Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 免疫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77273
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林國儀
dc.contributor.authorChia-Wei Changen
dc.contributor.author張家瑋zh_TW
dc.date.accessioned2021-07-10T21:53:41Z-
dc.date.available2021-07-10T21:53:41Z-
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-12
dc.identifier.citation1 Nagasawa, T. The chemokine CXCL12 and regulation of HSC and B lymphocyte development in the bone marrow niche. Advances in experimental medicine and biology 602, 69-75, doi:10.1007/978-0-387-72009-8_9 (2007).
2 Cammas, F. et al. Mice lacking the transcriptional corepressor TIF1beta are defective in early postimplantation development. Development 127, 2955-2963 (2000).
3 O'Riordan, M. & Grosschedl, R. Coordinate regulation of B cell differentiation by the transcription factors EBF and E2A. Immunity 11, 21-31 (1999).
4 Herzog, S., Reth, M. & Jumaa, H. Regulation of B-cell proliferation and differentiation by pre-B-cell receptor signalling. Nat Rev Immunol 9, 195-205, doi:10.1038/nri2491 (2009).
5 Nutt, S. L., Hodgkin, P. D., Tarlinton, D. M. & Corcoran, L. M. The generation of antibody-secreting plasma cells. Nature Reviews Immunology 15, 160-171, doi:10.1038/nri3795 (2015).
6 Shapiro-Shelef, M. & Calame, K. Regulation of plasma-cell development. Nat Rev Immunol 5, 230-242, doi:10.1038/nri1572 (2005).
7 Cazac, B. B. & Roes, J. TGF-beta receptor controls B cell responsiveness and induction of IgA in vivo. Immunity 13, 443-451 (2000).
8 Snapper, C. M. & Paul, W. E. Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236, 944-947 (1987).
9 Shinnakasu, R. & Kurosaki, T. Regulation of memory B and plasma cell differentiation. Curr Opin Immunol 45, 126-131, doi:10.1016/j.coi.2017.03.003 (2017).
10 Shaffer, A. L. et al. Blimp-1 Orchestrates Plasma Cell Differentiation by Extinguishing the Mature B Cell Gene Expression Program. Immunity 17, 51-62 (2002).
11 Shapiro-Shelef, M. et al. Blimp-1 Is Required for the Formation of Immunoglobulin Secreting Plasma Cells and Pre-Plasma Memory B Cells. Immunity 19, 607-620 (2003).
12 Tellier, J. et al. Blimp-1 controls plasma cell function through the regulation of immunoglobulin secretion and the unfolded protein response. Nature immunology 17, 323-330, doi:10.1038/ni.3348 (2016).
13 Minnich, M. et al. Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation. Nature immunology 17, 331-343, doi:10.1038/ni.3349 (2016).
14 Horcher, M., Souabni, A. & Busslinger, M. Pax5/BSAP Maintains the Identity of B Cells in Late B Lymphopoiesis. Immunity 14, 779-790 (2001).
15 Cattoretti, G. et al. BCL-6 protein is expressed in germinal-center B cells. Blood 86, 45-53 (1995).
16 Dent, A. L., Shaffer, A. L., Yu, X., Allman, D. & Staudt, L. M. Control of inflammation, cytokine expression, and germinal center formation by BCL-6. Science 276, 589-592 (1997).
17 Muto, A. et al. The transcriptional programme of antibody class switching involves the repressor Bach2. Nature 429, 566-571, doi:10.1038/nature02596 (2004).
18 Vasanwala, F. H., Kusam, S., Toney, L. M. & Dent, A. L. Repression of AP-1 function: a mechanism for the regulation of Blimp-1 expression and B lymphocyte differentiation by the B cell lymphoma-6 protooncogene. J Immunol 169, 1922-1929 (2002).
19 Angelin-Duclos, C., Cattoretti, G., Lin, K. I. & Calame, K. Commitment of B lymphocytes to a plasma cell fate is associated with Blimp-1 expression in vivo. J Immunol 165, 5462-5471 (2000).
20 Falini, B. et al. A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood 95, 2084-2092 (2000).
21 Mittrucker, H. W. et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 275, 540-543 (1997).
22 Shaffer, A. L. et al. XBP1, Downstream of Blimp-1, Expands the Secretory Apparatus and Other Organelles, and Increases Protein Synthesis in Plasma Cell Differentiation. Immunity 21, 81-93 (2004).
23 Friedman, J. R. et al. KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 10, 2067-2078, doi:10.1101/gad.10.16.2067 (1996).
24 Ivanov, A. V. et al. PHD domain-mediated E3 ligase activity directs intramolecular sumoylation of an adjacent bromodomain required for gene silencing. Mol Cell 28, 823-837, doi:10.1016/j.molcel.2007.11.012 (2007).
25 Quenneville, S. et al. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol Cell 44, 361-372, doi:10.1016/j.molcel.2011.08.032 (2011).
26 Zuo, X. et al. Zinc finger protein ZFP57 requires its co-factor to recruit DNA methyltransferases and maintains DNA methylation imprint in embryonic stem cells via its transcriptional repression domain. J Biol Chem 287, 2107-2118, doi:10.1074/jbc.M111.322644 (2012).
27 Liang, Q. et al. Tripartite motif-containing protein 28 is a small ubiquitin-related modifier E3 ligase and negative regulator of IFN regulatory factor 7. J Immunol 187, 4754-4763, doi:10.4049/jimmunol.1101704 (2011).
28 Jakobsson, J. et al. KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress. Neuron 60, 818-831, doi:10.1016/j.neuron.2008.09.036 (2008).
29 Wang, C. et al. MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation. EMBO J 24, 3279-3290, doi:10.1038/sj.emboj.7600791 (2005).
30 Doyle, J. M., Gao, J., Wang, J., Yang, M. & Potts, P. R. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol Cell 39, 963-974, doi:10.1016/j.molcel.2010.08.029 (2010).
31 Krischuns, T. et al. Phosphorylation of TRIM28 Enhances the Expression of IFN-beta and Proinflammatory Cytokines During HPAIV Infection of Human Lung Epithelial Cells. Front Immunol 9, 2229, doi:10.3389/fimmu.2018.02229 (2018).
32 Tie, C. H. et al. KAP1 regulates endogenous retroviruses in adult human cells and contributes to innate immune control. EMBO Rep, doi:10.15252/embr.201745000 (2018).
33 Santoni de Sio, F. R. et al. KAP1 regulates gene networks controlling T-cell development and responsiveness. FASEB J 26, 4561-4575, doi:10.1096/fj.12-206177 (2012).
34 Santoni de Sio, F. R. et al. KAP1 regulates gene networks controlling mouse B-lymphoid cell differentiation and function. Blood 119, 4675-4685, doi:10.1182/blood-2011-12-401117 (2012).
35 Tanaka, S. et al. KAP1 Regulates Regulatory T Cell Function and Proliferation in Both Foxp3-Dependent and -Independent Manners. Cell Rep 23, 796-807, doi:10.1016/j.celrep.2018.03.099 (2018).
36 Chikuma, S., Suita, N., Okazaki, I. M., Shibayama, S. & Honjo, T. TRIM28 prevents autoinflammatory T cell development in vivo. Nature immunology 13, 596-603, doi:10.1038/ni.2293 (2012).
37 Jiang, Y. et al. Epigenetic activation during T helper 17 cell differentiation is mediated by Tripartite motif containing 28. Nat Commun 9, 1424, doi:10.1038/s41467-018-03852-2 (2018).
38 Zan, H. & Casali, P. Regulation of Aicda expression and AID activity. Autoimmunity 46, 83-101, doi:10.3109/08916934.2012.749244 (2013).
39 Li, G., Zan, H., Xu, Z. & Casali, P. Epigenetics of the antibody response. Trends in immunology 34, 460-470, doi:10.1016/j.it.2013.03.006 (2013).
40 Crouch, E. E. et al. Regulation of AID expression in the immune response. J Exp Med 204, 1145-1156, doi:10.1084/jem.20061952 (2007).
41 Zan, H. & Casali, P. Epigenetics of Peripheral B-Cell Differentiation and the Antibody Response. Frontiers in Immunology 6, doi:10.3389/fimmu.2015.00631 (2015).
42 Begum, N. A., Stanlie, A., Nakata, M., Akiyama, H. & Honjo, T. The histone chaperone Spt6 is required for activation-induced cytidine deaminase target determination through H3K4me3 regulation. J Biol Chem 287, 32415-32429, doi:10.1074/jbc.M112.351569 (2012).
43 Odegard, V. H., Kim, S. T., Anderson, S. M., Shlomchik, M. J. & Schatz, D. G. Histone modifications associated with somatic hypermutation. Immunity 23, 101-110, doi:10.1016/j.immuni.2005.05.007 (2005).
44 Caganova, M. et al. Germinal center dysregulation by histone methyltransferase EZH2 promotes lymphomagenesis. J Clin Invest 123, 5009-5022, doi:10.1172/jci70626 (2013).
45 Good-Jacobson, K. L. et al. Regulation of germinal center responses and B-cell memory by the chromatin modifier MOZ. Proc Natl Acad Sci U S A 111, 9585-9590, doi:10.1073/pnas.1402485111 (2014).
46 Luckey, C. J. et al. Memory T and memory B cells share a transcriptional program of self-renewal with long-term hematopoietic stem cells. Proc Natl Acad Sci U S A 103, 3304-3309, doi:10.1073/pnas.0511137103 (2006).
47 Yu, J., Angelin-Duclos, C., Greenwood, J., Liao, J. & Calame, K. Transcriptional Repression by Blimp-1 (PRDI-BF1) Involves Recruitment of Histone Deacetylase. Molecular and Cellular Biology 20, 2592, doi:10.1128/MCB.20.7.2592-2603.2000 (2000).
48 Gyory, I., Wu, J., Fejer, G., Seto, E. & Wright, K. L. PRDI-BF1 recruits the histone H3 methyltransferase G9a in transcriptional silencing. Nature immunology 5, 299-308, doi:10.1038/ni1046 (2004).
49 Cheng, C. T., Kuo, C. Y. & Ann, D. K. KAPtain in charge of multiple missions: Emerging roles of KAP1. World J Biol Chem 5, 308-320, doi:10.4331/wjbc.v5.i3.308 (2014).
50 Nojima, T. et al. In-vitro derived germinal centre B cells differentially generate memory B or plasma cells in vivo. Nature Communications 2, 465, doi:10.1038/ncomms1475 (2011).
51 Hung, K. H. et al. The KDM4A/KDM4C/NF-kappaB and WDR5 epigenetic cascade regulates the activation of B cells. Nucleic Acids Res 46, 5547-5560, doi:10.1093/nar/gky281 (2018).
52 Iyengar, S. & Farnham, P. J. KAP1 protein: an enigmatic master regulator of the genome. J Biol Chem 286, 26267-26276, doi:10.1074/jbc.R111.252569 (2011).
53 Peng, J. & Wysocka, J. It takes a PHD to SUMO. Trends Biochem Sci 33, 191-194, doi:10.1016/j.tibs.2008.02.003 (2008).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77273-
dc.description.abstractKRAB-associated protein 1 (KAP1)在細胞中作為染色質調控因子,透過和核小體去乙醯酶 (NuRD)複合體及H3K9組蛋白甲基轉移酶等組蛋白修飾因子協同作用來使得染色質轉變為較緊密的異染色質,進而抑制基因表達。過去的研究文獻中指出KAP1會調控第17型輔助T細胞(Th17)的發育,以及影響調節型T細胞的功能。在B細胞中,KAP1缺失則被發現會造成邊緣區B細胞(Marginal zone B cell)及濾泡型B細胞(Follicular B cell)數目減少,說明KAP1參與在B細胞早期發育過程中。然而,KAP1在漿細胞分化中所扮演的角色目前仍未釐清。在本研究中,我們以Trim28f/f IgHCγ1-Cre小鼠為模式,探討KAP1基因(Trim28)在生發中心B細胞(Germinal center B cell)中被剔除後對漿細胞分化造成之影響。我們發現在T-dependent抗原刺激下,KAP1剔除後分化出的漿細胞減少,同時伴隨著較少的生發中心B細胞。下一步欲探討的問題是KAP1對漿細胞生產免疫球蛋白(Immunoglobulin, Ig)的功能是否有影響。結果顯示在初級及次級T-dependent免疫反應中,Trim28基因剔除後之漿細胞產生的IgG數量皆顯著降低。然而在in vitro實驗中,則可觀察到生發中心B細胞及漿細胞在刺激過後之複製率及細胞凋亡率並無差異,說明其並非造成漿細胞及生發中心B細胞數量降低之原因。漿細胞分化過程中的主要調控因子為B lymphocyte-induced maturation protein-1 (Blimp-1),我們發現到在KAP1剔除之CD138+漿細胞中的Blimp-1 蛋白質及RNA皆下降,說明KAP1對Blimp-1的表現有重要影響,進而可影響到漿細胞之分化及功能。在蛋白質交互作用檢測(proximity ligation assay, PLA)及免疫共沈澱實驗(co-immunoprecipitation)中顯示,KAP1和Blimp-1主要在漿細胞核中結合,說明KAP1可能透過和Blimp-1結合並在細胞核中調控基因表現。為探討KAP1是否會調控Prdm1 (Blimp-1基因)表現,我們進行染色質免疫沈澱定量聚合酶鏈鎖反應實驗(ChIP-qPCR),卻發現在漿細胞中KAP1並未結合至已知作用於Prdm1之基因位置,然而此結果不能排除KAP1藉由結合至遠端之基因位置進行調控或是有更多蛋白質參與調控的可能性。綜合而言,本研究中發現到KAP1可能在漿細胞中透過和Blimp-1結合來調控Blimp-1本身的表現,並影響漿細胞之分化過程,而KAP1在漿細胞中調控基因的機制還需要更進一步的研究探討。zh_TW
dc.description.abstractKRAB-associated protein 1 (KAP1) is a chromatin remodeling regulator that cooperates with histone modifiers, such as Nucleosome Remodeling Deacetylase (NuRD) complex or H3K9 methyltransferase SETDB1 to form heterochromatin, thus repress the gene expression. Recent reports also indicated that KAP1 mainly functions as a transcriptional activator to regulate T-helper 17 (Th17) cell development and the function of regulatory T cells. KAP1 also regulates early B cell development through maintaining the balance of homeostasis of marginal zone and follicular B cells. However, the role of KAP1 in plasma cell differentiation is still unknown. Hence, in the study, we deleted KAP1 gene, Trim28, in germinal center (GC) B cells by crossing Trim28f/f mice with IghCγ1-Cre mice. We found that GC-specific depletion of KAP1 impairs plasma cell generation accompanying with reduced GC B cells in vivo and in vitro. We next sought to investigate the function of KAP1 in Ig secretion. We found a significant reduction of IgG production in GC-specific Trim28 deletion mice after primary and secondary T-dependent immunizations. The Trim28-depleted plasma cells and GC B cells showed similar proliferation and apoptotic rates with the control cells in vitro. However, both protein and RNA levels of Blimp-1, which is the master regulator of plasma cell differentiation, are downregulated in KAP1 depleted CD138+ plasma cells, which implies that KAP1 is important for Blimp-1 expression and thus leads to the differentiation of plasma cells. The proximity ligation assay (PLA) and Co-IP experiments also provided the evidences that KAP1 interacts with Blimp-1 in the nucleus, suggesting that KAP1 may involve in the regulation of genes by associating with Blimp-1 in plasma cells. To further identified whether KAP1 regulates Prdm1 expression, we performed chromatin immunoprecipitation-qPCR (ChIP-qPCR), and revealed that KAP1 did not bind to the intron and promoter region of Prdm1 in plasma cells, but we couldn’t exclude the possibility that KAP1 may regulate Prdm1 expression through a binding sequence that was far from the Prdm1 gene or the interaction with other protein. The detailed mechanisms of how KAP1 regulate gene expression in plasma cells need further studies. Taken together, our results suggest that KAP1 associates with Blimp-1 and may involve in the regulation of Blimp-1 and thus promotes plasma cell differentiation.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:53:41Z (GMT). No. of bitstreams: 1
