Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7727
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林亮音(Liang-In Lin)
dc.contributor.authorPei-Qi Lanen
dc.contributor.author藍珮綺zh_TW
dc.date.accessioned2021-05-19T17:51:29Z-
dc.date.available2022-09-14
dc.date.available2021-05-19T17:51:29Z-
dc.date.copyright2017-09-14
dc.date.issued2017
dc.date.submitted2017-08-09
dc.identifier.citation1 Huang, S. Y. et al. Epidemiology of multiple myeloma in Taiwan - Increasing incidence for the past 25 years and higher prevalence of extramedullary myeloma in patients younger than 55 years. Cancer 110, 896-905, 2007.
2 Dohner, H. et al. Acute Myeloid Leukemia. The New England journal of medicine 373, 1136-1152, 2015.
3 Tenen, D. G. et al. Disruption of differentiation in human cancer: AML shows the way. Nature Reviews Cancer 3, 89-101, 2003.
4 Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127, 2391-2405, 2016.
5 Yakes, F. M. et al. Cabozantinib (XL184), a Novel MET and VEGFR2 Inhibitor, Simultaneously Suppresses Metastasis, Angiogenesis, and Tumor Growth. Molecular cancer therapeutics 10, 2298-2308, 2011.
6 Viola, D. et al. Cabozantinib (XL184) for the treatment of locally advanced or metastatic progressive medullary thyroid cancer. Future Oncol 9, 1083-1092, 2013.
7 Singh, H. et al. US Food and Drug Administration Approval: Cabozantinib for the Treatment of Advanced Renal Cell Carcinoma. Clinical Cancer Research 23, 330-335, 2017.
8 Lu, J. W. et al. Cabozantinib is selectively cytotoxic in acute myeloid leukemia cells with FLT3-internal tandem duplication (FLT3-ITD). Cancer letters 376, 218-225, 2016.
9 Small, D. et al. FLT3 mutations: biology and treatment. Hematology Am Soc Hematol Educ Program, 178-184, 2006.
10 Grafone, T. et al. An overview on the role of FLT3-tyrosine kinase receptor in acute myeloid leukemia: biology and treatment. Oncol Rev 6, e8, 2012.
11 Swords, R. et al. Targeting the FMS-like tyrosine kinase 3 in acute myeloid leukemia. Leukemia 26, 2176-2185, 2012.
12 Griffith, J. et al. The structural basis for autoinhibition of FLT3 by the juxtamembrane domain. Mol Cell 13, 169-178, 2004.
13 Thiede, C. et al. Analysis of FLT3-activating mutations in 979 patients with acute myelogenous leukemia: association with FAB subtypes and identification of subgroups with poor prognosis. Blood 99, 4326-4335, 2002.
14 Treiber, D. K. et al. Ins and outs of kinase DFG motifs. Chem Biol 20, 745-746, 2013.
15 Zhang, J. et al. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9, 28-39, 2009.
16 Thomas, L. W. et al. Mcl-1; the molecular regulation of protein function. FEBS letters 584, 2981-2989, 2010.
17 Yoshimoto, G. et al. FLT3-ITD up-regulates MCL-1 to promote survival of stem cells in acute myeloid leukemia via FLT3-ITD-specific STAT5 activation. Blood 114, 5034-5043, 2009.
18 Wang, J. M. et al. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-Kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol 19, 6195-6206 , 1999.
19 Ding, Q. Q. et al. Degradation of Mcl-1 by beta-TrCP mediates glycogen synthase kinase 3-induced tumor suppression and chemosensitization. Mol Cell Biol 27, 4006-4017, 2007.
20 Kasper, S. et al. Targeting MCL-1 sensitizes FLT3-ITD-positive leukemias to cytotoxic therapies. Blood Cancer J 2, 2012.
21 MacDonald, B. T. et alWnt/beta-Catenin Signaling: Components, Mechanisms, and Diseases. Dev Cell 17, 9-26, 2009.
22 Momtazi-Borojeni, A. A. et al. The novel role of pyrvinium in cancer therapy. J Cell Physiol, 2017.
23 Deng, L. et al. Pyrvinium targets autophagy addiction to promote cancer cell death. Cell Death Dis 4, e614, 2013.
24 Thorne, C. A. et al. Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nature chemical biology 6, 829-836, 2010.
25 Carrella, D. et al. Computational drugs repositioning identifies inhibitors of oncogenic PI3K/AKT/P70S6K-dependent pathways among FDA-approved compounds. Oncotarget 7, 58743-58758, 2016.
26 Venerando, A. et al. Pyrvinium pamoate does not activate protein kinase CK1, but promotes Akt/PKB down-regulation and GSK3 activation. The Biochemical journal 452, 131-137, 2013.
27 Xiao, M. F. et al. Pyrvinium selectively induces apoptosis of lymphoma cells through impairing mitochondrial functions and JAK2/STAT5. Biochem Bioph Res Co 469, 716-722, 2016.
28 Matsuo, Y. et al. Two acute monocytic leukemia (AML-M5a) cell lines (MOLM-13 and MOLM-14) with interclonal phenotypic heterogeneity showing MLL-AF9 fusion resulting from an occult chromosome insertion, ins(11;9)(q23;p22p23). Leukemia 11, 1469-1477 , 1997.
29 Vorkas, P. A. et al. PIK3CA Hotspot Mutation Scanning by a Novel and Highly Sensitive High-Resolution Small Amplicon Melting Analysis Method. J Mol Diagn 12, 697-704, 2010.
30 Dillon, L. M. et al. Therapeutic Targeting of Cancers with Loss of PTEN Function. Curr Drug Targets 15, 65-79, 2014.
31 Kim, M. S. et al. Mutational analysis of oncogenic AKT E17K mutation in common solid cancers and acute leukaemias. Brit J Cancer 98, 1533-1535, 2008.
32 McCubrey, J. A. et al. Mutations and Deregulation of Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR Cascades Which Alter Therapy Response. Oncotarget 3, 954-987 , 2012.
33 Prior, I. A. et al. A comprehensive survey of Ras mutations in cancer. Cancer research 72, 2457-2467, 2012.
34 Ishii, I. et al. Reprofiling a classical anthelmintic, pyrvinium pamoate, as an anti-cancer drug targeting mitochondrial respiration. Frontiers in oncology 2, 137, 2012.
35 Borst, P. et al. Mammalian ABC transporters in health and disease. Annu Rev Biochem 71, 537-592, 2002.
36 Gottesman, M. M. et al. The molecular basis of multidrug resistance in cancer: The early years of P-glycoprotein research. FEBS letters 580, 998-1009, 2006.
37 Deeley, R. G. et al. Transmembrane transport of endo- and xenobiotics by mammalian ATP-binding cassette multidrug resistance proteins. Physiol Rev 86, 849-899, 2006.
38 Shibayama, Y. et al. Multidrug Resistance Protein 2 Implicates Anticancer Drug-Resistance to Sorafenib. Biol Pharm Bull 34, 433-435, 2011.
39 Sarkadi, B. et al. Human multidrug resistance ABCB and ABCG transporters: Participation in a chemoimmunity defense system. Physiol Rev 86, 1179-1236, 2006.
40 Kiyoi, H. et al. Flt3 Inhibitors: Recent Advances and Problems for Clinical Application. Nagoya J Med Sci 77, 7-17, 2015.
41 Meshinchi, S. et al. Structural and numerical variation of FLT3/ITD in pediatric AML. Blood 111, 4930-4933, 2008.
42 Moore, A. S. et al. Selective FLT3 inhibition of FLT3-ITD+ acute myeloid leukaemia resulting in secondary D835Y mutation: a model for emerging clinical resistance patterns. Leukemia 26, 1462-1470, 2012.
43 Baker, S. D. et al. Emergence of polyclonal FLT3 tyrosine kinase domain mutations during sequential therapy with sorafenib and sunitinib in FLT3-ITD-positive acute myeloid leukemia. Clinical cancer research : an official journal of the American Association for Cancer Research 19, 5758-5768, 2013.
44 Man, C. H. et al. Sorafenib treatment of FLT3-ITD+ acute myeloid leukemia: favorable initial outcome and mechanisms of subsequent nonresponsiveness associated with the emergence of a D835 mutation. Blood 119, 5133-5143, 2012.
45 Smith, C. C. et al. Validation of ITD mutations in FLT3 as a therapeutic target in human acute myeloid leukaemia. Nature 485, 260-U153, 2012.
46 Nguyen, B. et al. FLT3 activating mutations display differential sensitivity to multiple tyrosine kinase inhibitors. Oncotarget 8, 10931-10944, 2017.
47 Nosaka, T. et al. STAT5 as a molecular regulator of proliferation, differentiation and apoptosis in hematopoietic cells. Embo J 18, 4754-4765, 1999.
48 Berns, K. et al. A functional genetic approach identifies the PI3K pathway as a major determinant of Trastuzumab resistance in breast cancer. Ejc Suppl 7, 17-17, 2009.
49 Paraiso, K. H. et al. PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression. Cancer research 71, 2011.
50 Samuels, Y. et al. Mutant PIK3CA promotes cell growth and invasion of human cancer cells. Cancer Cell 7, 561-573, 2005.
51 Piloto, O. et al. Prolonged exposure to FLT3 inhibitors leads to resistance via activation of parallel signaling pathways. Blood 109, 1643-1652, 2007.
52 Knickelbein, K. et al.Mutant KRAS as a critical determinant of the therapeutic response of colorectal cancer. Genes & diseases 2, 4-12, 2015.
53 Johnson, D. B. et al.Treatment of NRAS-Mutant Melanoma. Curr Treat Option On 16, 2015.
54 Konopleva, M. et al. Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. Cancer Cell 10, 375-388, 2006.
55 Wu, D. Q. et al.GSK3: a multifaceted kinase in Wnt signaling. Trends Biochem Sci 35, 161-168, 2010.
56 Fang, X. J. et al. Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. P Natl Acad Sci USA 97, 11960-11965, 2000.
57 Sutherland, C. et al.Inactivation of Glycogen-Synthase Kinase-3-Beta by Phosphorylation - New Kinase Connections in Insulin and Growth-Factor Signaling. Biochemical Journal 296, 15-19, 1993.
58 Sutherland, C. et al. The Alpha-Isoform of Glycogen-Synthase Kinase-3 from Rabbit Skeletal-Muscle Is Inactivated by P70 S6 Kinase or Map Kinase-Activated Protein Kinase-1 in-Vitro. FEBS letters 338, 37-42, 1994.
59 Lara, R. et al. The p90 RSK family members: common functions and isoform specificity. Cancer research 73, 5301-5308, 2013.
60 Faivre, S. et al. Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5, 671-688, 2006.
61 Thamilselvan, V. et al.Anticancer efficacy of deguelin in human prostate cancer cells targeting glycogen synthase kinase-3 beta/beta-catenin pathway. Int J Cancer 129, 2916-2927, 2011.
62 Takahashi-Yanaga, F. et al. Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)-mediated signal transduction pathway: inhibitors of the Wnt/beta-catenin signaling pathway as novel anticancer drugs. Journal of pharmacological sciences 109, 179-183, 2009.
63 Lin, S. Y. et al. beta-catenin, a novel prognostic marker for breast cancer: Its roles in cyclin D1 expression and cancer progression. P Natl Acad Sci USA 97, 4262-4266, 2000.
64 Tetsu, O. et al. Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature 398, 422-426, 1999.
65 Lin, H. H. et al. Inhibition of the Wnt/beta-catenin signaling pathway improves the anti-tumor effects of sorafenib against hepatocellular carcinoma. Cancer letters 381, 58-66, 2016.
66 Yap, T. A. et al. First-in-Man Clinical Trial of the Oral Pan-AKT Inhibitor MK-2206 in Patients With Advanced Solid Tumors. J Clin Oncol 29, 4688-4695, 2011.
67 LoRusso, P. M. et al. Phase I and pharmacodynamic study of the oral MEK inhibitor CI-1040 in patients with advanced malignancies. J Clin Oncol 23, 5281-5293, 2005.
68 Zhao, W. N. et al. Class I phosphatidylinositol 3-kinase inhibitors for cancer therapy. Acta Pharmacol Sin B 7, 27-37, 2017.
69 Bijur, G. N. et al. Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 87, 1427-1435, 2003.
70 Li, C. et al. PI3K/AKT signaling regulates bioenergetics in immortalized hepatocytes. Free Radical Bio Med 60, 29-40, 2013.
71 Xiang, W. et al. Pyrvinium selectively targets blast phase-chronic myeloid leukemia through inhibition of mitochondrial respiration. Oncotarget 6, 33769-33780, 2015.
72 Harada, Y. et al. Pyrvinium pamoate inhibits proliferation of myeloma/erythroleukemia cells by suppressing mitochondrial respiratory complex I and STAT3. Cancer letters 319, 83-88, 2012.
73 Wiegering, A. et al. The impact of pyrvinium pamoate on colon cancer cell viability. Int J Colorectal Dis 29, 1189-1198, 2014.
74 Di Bona, E. et al. Prognostic significance of CD56 antigen expression in acute myeloid leukemia. Haematologica 87, 250-256, 2002.
75 Rego, E. M. et al. The expression of the CD56 antigen is associated with poor prognosis in patients with acute myeloid leukemia. Revista brasileira de hematologia e hemoterapia 33, 176-177, 2011.
76 Poli, A. et al. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology 126, 458-465, 2009.
77 Raspadori, D. et al. CD56 antigenic expression in acute myeloid leukemia identifies patients with poor clinical prognosis. Leukemia 15, 1161-1164 , 2001.
78 Baer, M. R. et al. Expression of the neural cell adhesion molecule CD56 is associated with short remission duration and survival in acute myeloid leukemia with t(8;21)(q22;q22). Blood 90, 1643-1648 (1997).
80. Phase I Trial of Cabozantinib in Patients With Relapsed or Refractory Acute Myeloid Leukemia (AML).( ClinicalTrials.gov Identifier: NCT01961765).
81 Robert A. et al.Pyrvinium pamote. Department of Clinical Investigation,16, 716-719, 1974.
82 Smith T. C. et al. Absorption of pyrvinium pamoate. Department of Clinical Investigation,19, 802-806, 1976.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7727-
dc.description.abstractFLT3內部串聯重複(FLT3-ITD)是急性骨髓性白血病常見的突變類型,約有30~40%的AML病人具有此突變,這類的病患在臨床上的預後不佳;因此,FLT3被認為是有潛力的治療標的,目前也已經發展出許多能夠作用於FLT3的標靶藥物,其中包括cabozantinib(XL184)。
實驗室先前在in vitro的研究中發現cabozantinib於低劑量即能夠抑制FLT3-ITD突變的AML細胞株Molm13,在in vivo實驗亦看到cabozantinib能夠顯著地抑制Molm13腫瘤的生長。由於使用FLT3標靶藥物常會有復發的情形,因此有必要著手進行Molm13對於cabozantinib的抗藥性探討。
本篇研究利用持續給予藥物的方式,為期5個月後建立出對cabozantinib具抗藥性的細胞株Molm13-XR,其對於cabozantinib的IC50為473.36 ±154.73 nM,母細胞株Molm13-P為1.06±0.93 nM。以RNA-seq篩選後發現Molm13-XR具有FLT3 D835Y突變,此結果也進一步以pyrosequencing確認。
另外以phospho-kinase array篩選並用西方墨點法確認FLT3以及其下游訊息傳遞路徑表現情形,觀察到p-FLT3、p-AKT、p-STAT5以及p-ERK皆增加。此外,phospho-kinase array的篩選中發現Molm13-XR的p-GSK3β-Ser9在眾多激酶當中有最大程度的增加且以西方墨點法確認,並觀察到下游的抗凋亡蛋白Mcl-1增加。
其他藥物的細胞抑制實驗結果顯示Molm13-XR對於第一型的FLT3抑制劑midostaurin以及crenolanib仍具有感受性,能夠在低濃度下有抑制效果;然而對於第二型的FLT3抑制劑sorafenib、quizartinib則依然具有抗藥性。除了FLT3抑制劑之外,還另外使用了MEK抑制劑CI-1040、AKT抑制劑MK-2206,但皆無法在臨床上可達到的藥物濃度下達到抑制效果。
Pyrvinium pamote(PP)是一種FDA已核准使用的蟯蟲治療用藥。我們發現其於低濃度下即可以抑制不論是Molm13-P或是Molm13-XR的生長,進一步分析其能夠引發細胞凋亡、減少細胞的ATP。另外以西方墨點法偵測到AKT、STAT5的活性受到抑制,以及抗凋亡蛋白Mcl-1的減少、切割態的caspase 3增加。
總體而言,從我們的實驗結果顯示FLT3 D835Y以及抗凋亡蛋白Mcl-1增加,可能是造成Molm13-XR對cabozantinib產生抗藥性的原因。
zh_TW
dc.description.abstractInternal tandem duplication mutation in FLT3 (FLT3-ITD) represents one of the most common gene alterations in AML and confers a poor prognosis. FLT3 has emerged as a promising molecular target in therapy of AML. There are several FLT3 inhibitors have been used in clinical trials including cabozantinib (XL184).
Our previous work demonstrated that cabozantinib potently inhibited the viability of a FLT3-ITD+ Molm13 cell line also known as Molm13-P in vitro. Also, cabozantinib significantly delayed the outgrowth of Molm13-P tumor compaired with vehicle treated mices in vivo. However, drug resistance in patients after target therapy has become a clinical problem. Therefore, it is necessary to understand the underlying mechanisms confering drug resistance.
We generated cabozantinib resistant Molm13 cells also known as Molm13-XR by treating Molm13-P with progressively increasing concentrations of cabozantinib from 1nM to 1μM for approximately 5 months. Cabozantinib potently decreased the viability of Molm13-P with a 50% inhibitory concentration (IC50) of 1.06±0.93 nM, whereas the resistant strain Molm13-XR was 473.36 ±154.73 nM. There was a new FLT3 D835Y mutation in Molm13-XR screened by RNA-seq and confirmed by pyrosequencing.
In addition, phosphorylated level of FLT3 and its downstream molecules were screened by phospho-kinase array and confirmed by western blot. We demonstrated that there were increased phosphorelated level of FLT3、AKT、STAT5 and ERK. Morever, p-GSK3β-Ser9 had the most increased level among all kinases in Molm13-XR compared with Molm13-P screened by phospho-kinase array and confirmed by western blot. Furthermore, there was higher level of Mcl-1, an anti-apoptotic protein, in Molm13-XR compared with Molm13-P.
By performing cytotoxicity assay in Molm13-XR, our results suggested Molm13-XR exhibited good susceptibility to midosaturin and crenolanib while remaning resistant to sorafenib and quizartinib. Other than FLT3 inhibitors, we also tested MEK inhibitor, CI-1040、AKT inhibitor, MK-2206. However, these inhibitors couldn’t inhibit Molm13-XR at clinically releveant doses.
We found that pyrvinium pamote(PP), an anthelmintic drug approved by FDA, had a potent cytotoxicity toward Molm13-P and Molm13-XR at a low nanomolar concentration of 14.81±10.77 and 13.45±6.59 nM. PP would inhibit AKT and STAT5 activities and decrease ATP level in Molm13-XR. Also, PP would downregulate anti-apoptotic protein Mcl-1 and upregulate cleaved caspase 3 in Molm13-XR.
PP would induce apoptosis and decrease ATP level in Molm13-XR. The AKT and STAT5 signaling were downregulated and anti-apoptotic protein Mcl-1 is decreased by pyrvinium pamote treatment.
Overall, we established a cabozantinib resistant AML cell line Molm13-XR. Our results show that FLT3 D835Y mutation and upregulation of Mcl-1might contribute to cabozantinib resistance.
en
dc.description.provenanceMade available in DSpace on 2021-05-19T17:51:29Z (GMT). No. of bitstreams: 1
ntu-106-R04424009-1.pdf: 4391901 bytes, checksum: e685ac0655570879ed0bb4d27ede8ea1 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents目錄 I
圖目錄 III
表目錄 IV
縮寫表 V
摘要 VI
Abstract VIII
第一章 前言 1
1.1 急性骨髓性白血病簡介 1
1.1.1 急性骨髓性白血病(Acute Myeloid Leukemia, AML) 1
1.1.2 AML之分類 1
1.1.3 AML之治療 1
1.2 Cabozantinib (XL184)之簡介 2
1.3 FLT3之簡介 2
1.4 Tyrosine kinase(TK)以及tyrosine kinase inhibitor(TKI)之簡介 3
1.5 Mcl-1蛋白之簡介 3
1.6 Wnt/β-catenin signaling pathway 4
1.7 Pyrvinium pamote(PP)之簡介 4
第二章 研究目的 5
第三章 材料與方法 6
3.1. 材料 6
3.1.1. 細胞株: Molm-13(ATCC :ACC554) 6
3.1.2. 儀器設備: 6
3.1.3. 藥品: 7
3.1.4. 抗體: 8
3.1.5. 試劑組: 9
3.1.6. 藥品與試劑配製: 10
3.2. 方法 11
3.2.1. 細胞培養 11
3.2.2. 細胞抑殺試驗 (MTS assay) 11
3.2.3. 細胞生長曲線 11
3.2.4. 白血球表面抗體螢光染色 12
3.2.5. 細胞萃取物製備 12
3.2.6. 蛋白質濃度定量 12
3.2.7. 西方墨點法 12
3.2.8. RNA萃取 13
3.2.9. 反轉錄聚合酶連鎖反應(RT-PCR) 13
3.2.10. PCR聚合酶連鎖反應 14
3.2.11. 1 %洋菜膠製備與電泳 14
3.2.12. 聚合酶連鎖反應產物之純化 14
3.2.13. 序列分析 15
3.2.14. 即時監控聚合酶連鎖反應(q-RT-PCR) 15
3.2.15. Pyrosequencing 15
3.2.16. GeneScan 16
3.2.17. 建立對cabozantinib具抗藥性之Molm13-XR 16
3.2.18. Human phospho-kinase array 16
3.2.19. 核質蛋白分離實驗 17
3.2.20. RNA-seq 17
3.2.21. 統計方法 17
第四章 實驗結果 18
4.1. Cabozantinib對於Molm13-P以及Molm13-XR之抑制效果 18
4.2. Molm13-P以及Molm13-XR之FLT3情形 18
4.3. Molm13-P以及Molm13-XR的生長曲線以及細胞週期情形 19
4.4. 第一型及第二型FLT3抑制劑對於Molm13-P以及Molm13-XR之抑制效果 19
4.5. Molm13-P以及Molm13-XR的激酶磷酸化程度之差異 20
4.6. 細胞凋亡(apoptosis)相關蛋白在Molm13-P以及Molm13-XR的
差異 20
4.7. PIK3CA、PTEN、AKT之突變熱點於Molm13-P以及Molm13-XR的
情形 20
4.8. Molm13-P以及Molm13-XR的K-ras、N-ras突變情形 21
4.9. Molm13-P以及Molm13-XR的β-catenin、MYC、CCND1的差異
22
4.10. Molm13-P與Molm13-XR具差異性表現之1057個基因於KEGG database 中具顯著意義之訊息傳遞路徑 22
4.11. ICG-001對於Molm13-P以及Molm13-XR之抑制性 23
4.12. 各種抑制劑對於Molm13-P以及Molm13-XR的抑制效果 23
4.13. Pyrvinium pamote的作用機制 23
4.14. Molm13-P與Molm13-XR的表面抗原差異 24
4.15. Molm13-P與Molm13-XR的ABC傳輸蛋白的mRNA表現量 25
第五章 討論 26
第六章 參考文獻 33
圖 39
附圖 59
附表 65
表 68
dc.language.isozh-TW
dc.titleCabozantinib抗藥性血癌細胞株Molm13-XR的建立、特性分析以及治療策略zh_TW
dc.titleEstablishment, characterization and treatment strategy of cabozantinib-resistant Molm13-XR leukemic cellsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee何元順(Yuan-Soon Ho),陳建源(Chien-Yuan Chen),胡忠怡(Chung-Yi Hu),歐大諒(Da-Liang Ou)
dc.subject.keyword急性骨髓性白血病,cabozantinib抗藥性,FLT3 D835Y,Mcl-1,pyrvinium pamote,zh_TW
dc.subject.keywordAML,cabozantinib-resistance,FLT3 D835Y,Mcl-1,pyrvinium pamote,en
dc.relation.page69
dc.identifier.doi10.6342/NTU201702820
dc.rights.note同意授權(全球公開)
dc.date.accepted2017-08-09
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf4.29 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved