotocin-induced diabetic mice by reducing brain β-amyloid through PPARγ activation. Acta Pharmacologica Sinica, 34, 455. Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy Reviews, 4, 118. Lu, M., Zhang, X., Zheng, D., Jiang, X., & Chen, Q. (2015). Branched‐chain amino acids supplementation protects streptozotocin‐induced insulin secretion and the correlated mechanism. BioFactors, 41, 127-133. Lubec, G., Bartosch, B., Mallinger, R., Adamiker, D., Graef, I., Frisch, H., & Höger, H. (1990). The effect of substance L on glucose-mediated cross-links of collagen in the diabetic db/db mouse. Nephron, 56, 281-284. Lupien, S. J., Maheu, F., Tu, M., Fiocco, A., & Schramek, T. E. (2007). The effects of stress and stress hormones on human cognition: Implications for the field of brain and cognition. Brain and Cognition, 65, 209-237. Ma, L. Y., Fei, Y. L., Wang, X. Y., Wu, S. D., Du, J. H., Zhu, M., Jin, L., Li, M., Li, H. L., Zhai, J. J., Ji, L. P., Ma, R. R., Liu, S. F., Li, M., Ma, L., Ma, X. R., Qu, Q. M., & Lv, Y. L. (2017). The research on the relationship of RAGE, LRP-1, and Aβ accumulation in the hippocampus, prefrontal lobe, and amygdala of STZ-induced diabetic rats. Journal of Molecular Neuroscience, 62, 1-10. Malabu, U. H., Dryden, S., Mccarthy, H. D., Kilpatrick, A., & Williams, G. (1994). Effects of chronic vanadate administration in the STZ-induced diabetic rat: the antihyperglycemic action of vanadate is attributable entirely to its suppression of feeding. Diabetes, 43, 9-15. Marshall, S., Bacote, V., & Traxinger, R. R. (1991). Discovery of a metabolic pathway mediating glucose-induced desensitization of the glucose transport system. Role of hexosamine biosynthesis in the induction of insulin resistance. Journal of Biological Chemistry, 266, 4706-4712. Marthandam Asokan, S., Wang, T., Su, W. T., & Lin, W. T. (2019). Antidiabetic effects of a short peptide of potato protein hydrolysate in STZ-induced diabetic mice. Nutrients, 11(4), 779. Masiello, P., Broca, C., Gross, R., Roye, M., Manteghetti, M., Hillaire-Buys, D., Novelli, M., & Ribes, G. (1998). Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes, 47, 224-229. Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLOS Medicine, 3, 442. Maurice, T., Hiramatsu, M., Itoh, J., Kameyama, T., Hasegawa, T., & Nabeshima, T. (1994). Behavioral evidence for a modulating role of σ ligands in memory processes. I. Attenuation of dizocilpine (MK-801)-induced amnesia. Brain Research, 647, 44-56. Meisel, H. (1997). Biochemical properties of regulatory peptides derived from mil proteins. Peptide Science, 43, 119-128. Mendis, E., Rajapakse, N., Byun, H. G., & Kim, S. K. (2005). Investigation of jumbo squid (Dosidicus gigas) skin gelatin peptides for their in vitro antioxidant effects. Life Sciences, 77, 2166-2178. Ministry of Health &Welfare, Executive Yuan, Taiwan. 2018 Taiwan Health and Welfare Report. (2018). https://www.mohw.gov.tw/lp-137-2.html Accessed date: 04/23/2019. Mirshekar, M., Roghani, M., Khalili, M., & Baluchnejadmojarad, T. (2011). Chronic oral pelargonidin alleviates learning and memory disturbances in streptozotocin diabetic rats. Iranian Journal of Pharmaceutical Research: IJPR, 10, 569. Mochizuki, M., Takayanagi, H., Yamada, S., Osawa, T., Kitaura, Y., & Shimomura, Y. (2013). Effects of long-term supplementation with tetrahydrocurcumin and branched-chain amino acids on glucose tolerance and muscle protein content in mature rats. Journal of Physical Fitness and Sports Medicine, 2, 509-513. Mogensen, C. E. (1984). Microalbuminuria predicts clinical proteinuria and early mortality in maturity-onset diabetes. New England Journal of Medicine, 310, 356-360. Momma, H., Niu, K., Kobayashi, Y., Guan, L., Sato, M., Guo, H., Chujo, M., Otomo, A., Yufei, C., Tadaura, H., Saito, T., Mori, T., Miyata, T., & Nagatomi, R. (2011). Skin advanced glycation end product accumulation and muscle strength among adult men. European Journal of Applied Physiology, 111, 1545-1552. Morris, R. (1984). Developments of a water-maze procedure for studying spatial learning in the rat. Journal of Neuroscience Methods, 11, 47-60. Mueller, A. S., Bosse, A. C., Most, E., Klomann, S. D., Schneider, S., & Pallauf, J. (2009). Regulation of the insulin antagonistic protein tyrosine phosphatase 1B by dietary Se studied in growing rats. Journal of Nutritional Biochemistry, 20, 235-247. Nakamura, T., Terajima, T., Ogata, T., Ueno, K., Hashimoto, N., Ono, K., & Yano, S. (2006). Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide. Biological and Pharmaceutical Bulletin, 29(6), 1167-1174. Nandhini, A. A., Thirunavukkarasu, V., & Anuradha, C. V. (2005). Taurine prevents collagen abnormalities in high fructose-fed rats. Indian Journal of Medical Research, 122, 171. National Nutrient Database for Standard (USDA). (2018). https://reurl.cc/AmA4Q Accessed date: 04/12/2019. NCD Risk Factor Collaboration (NCD-RisC). (2016). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4· 4 million participants. Lancet, 387, 1513-1530. Niiya, Y., Abumiya, T., Shichinohe, H., Kuroda, S., Kikuchi, S., Ieko, M., Yamagishi, S. I., Takeuchi, M., Sato, T., & Iwasaki, Y. (2006). Susceptibility of brain microvascular endothelial cells to advanced glycation end products-induced tissue factor upregulation is associated with intracellular reactive oxygen species. Brain Research, 1108, 179-187. Nishitani, S., Takehana, K., Fujitani, S., & Sonaka, I. (2005). Branched-chain amino acids improve glucose metabolism in rats with liver cirrhosis. American Journal of Physiology-Gastrointestinal and Liver Physiology, 288, 1292-1300. Nitta, A., Murai, R., Suzuki, N., Ito, H., Nomoto, H., Katoh, G., Furukawa, Y., & Furukawa, S. (2002). Diabetic neuropathies in brain are induced by deficiency of BDNF. Neurotoxicology and Teratology, 24, 695-701. Novelli, M., Canistro, D., Martano, M., Funel, N., Sapone, A., Melega, S., Masini, M., Tata, V. D., Pippa, A., Vecoli, C., Campani, D., Siena, R. D., Soleti, A., Paolini, M., & Masiello, P. (2014). Anti-diabetic properties of a non-conventional radical scavenger, as compared to pioglitazone and exendin-4, in streptozotocin-nicotinamide diabetic mice. European Journal of Pharmacology, 729, 37-44. Onuh, J. O., Girgih, A. T., Aluko, R. E., & Aliani, M. (2014). In vitro antioxidant properties of chicken skin enzymatic protein hydrolysates and membrane fractions. Food Chemistry, 150, 366-373. Paglia, D. E., & Valentine, W. N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. Journal of Laboratory and Clinical Medicine, 70, 158-169. Pappenheimer, J., & Volpp. K. (1992). Transmucosal impedance of small intestine: correlation with transport of sugars and amino acids. American Journal of Physiology-Cell Physiology, 263:C480-C493. Park, H. R., Park, M., Choi, J., Park, K. Y., Chung, H. Y., & Lee, J. (2010). A high-fat diet impairs neurogenesis: involvement of lipid peroxidation and brain-derived neurotrophic factor. Neuroscience Letters, 482, 235-239. Phelps, E. A. (2004). Human emotion and memory: interactions of the amygdala and hippocampal complex. Current Opinion in Neurobiology, 14:198-202. Qian, Z. J., Jung, W. K., & Kim, S. K. (2008). Free radical scavenging activity of a novel antioxidative peptide purified from hydrolysate of bullfrog skin, Rana catesbeiana Shaw. Bioresource Technology, 99, 1690-1698. Ramakrishnan, R., Sheeladevi, R., & Suthanthirarajan, N. (2004). PKC-α mediated alterations of indoleamine contents in diabetic rat brain. Brain Research Bulletin, 64, 189-194. Ren, J., Zhao, M., Shi, J., Wang, J., Jiang, Y., Cui, C., Kakuda, Y., & Xue, S. J. (2008). Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry, 108, 727-736. Rodríguez-Peña, A., Botana, M., González, M., & Requejo, F. (1995). Expression of neurotrophins and their receptors in sciatic nerve of experimentally diabetic rats. Neuroscience Letters, 200, 37-40. Saiga, A., Tanabe, S., & Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry, 51, 3661-3667. Schleicher, E., & Friess, U. (2007). Oxidative stress, AGE, and atherosclerosis. Kidney International, 72, 17-26. Seo, J., Kim, S., Kim, N., Baik, S. H., Choi, D. S., & Choi, K. M. (2010). Prevalence and determinant factors of sarcopenia in patients with type 2 diabetes. Diabetes Care, 33, 1497-1499. Sharma, S., Anjaneyulu, M., Kulkarni, S. K., & Chopra, K. (2006). Resveratrol, a polyphenolic phytoalexin, attenuates diabetic nephropathy in rats. Pharmacology, 76, 69-75. Shimomura, Y., Murakami, T., Nakai, N., Nagasaki, M., & Harris, R. A. (2004). Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. Journal of Nutrition, 134, 1583-1587. Shimomura, Y., Murakami, T., Nakai, N., Nagasaki, M., & Harris, R. A. (2004). Exercise promotes BCAA catabolism: effects of BCAA supplementation on skeletal muscle during exercise. Journal of Nutrition, 134, 1583-1587. Shimomura, Y., Yamamoto, Y., Bajotto, G., Sato, J., Murakami, T., Shimomura, N., Kobayashi, H., & Mawatari, K. (2006). Nutraceutical effects of branched-chain amino acids on skeletal muscle. Journal of Nutrition, 136, 529-532. Sima, A. A., & Li, Z. G. (2005). The effect of C-peptide on cognitive dysfunction and hippocampal apoptosis in type 1 diabetic rats. Diabetes, 54, 1497-1505. Sredy, J., Sawicki, D. R., & Notvest, R. R. (1991). Polyol pathway activity in nervous tissues of diabetic and galactose-fed rats: effect of dietary galactose withdrawal or tolrestat intervention therapy. Journal of Diabetic Complications, 5, 42-47. Srinivasan, K., & Ramarao, P. (2007). Animal model in type 2 diabetes research: An overview. Indian Journal of Medical Research, 125, 451. Stranahan, A. M., Arumugam, T. V., Cutler, R. G., Lee, K., Egan, J. M., & Mattson, M. P. (2008). Diabetes impairs hippocampal function through glucocorticoid-mediated effects on new and mature neurons. Nature Neuroscience, 11, 309. Stumvoll, M., Mitrakou, A., Pimenta, W., Jenssen, T., Yki-Järvinen, H. A. N. N. E. L. E., Van Haeften, T., Renn, W., & Gerich, J. (2000). Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care, 23, 295-301. Sulochana, K. N., Punitham, R., & Ramakrishnan, S. (1998). Beneficial effect of lysine and amino acids on cataractogenesis in experimental diabetes through possible antiglycation of lens proteins. Experimental Eye Research, 597-601. Szkudelski, T. (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research, 50, 537-546. The renal association. UK Renal Registry The Ninth Annual Report. (2006). https://www.renalreg.org/reports/2006-the-ninth-annual-report/ Accessed date: 04/09/2019. Nakamura, T., Terajima, T., Ogata, T., Ueno, K., Hashimoto, N., Ono, K., & Yano, S. (2006). Establishment and pathophysiological characterization of type 2 diabetic mouse model produced by streptozotocin and nicotinamide. Biological and Pharmaceutical Bulletin, 29(6), 1167-1174. Toth, C., Schmidt, A. M., Tuor, U. I., Francis, G., Foniok, T., Brussee, V., Kaur, J., Yan, S. F., Martinez, J. A., Barber, P. A., Buchan, A., & Zochodne, D. W. (2006). Diabetes, leukoencephalopathy and rage. Neurobiology of Disease, 23, 445-461. Tottenham, N., & Sheridan, M. A. (2010). A review of adversity, the amygdala and the hippocampus: a consideration of developmental timing. Frontiers in Human Neuroscience, 3, 68. Treuting, P. M., Dintzis, S. M., Liggitt, D., & Frevert, C. W. (2011). Comparative anatomy and histology: a mouse and human atlas (expert consult). Academic Press Inc., CA, USA. Tu, D. G., Chang, Y. L., Chou, C. H., Lin, Y. L., Chiang, C. C., Chang, Y. Y., & Chen, Y. C. (2018). Preventive effects of taurine against D-galactose-induced cognitive dysfunction and brain damage. Food & Function, 9, 124-133. Uribarri, J., & Tuttle, K. R. (2006). Advanced glycation end products and nephrotoxicity of high-protein diets. Clinical Journal of the American Society of Nephrology, 1, 1293-1299. Vorhees, C. V., & Williams, M. T. (2006). Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nature Protocols, 1, 848. Wang, T., Fu, F., Han, B., Zhang, L., & Zhang, X. (2012). Danshensu ameliorates the cognitive decline in streptozotocin-induced diabetic mice by attenuating advanced glycation end product-mediated neuroinflammation. Journal of Neuroimmunology, 245, 79-86. World Health Organization (WHO). Global report on diabetes. 2016. (2017). https://reurl.cc/ElojR Accessed date: 03/12/2019. Wolf, G. (2004). The discovery of vitamin D: the contribution of Adolf Windaus. Journal of Nutrition, 134, 1299-1302. Xavier, G. F., & Costa, V. C. I. (2009). Dentate gyrus and spatial behaviour. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 33, 762-773. Yaffe, K., Falvey, C. M., Hamilton, N., Harris, T. B., Simonsick, E. M., Strotmeyer, E. S., Shorr, R. I., Metti, A., & Schwartz, A. V. (2013). Association between hypoglycemia and dementia in a biracial cohort of older adults with diabetes mellitus. JAMA Internal Medicine, 173, 1300-1306. Yamano, T., Niijima, A., Iimori, S., Tsuruoka, N., Kiso, Y., & Nagai, K. (2001). Effect of L-carnosine on the hyperglycemia caused by intracranial injection of 2-deoxy-D-glucose in rats. Neuroscience Letters, 313, 78-82 Yang, K. T., Lin, C., Liu, C. W., & Chen, Y. C. (2014). Effects of chicken-liver hydrolysates on lipid metabolism in a high-fat diet. Food Chemistry, 160, 148-156. Ye, J. M., Doyle, P. J., Iglesias, M. A., Watson, D. G., Cooney, G. J., & Kraegen, E. W. (2001). Peroxisome proliferator—Activated receptor (PPAR)-α activation lowers muscle lipids and improves insulin sensitivity in high fat—fed rats: comparison with PPAR-γ afctivation. Diabetes, 50, 411-417. Yin, Z., Yu, H., Chen, S., Ma, C., Ma, X., Xu, L., Ma, Z., Qu, R., & Ma, S. (2015). Asiaticoside attenuates diabetes-induced cognition deficits by regulating PI3K/Akt/NF-κB pathway. Behavioural Brain Research, 292, 288-299. Yokoyama, H., Emoto, M., Fujiwara, S., Motoyama, K., Morioka, T., Komatsu, M., Tahara, H., Shoji, T., Okuno, Y., & Nishizawa, Y. (2003). Quantitative insulin sensitivity check index and the reciprocal index of homeostasis model assessment in normal range weight and moderately obese type 2 diabetic patients. Diabetes Care, 26, 2426-2432. Younessi, P., & Yoonessi, A. (2011). Advanced glycation end-products and their receptor-mediated roles: inflammation and oxidative stress. Iranian Journal of Medical Sciences, 36, 154. Zafar, M., & Naqvi, S. N. U. H. (2010). Effects of STZ-Induced Diabetes on the Relative Weights of Kidney, Liver and Pancreas in Albino Rats: A Comparative Study. International Journal of Morphology, 28, 1. Zhan, Y., Sun, H. L., Chen, H., Zhang, H., Sun, J., Zhang, Z., & Cai, D. H. (2012). Glucagon-like peptide-1 (GLP-1) protects vascular endothelial cells against advanced glycation end products (AGEs)–induced apoptosis. Medical Science monitor: International Medical Journal of Experimental and Clinical Research, 18, 286. Zhao, L., Teter, B., Morihara, T., Lim, G. P., Ambegaokar, S. S., Ubeda, O. J., Frautschy, S. A., & Cole, G. M. (2004). Insulin-degrading enzyme as a downstream target of insulin receptor signaling cascade: implications for Alzheimer's disease intervention. Journal of Neuroscience, 24, 11120-11126. Zimmerman, G. A., Meistrell, M. I. I. I., Bloom, O., Cockroft, K. M., Bianchi, M., Risucci, D., Broome, J., Farmer, P., Cerami, A., & Vlassara, H. (1995). Neurotoxicity of advanced glycation endproducts during focal stroke and neuroprotective effects of aminoguanidine. Proceedings of the National Academy of Sciences, 92, 3744-3748. | - |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77280 | - |
dc.description.abstract | 糖尿病為常見之代謝性疾病之一,主要為胰島素缺乏或是產生阻抗導致體內血糖失衡,而高血糖也容易造成體內糖化終端產物(advanced glycation end products, AGEs)的堆積進而提升氧化壓力,造成認知行為障礙。本研究即探討富含支鏈胺基酸之雞肝水解物(chicken liver hydrolysates, CLHs)有無調降血糖、氧化壓力以及認知障礙的功效。實驗以注射鏈脲佐菌素(streptozotocin, STZ)與nicotinamide誘導ICR小鼠高血糖並補充低、中、高劑量(409.46, 818.92, and 1223.38 mg/kg BW) CLHs,而由動物實驗結果顯示:補充中、高劑量CLHs後可顯著提升腦與血清之抗氧化能力(p<0.05)。在血糖方面,補充CLHs的高血糖組別血糖值在第三、六、九週顯著低於無補充高血糖組別(p<0.05),葡萄糖耐受性試驗血糖之曲線下面積則顯著減少(p<0.05);而從胰島素敏感性來看,補充CLHs組別胰島素與胰島素阻抗程度(homeostatic model assessment for insulin resistance, HOMA- IR)顯著低於無補充高血糖組別(p<0.05)。在行為學實驗上:CLHs可縮短小鼠在水迷宮中找到逃脫平台的時間(p<0.05),並滯留於原平台區域時間顯著更長,穿越次數也更多(p<0.05);而在Y迷宮中的探索能力則顯著改善(p<0.05)。從腦部組織切片結果觀察:H&E染色中可看出高血糖組別之神經細胞呈現萎縮的趨勢,使得蘇木精顏色的比例更多,在IHC染色中補充中、高劑量CLHs的組別則有減少β-amyloid堆積的現象(p<0.05)。而補充CLHs後,AGEs堆積程度有減少趨勢,使凋亡相關蛋白質(receptor for advanced glycation end products, RAGE; c-Jun N-terminal kinase, JNK; Caspase 3)表現量減少(p<0.05)。綜觀上述結果:CLHs補充具有緩解血糖上升與氧化壓力,減緩腦細胞之凋亡程度,進而改善探索能力與空間記憶的效果。 | zh_TW |
dc.description.abstract | Diabetes mellitus (DM) is a common metabolic syndrome, which causes hyperglycemia due to insufficient insulin or insulin resistance. The excessive blood glucose produces advanced glycation end products (AGEs) and then induces oxidative stress, thus leading cognitive dysfunction. This study was to investigate the protective effects of chicken liver hydrolysates (CLHs) in low, medium, and high doses (409.46, 818.92, and 1223.38 mg/kg BW) on hyperglycemia, oxidative stress, and cognitive dysfunction in streptozotocin (STZ)-nicotinamide induced hyperglycemic ICR mice.
Current results showed that medium and high doses of CLHs resulted in higher (p<0.05) antioxidant capacities in sera and brains of STZ induced hyperglycemic mice. In addition, CLH supplementation reduced (p<0.05) the level of blood glucose of STZ induced mice in 3, 6, and 9 weeks of experiment. CLH supplemented group also had lower (p<0.05) blood glucose area under the curve (AUC) and homeostatic model assessment for insulin resistance (HOMA-IR). CLH supplementation also reduced (p<0.05) the escape latencies in the reference memory test, extend (p<0.05) the spent time on target zone in the probe test, and enhance (p<0.05) alternation behavior in Y-maze. Meanwhile, CLH supplemented groups had less contracted neuron bodies in the hippocampus, which can be stained by hematoxylin in hematoxylin and eosin (H&E) stainings, and showed lower (p<0.05) β-amyloid (Aβ) deposits in immunochemical stainings. Although there was only a tendency toward less AGEs accumulation by CLH supplementation, the expression of apoptosis related protein, such as receptor for advanced glycation end products (RAGE), c-Jun N-terminal kinase (JNK), and Caspase 3 were decreased (p<0.05) in STZ induced mice co-treated with CLHs. To sum up, our patented CLHs have abilities to reduce cognitive dysfunction via inhibiting hyperglycemia, oxidative stress, and apoptosis in the STZ induced hyperglycemic mice. | en |
dc.description.provenance | Made available in DSpace on 2021-07-10T21:53:59Z (GMT). No. of bitstreams: 1 ntu-108-R06626016-1.pdf: 3283024 bytes, checksum: 8e3c20942b539aed40e425c6f57d4738 (MD5) Previous issue date: 2019 | en |
dc.description.tableofcontents | Abstract (Chinese Ver.)... viii
Abstract (English Ver.) ix I. Introduction 1 II. Literature review 4 2.1 Overview of diabetes 4 2.2 DM symptoms 5 2.3 Animal models for DM researches 6 2.4 Common complications of DM 9 2.4.1 Nephropathy 11 2.4.2 Cardiovascular disease 12 2.4.3 Myopathy 12 2.4.4 Neuropathy 13 2.5 DM and cognitive dysfunction 14 2.5.1 Hyperglycemia 15 2.5.2 Oxidative stress 16 2.5.3 Advanced glycation end products (AGEs) 17 2.5.4 Insulin resistance 18 2.6 The protective effects of BCAAs 19 2.6.1 The hypoglycemic effects of BCAAs 19 2.6.2 The effects of BCAAs on muscle 20 2.7 Functional animal sourced food 21 2.7.1 The market of functional animal sourced food 21 2.7.2 Protein hydrolysates 23 2.8 Chicken liver hydrolysates (CLHs) 25 2.8.1 The market of chicken liver 25 2.8.2 The bio-functional activities of CLHs 26 III. Materials and methods 29 3.1 Experimental design 29 3.2 Experimental materials 30 3.3 Preparation of CLHs and free amino acid profile analysis………..............30 3.4 Animal treatments 31 3.5 The level of blood glucose, oral glucose tolerance test (OGTT), and homeostatic model assessment for insulin resistance (HOMA-IR) 32 3.6 Behavior test (Y-maze and Morris water maze) 33 3.6.1 Y-maze test 34 3.6.2 Morris water maze 35 3.6.3 One day before reference memory test: visible platform 36 3.6.4 Day 1~4: reference memory test 36 3.6.5 Day 5: probe test 37 3.7 Sample collection and serum biochemical values 37 3.7.1 Brain tissues collection 39 3.7.2 Preparation of brain homogenates 39 3.8 Antioxidative capacity analyses 40 3.8.1 TBARS value 40 3.8.2 TEAC value 40 3.8.3 Reduced GSH content 41 3.8.4 SOD activity 42 3.8.5 GPx activity 43 3.8.6 CAT activity 43 3.9 Histopathological sections and staining 44 3.10 Immunohistochemical staining 45 3.11 Western blotting for protein quantification 46 3.12 Statistical analysis 48 IV. Results and discussion 50 4.1 Effects of CLHs on growth performance, relative sizes of organs, and serum biochemical values of STZ induced hyperglycemic mice 50 4.2 Effects of CLHs on the level of blood glucose in the STZ induced hyperglycemic mice. 53 4.3 Effects of CLHs on antioxidant capacities in the brains of the STZ induced hyperglycemic mice 55 4.4 Effects of CLHs on spatial learning and memory abilities in Morris water maze and Y-maze of the STZ induced hyperglycemic mice 58 4.5 Effects of CLHs on histological pathologies and β-amyloid (Aβ) depositions in the hippocampus of the STZ induced hyperglycemic mice 60 4.6 Effects of CLHs on AGE products and apoptosis related protein expressions in the hippocampus of the STZ induced hyperglycemic mice 64 V. Conclusion 80 VI. References 83 | - |
dc.language.iso | en | - |
dc.title | 探討機能性雞肝水解物對於Streptozotocin-Nicotinamide誘導小鼠認知障礙之改善功效 | zh_TW |
dc.title | The protective effects of chicken liver hydrolysates on cognitive dysfunction in streptozotocin-nicotinamide induced hyperglycemic mice | en |
dc.type | Thesis | - |
dc.date.schoolyear | 107-2 | - |
dc.description.degree | 碩士 | - |
dc.contributor.oralexamcommittee | 張祐維;邱智賢;李滋泰;徐慶琳;黃惠君 | zh_TW |
dc.contributor.oralexamcommittee | ;;;; | en |
dc.subject.keyword | 雞肝水解物,鏈?佐菌素,高血糖,氧化壓力,認知障礙,行為學實驗,細胞凋亡, | zh_TW |
dc.subject.keyword | chicken liver hydrolysates,streptozotocin,hyperglycemia,oxidative stress,cognitive dysfunction,behavioral performance,apoptosis, | en |
dc.relation.page | 108 | - |
dc.identifier.doi | 10.6342/NTU201902470 | - |
dc.rights.note | 未授權 | - |
dc.date.accepted | 2019-08-12 | - |
dc.contributor.author-college | 生物資源暨農學院 | - |
dc.contributor.author-dept | 動物科學技術學系 | - |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-2.pdf 目前未授權公開取用 | 3.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。