ntu-108-R06449004-1.pdf: 5535296 bytes, checksum: 8c19c56dad585de218c489d7ed62f81f (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
Abstract v
Abbreviation vii
List of Figures xi
Chapter I Introduction 1
1.1 B cell development 1
1.2 B cell terminal differentiation 2
1.3 Transcriptional regulation network of B cell terminal differentiation 4
1.4 KAP1 functions in immune cells 5
1.5 Epigenetic regulation of plasma cell differentiation 8
1.6 Specific Aims 11
Chapter II Materials and Methods 12
2.1 Mice 12
2.2 Immunization 12
2.3 ELISA 13
2.4 ELISpot 13
2.5 Flow cytometry 14
2.6 Fluorescence antibodies used in FACS analysis 14
2.7 Immunoblotting 16
2.8 RNA isolation and RT-quantitative PCR (RT-qPCR) 17
2.9 In-vitro derived GC B cell culture system 18
2.10 Proximity ligation assay (PLA) 19
2.11 Chromatin immunoprecipitation (ChIP) 19
2.12 Co-immunoprecipitation 21
2.13 Knock-down of KAP1 in H929 cell line 21
Chapter III Results 22
3.1 Conditional knockout of Kap1 in GC B cells 22
3.2 Depletion of KAP1 impairs the antibody secretion 22
3.3 KAP1-cKO mice showed diminished plasma cell differentiation 23
3.4 KAP1-cKO mice generated less GC B cells but had no effects on the memory B cells 24
3.5 Depletion of KAP1 leads to less GC B cell formation in the in vitro-derived GC B cell system 25
3.6 The decreased GC B cell and plasma cells in KAP1-cKO mice is not caused by the dysregulation of proliferation and apoptosis in the in vitro-derived GC B cell system 26
3.7 KAP1 is required for plasma cell formation after stimulation in an ex vivo culture 27
3.8 KAP1 regulated Blimp-1 expression 28
3.9 KAP1 bound to the Prdm1 gene locus in naïve B cells but not in the plasma cells 29
3.10 KAP1 interacted with Blimp-1 through its N-terminal region in the nucleus 30
3.11 Depletion of KAP1 led to less H3K9me3 but more H3K9Ac histone modification in memory B cell and plasma cell 31
Chapter IV Discussion 32
Chapter V Figures and legends 37
Chapter VI References 62
dc.language.isozh-TW
dc.subjectKRAB關聯蛋白-1(KAP1)zh_TW
dc.subject漿細胞zh_TW
dc.subject生發中心B細胞zh_TW
dc.subjectB細胞分化zh_TW
dc.subjectPrdm1en
dc.subjectB cell terminal differentiationen
dc.subjectplasma cellen
dc.subjectgerminal center (GC) B cellen
dc.subjectBlimp-1en
dc.subjectTrim28en
dc.subjectKRAB-associated protein 1 (KAP1)en
dc.titleKRAB關聯蛋白-1(KAP1)在B細胞分化過程中所扮演角色zh_TW
dc.titleThe role of KRAB-associated protein 1 (KAP1) in B cell differentiationen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李建國,繆希椿
dc.subject.keywordKRAB關聯蛋白-1(KAP1),生發中心B細胞,漿細胞,B細胞分化,zh_TW
dc.subject.keywordKRAB-associated protein 1 (KAP1),Trim28,Blimp-1,Prdm1,germinal center (GC) B cell,plasma cell,B cell terminal differentiation,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201901859
dc.rights.note未授權
dc.date.accepted2019-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept免疫學研究所zh_TW
顯示於系所單位:免疫學研究所

文件中的檔案:
檔案 大小格式 
ntu-108-R06449004-1.pdf
  未授權公開取用
5.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved