Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 藥理學科所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77269
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林琬琬(Wan-wan Lin)
dc.contributor.authorHyemin Leeen
dc.contributor.author李惠珉zh_TW
dc.date.accessioned2021-07-10T21:53:31Z-
dc.date.available2021-07-10T21:53:31Z-
dc.date.copyright2019-08-28
dc.date.issued2019
dc.date.submitted2019-08-13
dc.identifier.citationREFERENCES
[1] E.K. Bikoff, M.A. Morgan, E.J. Robertson, An expanding job description for Blimp-1/PRDM1, Curr. Opin. Genet. Dev. 19 (2009) 379–385.
[2] M. Minnich, H. Tagoh, P. Bonelt, E. Axelsson, M. Fischer, B. Cebolla, A. Tarakhovsky, S.L. Nutt, M. Jaritz, M. Busslinger, Multifunctional role of the transcription factor Blimp-1 in coordinating plasma cell differentiation, Nat. Immunol. 17 (2016) 331–343.
[3] D.H. Chang, C. Angelin-Duclos, K. Calame, Blimp-1: trigger for differentiation of myeloid lineage, Nat. Immunol. 1 (2000) 169–176.
[4] G. Martins, K. Calame, Regulation and functions of Blimp-1 in T and B lymphocytes, Annu. Rev. Immunol. 26 (2008) 133–169.
[5] Y.H. Chan, M.F. Chiang, Y.C. Tsai, S.T. Su, M.H. Chen, M.S. Hou, K.I. Lin, Absence of the transcriptional repressor Blimp-1 in hematopoietic lineages reveals its role in dendritic cell homeostatic development and function, J. Immunol. 183 (2009) 7039–7046.
[6] A. Kallies, S. Carotta, N.D. Huntington, N.J. Bernard, D.M. Tarlinton, M.J. Smyth, S.L. Nutt, A role for Blimp1 in the transcriptional network controlling natural killer cell maturation, Blood 117 (2011) 1869–1879.
[7] S.H. Fu, L.T. Yeh, C.C. Chu, B.L. Yen, H.K. Sytwu, New insights into Blimp-1 in T lymphocytes: a divergent regulator of cell destiny and effector function, J. Biomed. Sci. 24 (2017) 49.
[8] S.J. Kim, J. Goldstein, K. Dorso, M. Merad, L. Mayer, J.M. Crawford, P.K. Gregersen, B. Diamond, Expression of Blimp-1 in dendritic cells modulates the innate inflammatory response in dextran sodium sulfate-induced colitis, Mol. Med. 20 (2015) 707–719.
[9] K. Calame, Activation-dependent induction of Blimp-1, Curr. Opin. Immunol. 20 (2008) 259–264.
[10] S.C. Lee, A. Bottaro, R.A. Insel, Activation of terminal B cell differentiation by inhibition of histone deacetylation, Mol. Immunol. 39 (2003) 923– 932.
[11] H. Tanaka, A. Muto, H. Shima, Y. Katoh, N. Sax, S. Tajima, A. Brydun, T. Ikura, N. Yoshizawa, H. Masai, Y. Hoshikawa, T. Noda, M. Nio, K. Ochiai, K. Igarashi, Epigenetic regulation of the Blimp-1 gene (Prdm1) in B cells involves Bach2 and histone deacetylase 3, J. Biol. Chem. 291 (2016) 6316–6330.
[12] G.M. Doody, S. Stephenson, R.M. Tooze, Blimp-1 is a target of cellular stress and downstream of the unfolded protein response, Eur. J. Immunol. 36 (2006) 1572–1582.
[13] L. Shimshon, A. Michaeli, R. Hadar, S.L. Nutt, Y. David, A. Navon, A. Waisman, B. Tirosh, SUMOylation of Blimp-1 promotes its proteasomal degradation, FEBS Lett. 585 (2011) 2405–2409.
[14] H.Y. Ying, S.T. Su, P.H. Hsu, C.C. Chang, I.Y. Lin, Y.H. Tseng, M.D. Tsai, H.M. Shih, K. I. Lin, SUMOylation of Blimp-1 is critical for plasma cell differentiation, EMBO Rep. 13 (2012) 631–637.
[15] M. Romagnoli, K. Belguise, Z. Yu, et al., Epithelial-to-mesenchymal transition Induced by TGF-1 is mediated by Blimp-1–dependent repression of BMP-5, Cancer Res. 72 (2012) 6268-6278.
[16] H.C. Chang, D.Y. Huang, N.L. Wu, R. Kannagi, L.F. Wang, Wan-Wan Lin, Blimp-1 transcriptionally induced by EGFR activation and post-translationally regulated by proteasome and lysosome is involved in keratinocyte differentiation, migration and inflammation, J Dermatol Sci. 92 (2018) 151-161.
[17] C.M. Lee, J.W. Park, W.K. Cho, Y. Zhou, Modifiers of TGF-β1 effector function as novel therapeutic targets of pulmonary fibrosis, Korean J. Intern. Med. 29 (2014) 281-290.
[18] M.F. Chiang, S.Y. Yang, I.Y. Lin, J.B. Hong, S.J. Lin, H.Y. Ying, C.M. Chen, S.Y. Wu, F. T. Liu, K.I. Lin, Inducible deletion of the Blimp-1 gene in adult epidermis causes granulocyte-dominated chronic skin inflammation in mice, Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 6476–6481.
[19] E. Magnusdottir, S. Kalachikov, K. Mizukoshi, D. Savitsky, A. Ishida-Yamamoto, A.A. Panteleyev, K. Calame, Epidermal terminal differentiation depends on B lymphocyte-induced maturation protein-1, Proc. Natl. Acad. Sci. U. S. A. 104 (2007) 14988–14993.
[20] S.B. Telerman, E. Rognoni, I. Sequeira, A.O. Pisco, B.M. Lichtenberger, O.J. Culley, P. Viswanathan, R.R. Driskell, F.M. Watt, Dermal Blimp-1 acts downstream of epidermal TGF-β and Wnt/β-catenin to regulate hair follicle formation and growth, J. Invest. Dermatol. 137 (2017) 2270–2281.
[21] D. Nanba, F. Toki, Y. Barrandon, S. Higashiyama, Recent advances in the epidermal growth factor receptor/ligand system biology on skin homeostasis and keratinocyte stem cell regulation, J. Dermatol. Sci. 72 (2013) 81–86.
[22] M.Y. Chang, D.Y. Huang, F.M. Ho, K.C. Huang, W.W. Lin, PKC-dependent human monocyte adhesion requires AMPK and Syk activation. PLoS ONE 7 (2012) e40999.
[23] K.I. Lin, Y.Y. Kao, H.K. Kuo, W.B. Yang, A. Chou, H.H. Lin, A.L. Yu, C.H. Wong, Reishi polysaccharides induce immunoglobulin production through the TLR4/TLR2-mediated induction of transcription factor Blimp-1, J. Biol. Chem. 281 (2006) 24111–24123.
[24] R.L. Siegel, K.D. Miller, A. Jemal, Cancer Statistics 2018, CA Cancer J. Clin. 68 (2018) 7–30.
[25] C. Neuzillet, A. Tijeras-Raballand, R. Cohen, J. Cros, S. Faivre, E. Raymond, A, Targeting the TGF-β pathway for cancer therapy, Pharmacol. Ther. 147 (2015) 22–31.
[26] T. Watabe, K. Miyazono, Roles of TGF-β family signaling in stem cell renewal and differentiation, Cell Res. 19 (2009) 103-115.
[27] M. Sakaki-Yumoto, Y. Katsuno, R. Derynck, TGF-β family signaling in stem cells, Biochim. Biophys. Acta. 1830 (2013) 2280-2296.
[28] T. Ijaz, K. Pazdrak, M. Kalita, R. Konig, S. Choudhary, B. Tian, I. Boldogh, A.R. Brasier, Systems biology approaches to understanding epithelial mesenchymal transition (EMT) in mucosal remodeling and signaling in asthma, World Allergy Organization J. 7 (2014) 13.
[29] J. Hu, J. Tian, S. Zhu, L. Sun, J. Yu, H. Tian, Q. Dong, Q. Luo, N. Jiang, Y. Niu, Z. Shang, Sox5 contributes to prostate cancer metastasis and is a master regulator of TGF--induced epithelial mesenchymal transition through controlling Twist1 expression, Br. J. Cancer 118 (2018) 88–97.
[30] N. Normanno, A. De Luca, C. Bianco, L. Strizzi, M. Mancino, M.R. Maiello, A. Carotenuto, G. De Feo, F. Caponigro, D.S. Salomon, Epidermal growth factor receptor (EGFR) signaling in cancer, Gene 366 (2006) 2–16.
[31] M. Jia, S. Souchelnytstkyi, Comments on the cross-talk of TGF- and EGF in cancer, Exp. Oncol. 33 (2011) 170–173.
[32] Y. Zhao, J. Ma, Y. Fan, Z. Wang, R. Tian, W. Ji, F. Zhang, R. Niu, TGF-β transactivates EGFR and facilitates breast cancer migration and invasion through canonical Smad3 and ERK/Sp1 signaling pathways, Mol. Oncol. 12 (2018) 305–321.
[33] F.R. Lin, H.K. Kuo, H.Y. Ying, F. H. Yang, K.I. Lin, Induction of apoptosis in plasma cells by B lymphocyte–induced maturation protein-1 knockdown, Cancer Res. 67 (2007) 11914-11923.
[34] J. Yan, J. Jiang, C.A. Lim, Q. Wu, H.H. Ng, K.C. Chin, Blimp-1 regulates cell growth through repression of p53 transcription, Proc. Natl. Acad. Sci. U.S.A. 104 (2007) 1841–1846.
[35] M. Sciortino, M.D.P. Camacho-Leal, F. Orso, E. Grassi, A. Costamagna, P. Provero, W. Tam, E. Turco, P. Defilippi, D. Taverna, S. Cabodi, Dysregulation of Blimp-1 transcriptional repressor unleashes p130Cas/ErbB2 breast cancer invasion, Sci. Rep. 7 (2017) 1145.
[36] Keller AD, T. Maniatis, Identification and characterization of a novel repressor of beta-interferon gene expression, Genes Dev. 5 (1991) 868–879.
[37] S.L. Nutt, K.A. Fairfax, A. Kallies, Blimp-1 guides the fate of effector B and T cells, Nat. Rev. Immunol. 7 (2007) 923–927.
[38] Z. Yu., S. Sato., P.C. Trackman , K.H. Kirsch , G.E. Sonenshein, Blimp-1 activation by AP-1 in human lung cancer cells promotes a migratory phenotype and is inhibited by the lysyl oxidase propeptide, PLoS ONE 7 (2012) e33287.
[39] A.A. Molinolo, P. Amornphimoltham, C.H. Squarize, R.M. Castilho, V. Patel , J.S. Gutkind, Dysregulated molecular networks in head and neck carcinogenesis. Oral Oncol. 45 (2009) 324–334.
[40] Y.A. Ko, Y.H. Chan, C.H. Liu, J.J. Liang, T.H. Chuang, Y.P. Hsueh, Y.L. Lin, K.I. Lin, Blimp-1-mediated pathway promotes type I IFN production in plasmacytoid dendritic cells by targeting to interleukin-1 receptor-associated kinase M, Front. Immunol. 9 (20180 1828.
[41] Y.H. Chan, M.F. Chiang, Y.C. Tsai, S.T. Su, M.H. Chen, M.S. Hou, K.I. Lin, Absence of the transcriptional repressor Blimp-1 in hematopoietic lineages reveals its role in dendritic cell homeostatic development and function, J. Immunol. 183 (2009) 7039-7046.
[42] M. Veleeparambil, D. Poddar, S. Abdulkhalek, P.M. Kessler, M. Yamashita, S. Chattopadhyay, G.C. Sen, Constitutively bound EGFR-mediated tyrosine phosphorylation of TLR9 is required for its ability to signal, J. Immunol. 200 (2018) 2809–2818.
[43] Y. Ando, G.S. Lazarus, P.J. Pensen, Activation of protein kinase C inhibits human keratinocyte migration, J. Cell. Physiol. 156 (1993) 487-496.
[44] T. Banno, A. Gaze, M. Blumenberg, Effects of tumor necrosis factor-α (TNF-α) in epidermal keratinocytes revealed using global transcriptional profiling, J. Biol. Chem. 279 (2004) 32633–32642.
[45] A. Herpin, C. Lelong, P. Favrel, Transforming growth factor-β-related proteins: an ancestral and widespread superfamily of cytokines in metazoans, Dev. Comp. Immunol. 28 (2004) 461-485.
[46] J. Massagué, S.W. Blain, R.S. Lo, TGFbeta signaling in growth control, cancer, and heritable disorders, Cell 103 (2000) 295–309.
[47] J.J. Letterio, A.B. Roberts, Regulation of immune responses by TGF-beta, Ann. Rev. Immunol. 16 (1998) 137–161.
[48] H. Zhang, A. Berezov, Q. Wang, G. Zhang, J. Drebin, R. Murali, M.I. Greene, ErbB receptors: from oncogenes to targeted cancer treatment, J. Clin. Invest. 117 (2007) 2051-2058.
[49] S. Salehi, R. Bankoti, L. Benevides, J. Willen, M. Couse, J.S. Silva, D. Dhall, E. Meffre, S. Targan, G.A. Martins, B lymphocyte-induced maturation protein-1 contributes to intestinal mucosa homeostasis by limiting the number of IL17-producing CD4+ T cells, J. Immunol. 189 (2012) 5682–5693.
[50] M. Hu, C. Wang, G.Y. Zhang, M. Saito, Y.M. Wang, M.AA. Fernandez, Y. Wang, H. Wu, W.J. Hawthorne, C. Jones, P.J. O'Connell, T. Sparwasser, G.A. Bishop, A.F. Sharland, S.I. Alexander, Infiltrating Foxp3(+) regulatory T cells from spontaneously tolerant kidney allografts demonstrate donor-specific tolerance. Am. J. Transplant. 13 (2013) 2819–2830.
[51] L. Li, L. Qi, Z. Liang, W. Song. Y. Liu, Y. Wang, B. Sun, B. Zhang, W. Cao, Transforming growth factor-β1 induces EMT by the transactivation of epidermal growth factor signaling through HA/CD44 in lung and breast cancer cells, Int. J. Mol. Med. 36 (2015) 113-122.
[52] ] C.A. Hewson, M.R. Edbrooke, S.L. Johnston, PMA induces the MUC5AC respiratory mucin in human bronchial epithelial cells, via PKC, EGF/TGFalpha, Ras/Raf, MEK, ERK and Sp1-dependent mechanisms, J. Mol. Biol. 344 (2004) 683–695.
[53] Y.C. Wu, R. Wu, S.P. Reddy, Y.C. Lee, M.M. Chang, Distinctive epidermal growth factor receptor/extracellular regulated kinase-independent and -dependent signaling pathways in the induction of airway mucin 5B and mucin 5AC expression by phorbol 12-myristate 13-acetate, Am. J. Pathol. 170 (2007) 20–32.
[54] P. Wee, Z. Wang, Epidermal growth factor receptor cell proliferation signaling pathways. Cancers 9 (2017), 52.
[55] S.E. Seton-Rogers, Y. Lu, L.M. Hines, M. Koundinya, J. LaBaer, S.K. Muthuswamy, et al. Cooperation of the ErbB2 receptor and transforming growth factor beta in induction of migration and invasion in mammary epithelial cells. Pro. Natl. Acad. Sci. U.S.A. 101 (2004) 1257-1262.
[56] Y. Ueda, S. Wang, N. Dumont, J.Y. Yi, Y. Koh, C.L. Arteaga, Overexpression of HER2 (erbB2) in human breast epithelial cells unmasks transforming growth factor beta-induced cell motility, J. Biol. Chem. 279 (2004) 24505-24513.
[57] N.L. Wu, T.A. Lee, T.L. Tsai, W.W. Lin, TRAIL-induced keratinocyte differentiation requires caspase activation and p63 expression. J. Invest Dermatol. 131 (2011), 874-883.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/77269-
dc.description.abstractB淋巴細胞誘導的成熟蛋白-1 (Blimp-1)是一種轉錄抑制因子,在調節各種免疫細胞的發育和功能中起著至關重要的作用。目前,關於角質形成細胞和癌細胞中Blimp-1表達和細胞功能的調節的理解有限。在這項研究中,我們發現EGF、PMA、TGF-β、TNF-、H2O2、UVB和TLR激活劑(LPS、polyIC、CpG)可以上調HaCaT角質形成細胞及鱗狀細胞癌(Cal-27和SAS)中Blimp-1的蛋白質和mRNA水平。儘管這些刺激物可以同時激活細胞中的EGFR,但不是所有刺激物誘導Blimp-1表達的作用與EGFR相關。研究顯示PMA在Cal-27細胞及TGF-β在前列腺癌細胞PC3及 LNCaP的作用與內生性EGFR的活化有關,相反的,EGFR的抑制劑易瑞沙 (Iressa) 並未抑制PMA和TNF-在HaCaT引起的Blimp-1誘導作用,也不抑制TNF-α 和TGF-β分別在Cal-27 及 SAS細胞的作用。另一方面,Syk抑制劑可降低PMA在HaCaT細胞中誘導的Blimp-1基因表達,而不影響TNF-的作用。於Blimp-1報告基因的分析得知,AP-1參與EGF刺激HaCaT細胞的Blimp-1基因表達。共軛顯微鏡之研究結果顯示Blimp-1依不同細胞可以表現在細胞核及細胞質中,而SAS細胞在PMA及TNF-α刺激下,Blimp-1會由細胞質轉移到細胞核中。此外,Blimp-1基因靜默時會增強角質細胞和癌細胞的遷移。所有這些結果顯示Blimp-1基因可以受各種刺激劑而增加基因及蛋白表現,且在細胞遷移中起負面的調節作用。值得注意的是,TGF-β活化EGFR的作用方式與其他的刺激劑不同,TGF-β的作用是以增加EGFR的蛋白量所致,而其他的刺激劑則是直接對EGFR產生transactivation。功能研究表明Blimp-1基因靜默不影響細胞存活,但增加癌細胞的增生,促進TGF-β刺激細胞的遷移、侵入及上皮細胞間質轉化。總之,多種刺激劑可以誘導Blimp-1的基因表現,而在某些細胞種類及刺激條件下需要內生性的EGFR活性,且Blimp-1在角質形成細胞和癌細胞中扮演負向調節細胞遷移的角色。zh_TW
dc.description.abstractB lymphocyte-induced maturation protein-1 (Blimp-1) is a transcriptional repressor, and plays a crucial role in the regulation of development and functions of various immune cells. Currently, there is limited understanding about the regulation of Blimp-1 expression and cellular functions in keratinocytes and cancer cells. In this study, we found that EGF, PMA, TGF-β, TNF-α, H2O2, UVB, and TLR ligands (LPS, polyIC and CpG) can upregulate the protein and mRNA levels of Blimp-1 in HaCaT keratinocytes and/or Cal-27 and SAS squamous cell carcinoma (SCC). Even though all of these stimuli can transactivate EGFR, not all stimuli-induced Blimp-1 upregulation depend on the constitutive EGFR activity. We found that the Blimp-1 responses in PMA-activated Cal-27 cells as well as in TGF-β-activated prostate cancer PC3 and LNCaP cells were inhibited by iressa. In contrast, iressa did not inhibit the Blimp-1 induction responses of PMA and TNF-α in HaCaT cells nor those of TNF-α and TGF-β in Cal-27 and SAS cells, respectively. On the other hands, Syk inhibitor can reduce PMA-, but not TNF-α-induced Blimp-1 gene expression in HaCaT and Cal-27 cells. Data of reporter assay indicate that AP-1 is involved in Blimp-1 gene expression in EGF-stimulated HaCaT keratinocytes. Confocal microscopic data revealed that Blimp-1 is localized in the nuclei and cytosol depending on cell types, and can be translocated from the cytosol to the nuclei in PMA- and TNF-α-stimulated SAS cells. Furthermore, Blimp-1 silencing enhances keratinocytes and cancer cell migration. All these findings suggest that Blimp-1 gene expression can respond to various stimuli and Blimp-1 plays a negative role in cell migration. Of note, different from other stimuli which directly transactivates EGFR activity, the effects of TGF-β in increasing EGFR activity in SAS, PC3 and LNCaP cells are resulting from the upregulation of EGFR protein. Functional study revealed that silencing Blimp-1 can not only increase cell proliferation, but also accelerate cell migration and TGF-β-induced EMT in prostate cancer cells. In conclusion, Blimp-1 can be upregulated via gene transcription by various stimuli, and in some cases depending on the EGFR activity. Blimp-1 may act as a brake on keratinocyte and cancer cell migration.en
dc.description.provenanceMade available in DSpace on 2021-07-10T21:53:31Z (GMT). No. of bitstreams: 1
ntu-108-R06443023-1.pdf: 4638181 bytes, checksum: f90e009ec2e9776f78312922943d2867 (MD5)
Previous issue date: 2019
en
dc.description.tableofcontentsTable of contents
口試委員會審定書…………………………………………………………… 2
Abbreviations……………………………………………… 4
Abstract…………………………………………………… 6
中文摘要…………………………………………………… 8
Introduction……………………………………………… 9
Research Motivation…………………………………… 15
Materials and Methods………………………………… 16
Results…………………………………………………… 23
Discussion………………………………………………… 33
Figures…………………………………………………… 41
Appendix…………………………………………………… 60
Reference………………………………………………… 66
dc.language.isoen
dc.subjectB淋巴細胞誘導的成熟蛋白-1zh_TW
dc.subjectBlimp-1en
dc.titleBlimp-1在角質形成細胞和癌細胞中的調節和細胞功能zh_TW
dc.titleRegulation and cellular functions of Blimp-1 in keratinocytes and cancer cellsen
dc.typeThesis
dc.date.schoolyear107-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳青錫,蔡丰喬,蔡幸真
dc.subject.keywordB淋巴細胞誘導的成熟蛋白-1,zh_TW
dc.subject.keywordBlimp-1,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201903165
dc.rights.note未授權
dc.date.accepted2019-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept藥理學研究所zh_TW
Appears in Collections:藥理學科所

Files in This Item:
File SizeFormat 
ntu-108-R06443023-1.pdf
  Restricted Access
4.53 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved